用户名: 密码: 验证码:
高凝油油藏渗流特征及热采方式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对辽河沈84-安12油田的地质特征、生产动态进行认真分析,在文献调研的基础上,综合利用室内实验、渗流力学、油藏工程等多学科知识,对高凝油的流变特征和渗流规律进行了研究,通过精细地质模型和精确生产历史拟合,对目前剩余油分布规律进行总结,提出了加密井位,并对比了不同开发方式的效果。
     利用室内实验研究了高凝油的流变特征和渗流特征。温度是影响高凝油黏度的主要因素,当温度较低时,高凝油的黏度同时受温度和剪切应力影响,高凝油表现为非牛顿流体特征,当温度升高到溶蜡点以上时,黏度仅与温度有关,高凝油表现出牛顿流体特征;高凝油的凝固点随含水率的变化而发生改变,开始阶段随含水率的增加凝固点上升,在含水率为70%左右时凝固点达到最高,随后凝固点随含水率的增加而降低;由于乳化水的作用,即使温度在高凝油的析蜡点以上,高凝油仍然呈现非牛顿流体特征。
     高凝油油藏水驱油效率受原油黏度和实验温度的影响较明显;随着原油黏度的降低和温度的升高,驱替效率逐渐提高;另外驱替效率与岩石本身结构有关,分选差、中值半径小、泥质含量高的岩心,水驱油效率低;随着实验温度的升高,高凝油油藏相渗曲线形态逐渐向右偏移,两相区变宽,等渗点含水饱和度增加,束缚水饱和度升高,残余油饱和度则显著降低;当温度低于析蜡点温度时,相对渗透率曲线随着压力梯度增大向右移动,两相区变宽,增加地层压力梯度可以提高采收率。
     根据传热传质理论以及质量守恒、能量以及动量守恒原理,建立了高凝油开发过程中从蒸汽注入井筒到地层的热损失计算数学模型,采用迭代求解的方法对井筒注蒸汽过程中的热量损失进行了求解,建立井筒热损评价方法;利用沈84-安12高凝油油藏开发现场的注汽井的沿程温度和压力以及干度监测数据对所建立的热损计算数学模型的计算结果进行了验证,本文所建立的数学模型能较为准确的计算从井筒到地层的热损失,可以用来对注蒸汽过程中的蒸汽热力学参数及热效率进行评价;以现场注汽井基本热力学参数建立注汽过程热损计算数学模型,针对几个比较敏感的蒸汽参数进行了敏感性分析,得出了高凝油蒸汽参数的敏感性规律。
     为了明确水驱油藏的最终采收率,在分析了现有水驱特征曲线回归预测方法的基础上,提出自动搜索初始含水率的回归预测算法,并通过编程实现了上述算法,算法中引入数据预处理的操作,使回归方法更精确、更智能;针对有些油藏在开发过程中经历了多次开发方案的调整的情况,依据俞启泰提出的分段原则,提出了分段拟合的算法,并且在算法中对含水率数据进行了数据平滑,消除了数据中的偶然因素;利用沈84安12块的生产数据对算法做了验证,实验数据证明算法取得了较好的效果;根据预测结果沈84-安12水驱最终采收率为28.53%,目前尚未达到最终驱替效率,因此需要进一步开展剩余油研究。
     在统计分析沈84-安12块地质及流体参数的基础上,建立了反映该区块典型地质特征的属性模型以及对应的五点井网数值模型,对比分析了该区块进行常规水驱、热水驱以及蒸汽驱三种开发方式的效果,结果表明,无论从技术上还是从经济效益上来看,沈84-安12块采取蒸汽驱开采方式才能获得较大的采收率和较好的经济效益;在蒸汽驱影响因素调研的基础上,进行了蒸汽驱影响因素敏感性分析,得出了井距、注汽速度、注汽温度、采注比、注汽干度对蒸汽驱开发效果的影响规律;利用灰色关联分析方法研究了蒸汽驱注采参数对蒸汽驱效果的敏感性,得到各注采参数对蒸汽驱效果的影响大小排序为:蒸汽干度>采注比>注汽速度>注汽温度>井距:针对三个对该区该区块蒸汽驱影响最敏感的因素蒸汽干度、采注比、注汽速度进行了蒸汽驱开发注采参数优化,得到了蒸汽驱最优注采参数组合,即注汽速度最优值为300m3/d,蒸汽干度在0.6以上,采注比为1.2。
     采用确定性与随机性相结合的原则,利用地质建模软件PETREL建立沈84-安12块三维油藏精细地质模型。储层构造模型的建立采用确定性建模方法,属性模型建立过程中,孔隙度三维模型选用高斯模型和序贯高斯模拟方法建立,渗透率三维模型选用指数模型和序贯高斯模拟方法建立;基于建立的PETREL地质模型,选取静67-59断块和静71-61断块建立了数值模拟模型,对生产动态进行了历史拟合,达到了较高的拟合精度,拟合结果可以满足下一步动态预测的需要:研究了静67-59断块和静71-61断块剩余油分布规律,剩余油分布与沉积相关系不明显,主要与微构造、井网控制关系密切。影响剩余油分布的主要因素包括地质因素和开发因素;地质因素包括构造、隔夹层、断层,开发因素包括井网完善程度、注水井的影响:对静67-59断块和静71-61断块分别对比了注冷水、注热水和注蒸汽开发效果,结果显示:注热水比注冷水好,注蒸汽比注热水开发效果好;注蒸汽开发可以有效地提高采收率,增加了开发效果,推荐沈84-安12油藏采用注蒸汽开发。
     本论文在以下两个方面具有创新性:
     1、建立了高凝油开发过程中从蒸汽注入井筒到地层的热损失评价方法;根据传热传质理论以及质量守恒、能量以及动量守恒原理,建立了高凝油开发过程中从蒸汽注入井筒到地层的热损失计算数学模型,并通过沈84-安12高凝油油藏注汽井的沿程温度和压力以及干度监测数据对所建立的热损计算数学模型的计算结果进行了验证,本文所建立的数学模型能较为准确的计算从井筒到地层的热损失,可以用来对注蒸汽过程中的蒸汽热力学参数及热效率进行评价;
     2、提出自动搜索初始含水率的回归预测算法;算法中引入数据预处理的操作,使回归方法更精确、更智能;针对有些油藏在开发过程中经历了多次开发方案的调整的情况,提出了分段拟合的算法,并且在算法中对含水率数据进行了数据平滑,消除了数据中的偶然因素;利用沈84安12块的生产数据对算法做了验证,实验数据证明算法取得了较好的效果。
