用户名: 密码: 验证码:
东昆仑都兰可可沙—科科可特镁铁—超镁铁质岩的地质特征、形成时代及构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东昆仑地区是一个复合大陆造山带,其中包括多条重要的构造缝合带。作者在东昆仑地区东段清水泉以西都兰可可沙—科科可特及其西侧的达瓦特地区进行1:5万区域地质调查过程中,发现了一套前人未曾报道的镁铁—超镁铁质岩带,疑为清水泉蛇绿岩的一部分。对该套岩石组合的研究将有助于解决东昆仑地区早古生代争议颇多的构造格架问题,并可进一步深入探讨东昆仑东段在早古生代时的区域构造演化历程。
     本论文以板块构造理论和大陆动力学探索研究为学术指导思想,通过野外地质填图和对岩石样品进行详细室内测试和分析,以及对该套岩石组合的野外地质特征、岩石学、岩石地球化学及同位素年代学等方面展开的系统研究,主要取得以下认识:
     1、东昆仑都兰可可沙—科科可特地区识别出一套镁铁—超镁铁质岩,岩石组合主要为蛇纹石化橄榄岩、二辉橄榄岩、辉石岩及辉长岩、蚀变玄武岩等。
     2、岩石组合中镁铁质岩属于大洋拉斑玄武岩与岛弧钙碱性玄武岩过渡类型,较富集Rb、Ba等大离子亲石元素,轻重稀土元素分馏较为明显,与T-MORB过渡型洋中脊玄武岩的特征相似;而超镁铁质岩也表现为贫碱高镁铁,富集Rb、Ba、Nb、Ta及Cr等元素,轻重稀土元素分馏明显,表明受到陆壳物质的混染较为强烈,且源自一个较富集的大洋岩石圈地幔源区。
     3、该套岩石组合疑为一个典型的被肢解的蛇绿岩岩块,很有可能形成于一个弧后盆地或一个小洋盆的洋脊扩张环境,按蛇绿岩分类应属于SSZ型或东地中海型。
     4、辉长岩同位素年龄测试限定其LA-ICP-MS锆石U-Pb年龄为(509.4±6.8)Ma(MSWD=1.4),表明其形成时代为早古生代中寒武世;
     5、镁铁—超镁铁质岩带岩石组合与清水泉蛇绿岩具有一致的形成时代和相似的岩石地球化学特征,因此,应隶属于清水泉蛇绿岩被肢解的一部分,表明清水泉蛇绿岩带空间上向西沿南西西方向展布。
     6、东昆仑清水泉—可可沙地区在早古生代早期中寒武世存在一个扩张的小洋盆,很有可能是Rodinia超大陆裂解后东昆仑地区受到原特提斯洋东缘扩张的结果。
The east Kunlun region is a compound continental orogenic belt, and contains quite a few significant tectonic boundaries. During the 1:50000 regional geological survey at Kekesha-Kekekete and its western area, Dawate, in the west of Qingshuiquan area in the east Kunlun region, the author discovered a suite of unreported mafic-ultramafic rock belt, which is suspected to the part of Qingshuiquan ophiolite, and the study on which can shed light on the resolution to intensively disputed tectonic framework of the east Kunlun region in the Early Palaeozoic, furthermore, on which study the regional tectonic evolution process of the area in the Early Palaeozoic can be discussed deeply.
     Guided by the Plate Tectonic theory and continental dynamics and dominated by systematic studies on wild-field geological characteristic, petrology, petrologic geochemistry and isotopic geochronology of the rock assemblage, the following cognitions are acquired in the essay after the wild-field geological mapping and detailed indoor experiments and analysis to the collected samples of the study area.
     1. The suite of mafic-ultramafic rocks exposed in Kekesha area of Dulan county in the east Kunlun region is mainly composed of serpentinized peridotite, lherzolite, gabbro, pyroxenite and metamorphic basalt, and so on.