In this study, the objective was to investigate the rheological properties and fluid mechanics of the high pour point crude in Shen84-An12blocks in Liaohe oil field. By analyzing the geology character and the production history, combing the conclusions form the laboratory experiment and the multidciplinary knowledge (such as filtration mechanics in porous medium, petroleum reservoir engineering, and so on), the geological models and numerical models were established, and all of the models were calibrated by the field data. Comparing the different scenario based on the numerical models, the results shown intermediate well could enounce the oil recovery in Shen84-An12blocks in Liaohe oil field.
     The rheological properties and filtration mechanics of the high pour point crude were studied in the laboratory experiment. Temperature was the main factors affecting the viscosity of the high pour point oil. When the temperature was lower, the viscosity could be influenced by both temperature and shear stress, and the flow of the high pour point oil was a non-Newtonian flow, while the high pour point crude becomes Newtonian flow and the viscosity only relates to the temperature when the temperature was above the melting wax point. The freezing point of high pour point oil changes with the water content. At the beginning, it increases with water content, and freezing point becomes highest when the water content was about70%, and then it decreases with the increasing water content. Due to the affection of the emulsified water, high pour point oil was still a non-Newtonian flow, even if the temperature was above the high pour point oil wax precipitation point.
     The efficiency of the water driving high pour point oil could be affected by the viscosity of crude oil and the temperature. With the decrease of the oil viscosity and the increase of temperature, efficiency can be improved gradually. In addition, displacement efficiency also has relationship with the rock structure. For example, the poor degree of sorting, small radius of mean value, the core of high shale content may results in the low efficiency of water flooding. With the experimental temperature increasing, high pour point oil reservoir relative permeability curve gradually shifted to the right, the two-phase region widens, the water saturation of isoperm increase, the saturation of combined water increases, the residual oil saturation significantly reduced. When the temperature was lower than the temperature of the wax precipitation point, the curves of relative permeability move to the right with the increasing pressure gradient, the two-phase region becomes wider, and then the pressure gradient increase in order to enounce the recovery.
     According to the theory of heat transfer, mass balance, energy conservation and momentum conservation principle, the mathematical model of the high pour point oil, which describes the heat transport when the steam injected into the wellbore to the formation, was established. Thwas model could be used to calculate the heat loss. An iterative method was employed to solve the new mathematical model, and established a new approach to evaluate heat losses. This new mathematic model was verified by the data from Shen84-An12blocks in Liaohe oil field. The data included the temperature of steam injection wells, the pressure, and the dryness monitoring data for the high pour point oil reservoir. The results shown the new mathematical model in this study was accurate to calculate the heat loss from the wellbore to the formation, and can be used to evaluate the thermodynamic parameters and the thermal efficiency of the steam in the steam injection process. According to the mathematical model of heat loss using the site basic thermodynamic parameters of steam injection well, the sensitivity of steam parameters were analyzed, and sensitivity law of the high pour point oil steam parameters was obtained.
     In order to understand the ultimate recovery of the water drive reservoir, the regression prediction method was proposed to automatically search the vale of the initial water content, based on the analysis of existing water drive characteristic curve. The program was written to solve this problem, where this algorithm includes the data preprocessing operation to make this method more accurate, more intelligent. For the some reservoirs experienced several development program adjustments, the segmented fitting the regression method was proposed according to the staging policies by Yuqitai. This data of water content data was smoothed in this algorithm to eliminate the causal factors in the data. This method was tested by the data from Shen84-Anl2blocks, and the results shown this algorithm could get the better prediction. According to the results in this study, the ultimate recovery was29.66%in Shen84-An12blocks. It has not yet reached the final displacement efficiency, and therefore it need to further develop the remaining oil.
     Based on the statistical analysis of geological and fluid parameters in Shen84-Anl2blocks, the typical geological model and the corresponding five-spot pattern numerical model were established. By comparing the three conventional development methods of water flooding, hot water floods and steam flooding, the results shown that the recovery of Shen84-An12could be improved by steam flooding approach, from both technique and the economic benefit aspects. Based on the analysis of the influencing factors to steam flooding, the sensitivity of the impact factors was investigated. Results shown well distance, steam injection speed, steam injection temperature, mining, and steam injection dryness of steam flooding could affect the oil development. The gray relational analysis method was employed to study sensitivity of the effects of steam flooding to the injection and production parameters, and the influence can be sorted as:steam dryness> production factor> steam injection speed> steam injection temperature>well distance. In the block using steam flooding, three most sensitive factors including steam dryness, production factor, and steam injection speed steam were used to optimize the parameters and obtain the injection and production parameters combination, which was steam injection speed was300m3/d steam dryness0.6above, production factor1.2.
     Based on the principle of combining deterministic and stochastic theory,3D geological model was established using PETREL software in Shen84-An12reservoir. The reservoir structures model was based on the determinate approach, while, the three-dimensional model of porosity was obtained by optional Gaussian model and sequential Gaussian simulation method, and the three-dimensional model of permeability based on the index model and sequential Gaussian simulation method. Based on the geological model established by PETREL, the numerical simulation models were established in Jing67-59fault block and Jing71-61fault block. By calibrating the numerical models, the fitted model can be used to predict oil flow law. By analyzing the remaining oil distribution in Jing67-59block and Jing71-61fault block, the results shown the relationship of oil distribution with deposition system is not obvious. The oil distribution is mainly related with the micro structure, well network. The main factors affecting the distribution of the remaining oil includes geological factors and development factors, where geological factors includes the structure, the interbeds, faults, and development factors included wells degree of perfection, injection wells affect.
     In Jing67-59fault block and Jing71-61fault block, cold water injection, hot water injection and steam injection were used to test the development effect using the numerical models, and the results shown hot water injection is better than cold water injection, and steam injection is better than the hot water injection. Therefore, we recommended steam injection should be used to enhance oil recovery in Shen84-An12reservoir.
     There were two innovations obtained in this study as follows:
     First, a new mathematical model to calculate the heat loss in the well of the high pour point crude and approach to solve it were proposed when the steam was injected into the strata, based on the heat and mass transfer theory, mass balance, energy conservation, and momentum conservation. This new model can be used to evaluate the heat efficiency and thermodynamic parameters in the procession of the injecting the steam. Finally, this new model was verified by the field data in Shen84-An12blocks in Liaohe oil field.