     2. The mafic rocks in the rock assemblage is classified to the transitional type between oceanic tholeiite series and island arc calc-alkaline series, and show geochemical characteristics of enriched in LILE, like Rb and Ba, and apparent fractionation between LREE and HREE, similarly to the transitional type of T-MORB basalt, meanwhile, the ultramafic rocks of which are characterized by the content of low alkaline and high mafic, and the elements enrichment of Rb, Ba, Nb, Ta and Cr, and the same of the conspicuous fractionation between LREE and HREE, all of which indicate that the rocks are contaminated fiercely by the material of the continental Crust and derived from a resource area with more enriched oceanic lithospheric mantle material.
     3. It is suggested that the suite of rocks is a typical decomposed rock block derived from an ophiolite complex, and is more likely formed in the environment of an back-arc basin or spreading ridge of a small oceanic basin, and should be categorized to SSZ-type(Supra-Subduction Zone) or the East Mediterranean type according to ophiolite classification.
     4. The LA-ICP-MS zircon U-Pb isotopic age of the gabbro from the mafic-ultramafit complex is about (509.4±6.8)Ma (MSED=1.4), which shows that the rocks may crystallize in the Middle Cambrian epoch of the Early Palaeozoic.
     5. The mafic-ultramafic complex and the Qingshuiquan ophiolite have the consistent crystallizing age and similar geochemical characters, which suggests that the former evolved from the cracking of the latter, and the latter distributes along SWW direction to the west in the space.
     6. There is a spreading oceanic basin in Qingshuiquan-Kekesha area of the east Kunlun region in the Middle Cambrian epoch of the early period of the Early Palaeozoic, which is more likely resulted from the spread of the east margin of the Proto-Tethys ocean after the split of the Rodinia supercontinent in the east kunlun region.
引文
[1]Alastai H F, Robertson L. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region[J]. Lithos,2002,65:1—67.
    [2]Anderson T. Correction of common Pb in U-Pb analysis that do not report 204Pb [J]. Chemical Geology,2002,192 (1/2):59—79.
    [3]Anonymous. Penrose field conference on ophiolite[R]. Geotimes,1972,17:24—25.
    [4]Beccaluva L, Ohnenstetter D, Ohnentstetter M, et al. Two magmatic series with island arcs affinities within the Vourinos ophiolites [A]. In:Attidel Congresso della Societa Italiana di Mineralogiae Petrologia Translated Title:Proceedings of the Congress of the Italian Society of Mineralogy and Petrology[M]. Rendiconti della Societa Italiana di Mineralogiae Petrologia,1982,38 (2):900—901.
    [5]Boudier F, Nicolas A. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments[J]. Earth Planet of Science Letters,1985,76 (122):84—92.
    [6]Boynton, WV. Cosmochemistry of the rare earth elements[J]. Meteorite studies Dev, Geochemistry,1984,2:63—114.
    [7]Chemiak D J. and Watson E B. Diffusion in Zircon[J]. Reviews in Mineralogy & Geochemistry,2003,53:112—139.
    [8]Chen B W, Wang Y B. Some Characteristics of Orogenic Belts in Qinghai-Tibet Plateau[J]. Journal of Southeastern Asian Earth Sciences,1996,13:237—242.
    [9]Coleman R G. Ophiolite-Ancient Oceanic Lithosphere[M]. Berlin, Heidelberg, New York:Springer-Verlag,1977.
    [10]Coleman R G. The diversity of ophiolites[J]. Geology, Mijnbouw,1984,63:141 —150.
    [11]Dick H J B, Bullen T. Chrominium spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas[J]. Contributions to Mineral & Petrology,1984,86:54—76.
    [12]Dick H J B, Fisher R L, BryanW B. Mineralogical variability of the uppermost mantle along mid-ocean ridges[J]. Earth Planet of Science Letters,1984,69:88—106.
    [13]Dobretsov N L, Kepezhinscas V V. Three types of ultrabasic magmas and their bearing on the problem of ophiolites[J]. Ophiolite,1981,6 (2—3):221—236.
    [14]Ferry J M and Watson E B, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineral & Petrology, 2007,154 (4):429—437.
    [15]Frey F A, Green D H and Roy S D. Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology,1978,19(3):463— 513.
    [16]Ludwig K R. Isoplot/Ex, Version 2.49. A Geochronological Tool kit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication,1999:47.
    [17]Meschede M A. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986,56:207—218.
    [18]Miyashiro A. Classification, characteristics and origin of ophiolites[J]. Geology,1975, 83:249—281.
    [19]Moores E M, Kellogg L H, Dale Y. Tethyan ophiolites, mantle convection, and tectonic "historical contingency":A resolution of the "ophiolite conundrum" [A]. In:Dilek Y, Moores E M, Elthon D, et al. eds, Ophiolites and Oceanic Crust:New Insights from Field Studies and the Ocean Drilling Program[C]. Geological Society of America Special Paper,2000,349:3—12.
    [20]Moores E M. Origin and emplacement of ophiolites[J]. Review. Geophys Space Physics.1982,20:735—760.
    [21]Moores E M. Pre-1 Ga (pre-Rodinian) ophiolites:Their tectonic and environmental implications[J]. Geological Society of America Bulletin,2002,114:80—95.
    [22]Mullen, E D. MnO-TiO2-P2O5:a minor element discrimination for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary of Science Letters,1983,62:53—62.
    [23]Pearce J A, Cann J R. Tectonic setting of basaltic volcanic rocks determined using trace element analysis[J]. Earth and Planetary of Science Letters,1973,19:290—300.
    [24]Pearce J A. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan ophiolites[A]. In:Panayiotou A, eds. Proc. International Ophiolite Symp, Cyprus[C],1979, Geology Survey of Dept Nicosia Cyprus,1980:261—272.
    [25]Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[A]. In:Marginal basin geology (eds, Kokelaar B P and Howells M F) [C]. Geological Society of London Special Publication:London, Blackwell Scientific Publications,1984,16:77—94.
    [26]Pearce J A. Supra-subduction zone ophiolites:The search for modern analogues[N]. Ophiolite concept and the evolution of geological thought (eds. Dilek Y & Newcomb S) Colorado, Geological Society of American Special Paper,2003,373: 269—293.
    [27]Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[A]. In:Andesites[C], ed. By Thorpe R S, Chichester, Wiley,1982, 525—548.
    [28]Poitrasson F, Hanchar J M and Schaltegger U. The Current State of Accessory Mineral Research[J]. Chemical Geology,2002,191:3—24.
    [29]Rampone E, Picard G B. The ophiolite-oceanic lithosphere analogue:New insight from the Northern Apennines (Italy) [A]. In:Dilek Y, Moores E M, Elthon D, et al. eds, Ophiolite sand Oceanic Crust:New Insights from Field Studies and the Ocean Drilling Program[C]. Geological Society of America Special Paper,2000,349:21—34.
    [30]Robertson A H F. Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region[J]. Lithos,2002,65:1—67.
    [31]Sengor A M C. Tectonics of the Tethysides, Orogenic collision development in a collisional setting[J]. Annual Review of Earth and Planet Sciences,1987,15:213— 224.
    [32]Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary of Science Letters,1982,59:101—118.
    [33]Steinmann G. Die Ophiolithischen Zonen in dem mediterranen Kettengebirge[C].14th International Geological Congferece, Madrid,1927,2:638—667.
    [34]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[A]. In Magmatism in the Ocean Basins[C], Saunders A D and Norry M J eds., Geological Society, Special Publication, 1989,42:313—345.
    [35]Vysotsky S V. Mineralogy and petrology of ophiolites from the North Primorye: evidences of high-pressure crystallization[A]. In:29th international geological congress; abstracts[C],1992,29:134.