     Second, the regression prediction method was proposed to automatically search the value of the initial water content. The algorithm includes the data preprocessing operation to make this method more accurate, more intelligent. For the some reservoirs experienced several development program adjustments, the segmented fitting the regression method was proposed. The data of water content was smoothed in this algorithm to eliminate the causal factors in the data. This method was tested by the data from Shen84-An12blocks, and the results shown this algorithm could get the better prediction.
引文
[1]张方礼.高凝油油藏地质与开发[M].北京:石油工业出版社,2007.
    [2]刘翔鹗等编著.高凝油油藏开发模式[M],北京:石油工业出版社,1997.
    [3]张方礼,高金玉编著.静安堡高凝油油藏[M].北京:石油工业出版社,1997.
    [4]谢文彦,李晓光,陈振岩,等.辽河油区稠油及高凝油勘探开发技术综述[J].石油学报,2007,28(4):145-150.
    [5]Wendler C, Mansilla C.Deep Water Well Testing for Heavy-and Low-Pour-Point Oils-Issues, Options, Successful Methodology:Case Histories[R].SPE OTC-15279-MS presented at the Offshore Technology Conference,Houston, Texas,5 May-8 May 2003.
    [6]Wendler C, Mansilla C. Options and Special Considerations for Successful Deep-Water Well Testing of Heavy-and Low-Pour-Point Oils? Case Histories [R].SPE 00086944 presented at the SPE International Thermal Operations and Heavy Oil Symposium and Western Regional Meeting,Bakersfield, California,16-18 March 2004.
    [7]Tuttle R N.High-Pour-Point and Asphaltic Crude Oils and Condensates [J].SPE Journal of Petroleum Technology,1983,35(6):1192-1196.
    [8]Tung N P, Phong N T P, Long B Q K, et al. Studying the Mechanisms of Crude Oil Pour Point and Viscosity Reductions When Developing Chemical Additives With the Use of Advanced Analytical Tools [R].SPE 00065024 presented at the SPE International Symposium on Oilfield Chemistry,Houston, Texas,01/01/2001.
    [9]Cassinat J C, Payette M C, Taylor D B, et al.OptimizingWaterflood Performance by Utilizing Hot Water Injection in a High Paraffin Content Reservoir[R].SPE 00075141 presented at the SPE/DOE Improved Oil Recovery Symposium,Tulsa, Oklahoma,13-17 April 2002.
    [10]Herrera Jr. J O, George W D, Birdwell B F, et al.WELLBORE HEAT LOSSES IN DEEP STEAM INJECTION WELLS S1-B ZONE, CAT CANYON FIELD [R].SPE 7117 presented at the SPE California Regional Meeting,San Francisco, California,12-14 April 1978.
    [11]Smith R C, Steffensen R J.Interpretation of Temperature Profiles in Water-Injection Wells [J].SPE Journal of Petroleum Technology,1975,27(6):777-784.
    [12]Curtis M R, Witterholt E J.USE OF THE TEMPERATURE LOG FOR DETERMINING FLOW RATES IN PRODUCING WELLS [R].SPE 00004637 presented at the Fall Meeting of the Society of Petroleum Engineers of AIME,Las Vegas, Nevada,30 September-3 October 1973.
    [13]Chiu K, Thakur S C.Modeling of Wellbore Heat Losses in Directional Wells Under Changing Injection Conditions. [R].SPE 00022870 presented at the SPE Annual Technical Conference and Exhibition,Dallas, Texas,6-9 October 1991.
    [14]孟卫工,陈振岩,李湃,等.潜山油气藏勘探理论与实践——以辽河坳陷为例[J].石油勘探与开发,2009,36(2):136-143.
    [15]梁振宇.大民屯前进构造带含油系统研究与评价[J].石油天然气学报,2006,28(2):34-38.
    [16]鲁卫华,谷团,鞠俊成,等.辽河盆地深层油气成藏条件与勘探前景[J].油气地质与采收率,2007,14(6):26-28.
    [17]孟卫工.辽河坳陷大民屯凹陷古近系盖层特征及对油气系统的影响[J].古地理学报,2005,7(1):25-33.
    [18]庞洪汾等编著.小集高凝油油藏[M].石油工业出版社,1996.
    [19]于九政.曹台潜山高凝油藏蒸汽吞吐工艺注采参数优化.西安石油大学硕士学位论文,2009.
    [20]魏福芹,周凤春,汪佳.辽河沈84-安12块储层非均质性研究[J].内蒙古石油化工,2010,21:132-133.
    [21]张君龙.沈84-安12精细储层描述,大庆石油学院硕士学位论文,2007.
    [22]杜先芳.大民屯凹陷沈84-安12区块Es3层序地层格架及砂体分布规律[J].石油地质与工程,2010,24(1):4-6.
    [23]李小艳,卢宗盛,胡勇.辽河油田古近系沙河街组三段储层宏观非均质性研究——以沈842安12块储层为例[J].西安石油大学学报(自然科学版),2004,19(3):5-9.
    [24]许国民.沈84-安12块534段沉积微相及储层非均质性研究[J].中国地质大学硕士学位论文,2002.
    [25]陈凡云,马文英,邓文勤.静安堡高凝油油藏采油技术[J].断块油气田,2001,8(6):53-56.
    [26]郑容植,王桂珍.大民屯凹陷高凝油低凝油特征及其分布规律[J].石油实验地质,1988,10(3):256-266.
    [27]Alboudwarej H, Huo Z, Kempton E C.Flow-Assurance Aspects of Subsea Systems Design for Production of Waxy Crude Oils[R].SPE SPE-103242-MS presented at the SPE Annual Technical Conference and Exhibition,San Antonio, Texas, USA.24-27 September 2006.
    [28]Shaoul J R, Ross M J, Spitzer W J, et al.Hydraulic Fracturing Using Heated Fluids Brings Success in High-Pour-Point Waxy-Oil Reservoir in India[R].SPE SPE-107338-MS presented at the European Formation Damage Conference.Scheveningen, The Netherlands,30 May-1 June 2007.
    [29]高约友等编著.魏岗高凝油油藏[M].石油工业出版社,1997.
    [30]王致立,姚传进,蒋帅等.非牛顿高凝油的剪切特性[J].西南石油大学学报(自然科学版),2012,34(4):110-114.
    [31]张晓,雷光伦,姚传进.剪切作用对高凝油凝固特性的影响[J].油气田地面工程,2011,30(9):16-18.
    [32]陆辉,杨胜来,王玉霞,等.苏丹3/7区高凝油流变特性研究[J].特种油气藏,2012,12(13):3222-3225.
    [33]杨文军.一种新型稠油、高凝油开采工艺磁降凝降黏技术[J].特种油气藏,10(2):67-68,75.
    [34]姚传进,雷光伦,张晓,等.潍北油田高凝油流变性研究[J].油气地质与采收率,2011,18(1):63-66.
    [35]胡慧芳.高凝油的流变性特征及影响因素研究[J].今日科苑,2011,24:168.
    [36]张权.高凝油抽油机井井筒流动规律研究[D].大庆石油学院硕士学位论文,2010.
    [37]J. A. Ajienka. The Effect of Temperature on the Rheology of Waxy Crude Oils[C]. SPE 23605,1991.
    [38]姜建伟,曹凯,刘丽娜.魏岗油田高凝油油藏开发实践[J].新疆石油地质,1999,20(4):338-339.
    [39]田乃林,张丽华,范增安.高凝油渗流特性的实验研究[J].断块油气田,1996,3(3):34-36
    [40]田乃林,张丽华.高凝油驱油效率的室内实验研究[J].大庆石油地质与开发,1997,16(3):53-55
    [41]陈仁保.洪泽探区高凝油油藏渗流特性试验研究及开发模式优选[J].石油天然气学报,2007,27(5):121-124.
    [42]李星民,杨胜来,张建伟等.高凝油渗流中启动压力梯度及其影响因素研究[J].石油钻探技术,2009,27(5):114-116.
    [43]刘易非,王佩文,赵东明.高凝油渗流特征[C].中国力学学会学术大会2005,1299.
    [44]姚传进,雷光伦,蒋宝云等.高凝油井筒温度场计算及流态转变分析[J].石油钻采工艺,2011,33(3):42-46.
    [45]孟庆学,王玉臣,李成.高凝油井筒温度场分析及热力参数优选[J].油气井测试,2007.16(S):47-49.
    [46]李庆毅,贾国奇,殷忠凯等.井下电缆加热技术在高凝油开采中的应用[J],河南石油,2004,18(5):51-52.
    [47]Pacheco E F and Farouq A. Wellbore Heat Losses and Pressure Drop in Stream Injection[J]. Journal of Petroleum Technology,1972(1):139-144.
    [48]Satter A. Heat Losses During Flow of Steam Down a Wellbore[J]. Journal of Petroleum Technology,1965:845-851.