    [36]Wang X B, Bao P S. Types of melting residue and structural deformation of the mantle peridotite bodies in orogenic belts of China[A]. Progress in geosciences of China(1985-1988), Paper to 28th IGC[C],1989:63—66.
    [37]Watson E B, Wark D A and Thomas J B. Cystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy & Petrology,2006,151:413—433.
    [38]Westbrook G K. The Barbados Ridge Complex, tectonics of a mature forearc system[A]. In:Trench-Forearc geology:sedimentation and tectonics on modern and ancient active plate margins, conference (ed Leggett J K) [C], Special Publication, Geological Society of London. United Kingdom,1982,10:275—290.
    [39]Wilson M. Igneous Petrogenesis[M]. London:Oxford University Press,1989.
    [40]Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immorbile elements[J]. Chemical Geology,1977, 20:325—343.
    [41]Wood D A. The application of a Th-Hf-Ta diagram to problem of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J], Earth and Planetary of Science Letters,1980, 50:11—30.
    [42]Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics,1996,258:299—305.
    [43]Yin A, Mark H T. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28:211—280.
    [44]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry [J]. Geostandards and Geoanalytical Research.2004,28 (3):353—370.
    [45]阿成业,王毅智,任晋祁,等.东昆仑地区万保沟群的解体及早寒武世地层的新发 现[J].中国地质,2003,30(2):199—206.
    [46]白文吉,方青松,张仲明,等.西藏雅鲁藏布江蛇绿岩带罗布莎地幔橄榄岩的成因[J].岩石矿物学杂志,1999,18(3):193—206.
    [47]白文吉,杨经绥.中国镁铁—超镁铁岩组合及研究方向雏议[A].蛇绿岩与地球动力学研讨会论文集[C],1996:29—33.
    [48]白文吉,杨经绥,Robinson P,等.西藏罗布莎蛇绿岩铬铁矿中金刚石的研究[J].地质学报,2001a,75(3):404—409.
    [49]白文吉,杨经绥,方青松,等.西藏蛇绿岩的超高压矿物:FeO、Fe、FeS、Si和Si02组合及其地球动力学意义[J].地球学报,2002a,23(5):395—402.
    [50]白文吉,杨经绥,方青松,等.西藏蛇绿岩地幔中的主要自然金属矿物[J].地学前缘,2004a,11(1):179—187.
    [51]白文吉,杨经绥,方青松,等.寻找超高压地幔矿物的储存库—豆荚状铬铁矿[J].地学前缘,2001b,8(3):111—123.
    [52]白文吉,杨经绥,施倪承,等.西藏罗布莎蛇绿岩地幔岩中首次发现超高压矿物方铁矿和自然铁[J].地质论评,2004b,50(2):184—187.
    [53]白文吉,施倪承,杨经绥,等.西藏蛇绿岩中二种合金矿物新变种[J].矿物学报,2002b,23(3):201—206.
    [54]拜永山,常革红,谈生祥.东昆仑东段加里东造山旋回侵入岩特征研究[J].青海地质,2001:28—35.
    [55]边千韬,罗小全,李涤徽,等.青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J].地质学报,2001,75(1):45—55.
    [56]边千韬,罗小全,李红生,等.阿尼玛卿山早古生代和早石炭—早二叠世蛇绿岩的发现[J].地质科学,1999,34(4):523—524.
    [57]边千韬,赵大升,叶正仁,等.初论昆祁秦缝合系[J].地质学报,2002,23(6):501—508.
    [58]陈能松,何蕾,孙敏,等.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定[J].科学通报,2002,47(8):628—632.
    [59]陈能松,李晓彦,王新宇,等.柴南缘昆北单元变质新元古代花岗岩的锆石SHRIMPU-Pb年龄[J].地质通报,2006,25(11):1131—1134.