    [49]李明忠,杨国锋,鲍丙生等.井口注汽参数对注汽效果影响分析[J].广西大学学报,2006,31(增刊):149-152
    [50]Ramey H J. Wellbore Heat Transmission[J]. Journal of Petroleum Technology,1962:427-435
    [51]Beggs H D and Brill J P. A Study of Two-Phase Flow in Inclined Pipes[J]. Journal of Petroleum Technology,1973(5):607-617
    [52]Orkiszewski J. Predicting Two-Phase Pressure Drops in Vertical Pipe[J]. Journal of Petroleum Technology,1967:829-838.
    [53]任瑛,梁金国编著.稠油与高凝油热力开采问题的理论与实践[M].石油工业出版社, 2000.
    [54]张崇刚,朱静.注水对沈84-安12油田高凝油藏冷伤害浅析[J],油气井测试,2001,10(4):55-57.
    [55]高明,宋考平,吴家文等.高凝油油藏注水开发方式研究[J].西南石油大学学报(自然科学版),2010,32(2):93-96.
    [56]姚凯,姜汉桥,党龙梅等。高凝油油藏冷伤害机制[J].中国石油大学学报(自然科学版),2009,33(3):95-98
    [57]姚为英.高凝油油藏注普通冷水开采的可行性[J].大庆石油学院学报[J],2007,31(4),41-47.
    [58]Thuc P D, Bich H V, Son T C, et al.The Problem in Transportation of High Waxy Crude Oils Through Submarine Pipelines at JV Vietsovpetro Oil Fields, Offshore Vietnam[J].Journal of Canadian Petroleum Technology,2003,42(6):147-162.
    [59]陈涛平,刘继军.高凝油热水驱提高采收率实验[J].大庆石油学院学报,2008,32(4):45-48.
    [60]周炜,唐仲华,温静,等.有效改善高凝油油藏注水开发效果——以辽河盆地大民屯凹陷沈95块为例[J].石油与天然气地质,2010(2):260-264.
    [61]Shaoul J R, Ross M J, Spitzer W J, et al.Hydraulic Fracturing With Heated Fluids Brings Success in High-Pour-Point Waxy-Oil Reservoir in India[J].SPE Production & Operations,2009,24(1):96-106.
    [62]Wenger L M, Davis C L, Isaksen G H. Multiple Controls on Petroleum Biodegradation and Impact on Oil Quality [J].SPE Reservoir Evaluation & Engineering,2002,5(5):375-383.
    [63]姚传进,雷光伦,吴川,等.注热水开发潍北高凝油藏[J],油气田地面工程,2011,30(2),14-17.
    [64]夏国朝.枣园复杂断块低流度油藏特征及稳产措施研究,中国地质大学(北京)博士学位论文,2010.
    [65]李菊花,凌建军.热水驱开采高凝油数模研究[J].特种油气藏,2000,7(2):25-27.
    [66]韩小峰.沈84-安12块高凝油三次采油提高采收率技术研究,大庆石油学院硕士学位论文,2009.
    [67]王树霞,卢祥国,王荣键等.沈84-安12块调剖剂与驱油剂配伍性实验研究[J].2009,16(4):74-78.
    [68]张海红.沈84-安12块二元复合驱油技术实验研究[D],大庆石油学院硕士学位论文,2010.
    [69]陈丽.沈84-安12块化学驱挖潜剩余油数值模拟研究[D],东北石油大学硕士学位论文,2012.
    [70]刘明.静安堡油田沈84-安12块二次开发深部调驱试验方案[J],东北石油大学硕士学位论文,2011.
    [71]孟强.曹台潜山裂缝性高凝油藏注蒸汽及注热水开采适应性研究[D].大庆石油学院硕士学位论文,2009.
    [72]王霞.高凝油藏热采方式研究[D].中国石油大学(华东)硕士学位论文,2008.
    [73]孙海雷,柳成志,李明辉等.高分辨率层序地层学在辽河油田大民屯凹陷油田精细开发中的应用[J],现代地质,2009,23(5):981-986.
    [74]魏福芹.大民屯凹陷沈84一安12块储层特征研究[D],大庆石油学院硕士学位论文,2011.
    [75]周学金.沈84-安12块特高含水期提液技术研究与应用[J],石油地质与工程,2012,26(2):116-117
    [76]李晓峰,沈84-安12块沙三段油层剩余油分布研究[D],大庆石油学院硕士学位论文,2008.