    [60]陈能松,李晓彦,张克信,等.东昆仑山香日德南部白沙河岩组的岩石组合特征和 形成年代的锆石Pb-Pb定年启示[J].地质科技情报,2006,25(6):1—7.
    [61]陈能松,孙敏,王勤燕,等.东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录[J].科学通报,2007,52(11):1297—1306.
    [62]陈能松,孙敏,王勤燕,等.东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J].中国科学(D辑):地球科学,2008,38(6):657—666.
    [63]陈能松,朱杰,王国灿,等.东昆仑造山带东段清水泉高级变质岩片的变质岩石学研究[J].地球科学—中国地质大学学报,1999,24(2):116—120.
    [64]邓晋福.岩石相平衡与岩石成因[M].武汉:武汉地质学院出版社,1987,198.
    [65]冯建赞,裴先治,于书伦,等.东昆仑都兰可可沙地区镁铁—超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J].中国地质,2010,37(1):28—38.
    [66]高坪仙.蛇绿岩及蛇绿岩构造侵位[J].前寒武纪研究进展,2000,23(4):250—256.
    [67]高延林,吴向农,左国权.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].中国地质科学院西安地质矿产研究所所刊,1988, (21):17—28.
    [68]古凤宝.东昆仑地质特征及晚古生代—中生代构造演化[J].青海地质,1994,(1):4—13.
    [69]古凤宝,吴向农,姜常义.东昆仑华力西—印支期花岗岩组合及构造环境[J].青海地质,1996,(1):18—36.
    [70]郭安林,张国伟,孙延贵,等.阿尼玛卿蛇绿岩带OIB和MORB的地球化学及空间分布特征:玛积雪山古洋脊热点构造证据[J].中国科学(D辑):地球科学,2006,36(7):618—629.
    [71]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352.
    [72]郝杰,翟明国.罗迪尼亚超大陆与晋宁运动和震旦系[J].地质科学,2004,39(1):139—152.
    [73]郝梓国,王希斌,鲍佩声,等.新疆西准噶尔地区两类蛇绿岩的地质特征及其成矿研究[J].岩石矿物学杂志,1989,8:290—310.
    [74]胡芳林.蛇绿岩研究中有关问题的讨论[A].蛇绿岩与地球动力学研讨会论文集[C],1996:21—24.
    [75]姜春发,王宗起,李锦轶,等.中央造山带开合构造[M].北京:地质出版社,2000: 1—107.
    [76]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992.
    [77]兰朝利,李继亮,何顺利.古特提斯多岛洋洋—陆俯冲:木孜塔格蛇绿岩的矿物学证据[J].地球科学—中国地质大学学报,2007,32(5):322—328.
    [78]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992:74—170.
    [79]李怀坤,陆松年,相振群,等.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究[J].地学前缘,2006,13(6):311—321.
    [80]李锦轶.中国蛇绿岩的时空分布[A].蛇绿岩与地球动力学研讨会论文集[C],1996:99—103.
    [81]路凤香.地幔岩石学[M].武汉:中国地质大学出版社,1988,1—120.
    [82]陆松年,李怀坤,陈志宏,等.秦岭中—新元古代地质演化及其对Rodinia超级大陆事件的响应[M].北京:地质出版社,2003.
    [83]陆松年,于海峰,赵凤清,等.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002:1—125.
    [84]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292—297.
    [85]马中平,夏林圻,夏祖春,等.蛇绿岩年代学研究方法及应注意的问题[J].西北地质,2004,37(3):103—108.
    [86]潘桂堂,陈智梁,李兴振,等.东特提斯地质构造形成演化[M].北京:地质出版社,1997.
    [87]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学(D辑):地球科学,1996,26(4):302—307.
    [88]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997.
    [89]史仁灯.蛇绿岩研究进展、存在问题及思考[J].地质论评,2005,51(6):681—693.