    [77]郑浩.辽河油田沈84-安12块剩余油分布研究[D],大庆石油学院硕士学位论文,2008.
    [78]郑浩,阚立岩,马春华.沈84-安12断块高含水期开发效果评价[J],断块油气田,2008,15(4):60-62.
    [79]李军辉,柳成志,卢双舫.复杂断块储层非均质性研究以辽河油田沈84-安12块Es33段为例,吉林大学学报(地球科学版),2008,38(5):757-764.
    [80]吴本芳.河南高凝原油和特稠油降凝降黏研究[D].华东理工大学博士学位论文,2011.
    [81]刘海庆,姚传进,蒋宝云,等.低渗高凝油藏堵塞机理及解堵增产技术研究[J].特种油气藏,2010,17(6):103-106.
    [82]阳晓燕,杨胜来,吴向红,等.高凝油油藏注水开采温度场变化规律[J],特种油气藏,2011,18(4):87-89.
    [83]程林松,李春兰,张国禄.确定稠油油藏吞吐阶段合理井网密度的优化方法[J].断块油气田,1998,5(1):33-35
    [84]杜殿发,陈月明.砂砾岩稠油油藏蒸汽驱数值模拟研究[J].油气采收率技术,1997,4(2):1-7.
    [85]赵刚,马远乐,牛金刚.高凝油藏热采数值模拟研究[J].特种油气藏,1995,2(4):17-21.
    [86]刘文章.高黏原油机械开采工艺的研究[J].石油钻采工艺,1982,4(3):45-47.
    [87]高金玉,张方礼,房桂珍.静安堡油田高凝油油藏原油特性及影响因素的实验研究[J].特种油气藏,1991,4(3):56-58.
    [88]耿宏章,秦积舜,周开学,等.含水率对原油黏度影响的实验研究[J].油气田地面工程,2003,22(2):68-69.
    [89]刘春泽.蒸汽吞吐水平井一体化评价模型及转SAGD方式研究[D].中国石油大学(北京)博士学位论文,2007.
    [90]倪学峰.稠油底水油藏水平井产能研究及优化设计[D].中国石油大学(北京)硕士学位论文,2005.
    [91]桂烈亭,刘贵满,马春宝等.稠油蒸汽驱生产井井筒温度计算[J].西南石油大学学报(自然科学版),2010,32(6):130-134.
    [92]单学军,张士诚,王文雄等.稠油开采中井筒温度影响因素分析[J],石油勘探与开发,2004,31(3):136-139.
    [93]杨雄文.井筒多相流及井口产能预测计算方法研究[D].中国石油大学(北京)硕士学位论文,2005.
    [94]刘德华,刘志森.油藏工程基础[M].北京:石油工业出版社,2004.
    [95]徐永梅.水驱特征曲线的适用条件及应用[J].中国科技与信息,2009,(11):32-33.
    [96]陈千元.油气藏工程实用方法[M].北京:石油工业出版社,1999.
    [97]俞启泰.几种重要水驱特征曲线的油水渗流特征[J].石油学报,1999,20(1):56-60.
    [98]俞启泰.关于如何正确研究和应用水驱特征曲线[J].石油勘探与开发,2000,27(5):122-126.
    [99]董琳译.数据挖掘实验机器学习技术[M].北京:机械工业出版社,2006.
    [100]毛国君,段立娟,王实.数据挖掘原理与算法[M1.北京:清华大学出版社,2007.
    [101]Han Jiawei,Kamb er,范明,孟小峰,译.数据挖掘:概念与技术(原书第2版)[M].北京:机械工业出版社,2008:231-233.
    [102]瓦普尼克.许建华,张学工,译.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
    [103]林志芳,俞启泰,李文兴.水驱特征曲线计算油田可采储量方法[J].石油勘探与开发.1990,6:64-71.
    [104]周东华.平滑算法和小波变换法相融合的气井生产数据处理[J].油气田地面工程.2011,30(4):33-35.
    [105]吴飞鹏,陈德春,蒲春生等.蒸汽吞吐井流入动态的数据挖掘研究[J].西南石油大学学报(自然科学版),2008,30(6):165-167.
    [106]Wu Xianghong, Xu Anzhu, Fan Hailiang. An integrated evaluation on factors affecting the performance of superheated steam huff and puff in heavy oil reservoirs[J]. Petroleum Exploration and Development,2010,37(5):608-613.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700