    [90]隋延辉,吴国学,戚长谋.镁铁—超镁铁岩的自然组合与铬镍矿床的成矿专属性[J].吉林大学学报(地球科学版),2004,34(2):201—205·
    [91]孙雨,裴先治,丁仨平,等.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据[J].地质学报.2009,83(7):1000—1010.
    [92]王国灿,贾春兴,朱云海,等.中华人民共和国区域地质调查报告(1:25万阿拉 克湖幅)区域地质调查报告[R].武汉:中国地质大学出版社,2003.
    [93]王国灿,王青海,简平,等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义[J].地学前缘,2004,11(4):481—490.
    [94]王国灿,魏启荣,贾春兴,等.关于东昆仑地区前寒武纪地质的几点认识[J].地质通报,2007,26(8):929—937.
    [95]王国灿,张克信,梁斌,等.东昆仑造山带结构及构造岩片组合[J].地球科学—中国地质大学学报,1997,22(4):352—356.
    [96]王国灿,张天平,梁斌,等.东昆仑造山带东段昆中复合蛇绿混杂岩带及“东昆中断裂带”地质涵义[J].地球科学—中国地质大学学报,1999,24(2):129—133.
    [97]王清海,徐文良,杨德彬,等.锆石中钛温度计在鲁西—苏北地区中生代侵入杂岩中的应用[J].岩石学报,2008,24(10):2331—2342.
    [98]王希斌,鲍佩声.豆荚状铬铁矿的成矿规律—兼论西藏铬铁矿的勘查与找矿[J].西藏地质,1996a,16(2):1—13.
    [99]王希斌,鲍佩声.试论中国蛇绿岩成因及其成矿专属性[A].张旗主编,蛇绿岩及地球动力学研究[C].北京:地质出版社,1996b:69—74.
    [100]王希斌,鲍佩声,邓万明,等.喜马拉雅岩石圈构造演化—西藏蛇绿岩岩石矿物地球化学[M].北京:地质出版社,1987.
    [101]王希斌,鲍佩声,戎合.中国蛇绿岩中变质橄榄岩的稀土元素地球化学[J].岩石学报,1995,11(增刊):24—41.
    [102]王希斌,郝梓国.中国缝合带蛇绿岩的时空分布及构造类型[J].中国区域地质,1994,3:193—204.
    [103]王玉净,舒良树.中国蛇绿岩带形成时代研究中的两个误区[J].古生物学报,2001,40(4):529—532.
    [104]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,(1):27—35.
    [105]许志琴,崔军文,张建新.大陆山链的变形构造动力学[M].北京:冶金工业出版社,1996:1—246.
    [106]许志琴,李海兵,杨经绥,等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,2001,75(2):156—164.
    [107]许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲—碰撞”动力学[A].张旗主 编,蛇绿岩与地球动力学研究[C].北京:地质出版社,1996:185—189.
    [108]许志琴,杨经绥,姜枚,等.青藏高原北部东昆仑—羌塘地区岩石圈结构及岩石圈剪切断层[J].中国科学(D辑),2001,31(增刊):1—7.
    [109]许志琴,杨经绥,李海兵,等.中央造山带早古生代地体构架与高压/超高压变质带的形成[J].地质学报,2006,80(12):1793—1806.
    [110]闫全人,王宗起,刘树文,等.青藏高原东缘构造演化的SHRIMP锆石U-Pb年代学框架[J].地质学报,2006,80(9):1285—1294.
    [111]杨经绥,白文吉,方青松,等.蛇绿岩中的一种超高压矿物一硅金红石[J].自然科学进展,2002.12(11):1220—1222.
    [112]杨经绥,王希斌,史仁灯,等.青藏高原北部东昆仑南缘德尔尼蛇绿岩:一个被肢解了的古特提斯洋壳[J].中国地质,2004,31(3):225—239.
    [113]姚玉鹏,田兴有,易善峰,等.中国蛇绿岩研究的现状及今后的研究方向[J].地球科学进展,1997,12(2):134—137.
    [114]殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学—中国地质大学学报,1997,22(4):339—342.
    [115]殷鸿福,张克信,陈能松,等.中华人民共和国区域地质调查报告(1:25万冬给措纳湖幅)[R].武汉:中国地质大学出版社,2003.1—457.
    [116]尹福光,潘桂棠,李兴振,等.昆仑造山带中段蛇绿混杂岩的地质地球化学特征[J].大地构造与成矿学,2004,28(2):194-200.
    [117]张达,吴淦国.第32届国际地质大会造山带和蛇绿岩研究进展[J].现代地质,2004.18(4):443—448.
    [118]张建新,孟繁聪,万渝生,等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-Pb SHRIMP年龄证据[J].地质通报,2003,22(6):397—404.
    [119]张旗.蛇绿岩的分类[M].地质科学,1990,1:54—61.
    [120]张旗.蛇绿岩研究中的几个问题[J].岩石学报,1995a,11(增刊):228—240.
    [121]张旗.蛇绿岩与板块扩张机制[A].张旗主编,蛇绿岩与地球动力学研讨会论文集[C].北京:地质出版社,1996:5—7.
    [122]张旗.中国蛇绿岩研究中的几个问题[J].地质科学(增刊),1992:139—146.
    [123]张旗,陈雨,钱青.两类蛇绿岩剖面及其成因的探讨[J].自然科学进展.1998,8(3):326—330.
    [124]张旗,郭原生,王岳明,等.祁连山地区镁铁—超镁铁岩的多样性[J].地球科学进展,1997.12:324—330.
    [125]张旗,钱青,王焰.蛇绿岩岩石组合及洋脊下岩浆作用[J].岩石矿物学杂志.2000,19(1):1—7.
    [126]张旗,肖序常.中国蛇绿岩研究概述[J].岩石学报,1995b,11(增刊):1—9.
    [127]张旗,杨瑞英.西藏丁青蛇绿岩中玻镁安山岩类的深成岩及其地质意义[J].科学通报,1985,16:1243—1245.
    [128]张旗,张魁武,李达周.横断山区镁铁—超镁铁岩[M].北京:科学出版社,1992,9—100.
    [129]张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001,1—182.
    [130]张旗,周国庆,王焰.中国蛇绿岩的分布、时代及其形成环境[J].岩石学报,2003,19(1):1—8.
    [131]张亚峰,裴先治,丁仨平,等.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J].地质通报,2010,29(1):80—85.
    [132]赵振华.微量元素地球化学原理[M].北京:科学出版社,1995:56—130.
    [133]郑健康.东昆仑区域构造的发展演化[J].青海地质,1992, (1):15—25.
    [134]周国庆.蛇绿岩的概念及其演变[A].张旗主编,蛇绿岩与地球动力学研讨会论文集[C].北京:地质出版社,1996:15—20.
    [135]周国庆.蛇绿岩分类的回顾[A].张旗主编,蛇绿岩与地球动力学研讨会论文集[C].北京:地质出版社,1996:63—68.
    [136]周国庆.蛇绿岩研究新进展及其定义和分类的再讨论[J].南京大学学报(自然科学),2008,44(1):1—24.
    [137]朱云海,Pan Yuanming,张克信,等.东昆仑造山带蛇绿岩矿物学特征及其岩石成因讨论[J].矿物学报,2000,20(2):128—142.
    [138]朱云海,张克信,Pan Yuanming,等.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].地球科学—中国地质大学学报,1999,24(2):134—137.
    [139]朱云海,张克信,拜永山.造山带地区花岗岩类构造混杂现象研究—以清水泉地区为例[J].地质科技情报.1999,18(2):11—14.
    [140]朱云海,张克信,王国灿,等.东昆仑复合造山带蛇绿岩、岩浆岩及构造岩浆演化[M].武汉:中国地质大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700