用户名: 密码: 验证码:
几种统计分析方法在化探数据处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“地球化学基本原理”以及“统计学思想(方法)”可谓勘查地球化学的两大精髓。在MATLAB平台下,通过对一系列算法程序的自主设计与调试,验证并延拓了多种统计学思想在勘查地球化学中的应用,初步实现了针对桐村矿床以及浙西地区(即以两套化探数据体系为模板)深层次地学信息的提取,高精度预测模型的建立,及其地球化学特征的深入解释与评价。
     实验结果确立了Mo元素(Cu次之)于矿区与区域中在矿化强度、效率和广度上的主导地位,同时建立以EEI-EII-ESI(3E模型)为核心的成矿元素(Cu-W-Pb-Zn-Sn)富集特性评测或成矿预测模型;“向前”延伸,探讨简单分形模型的数字特征,如T1-2、D2-3值、Hurst指数等,并圈定出成矿元素的区域浓集(异常)分带等;再“向前”延伸,根据对混合总体筛分模型的考量与分析,提出初始总体与叠加(成因)总体的划分准则及其在刻画区域元素地球化学行为中的作用;仍“向前”延伸,剖析矿化元素在“质”和“量”上的有序存在,即空间异常及变异性,并考察其在无标度区间上的分解模式。这里所谓“向前”指的是统计阶矩的依次降低。
     总之,本文是以桐村矿床与浙西地区的成矿地质背景为依据,结合元素地球化学知识,研究统计学方法在勘查地球化学中的应用,采用综合与分析方法,实现从不同角度刻画并归纳观测元素在富集行为上的特征形态,结果有如:针对区域,界定出初始和叠加(成因)总体,并考察其有利于成矿的特性,确立“待定系数法”在圈定异常范围中的应用。总体上,Sn、Mo、Cu等在异常的潜力、强度、范围等方面都可占据优势,V、Pb、Zn、U、Au、W等可在局域成矿,但主要是以伴生元素或矿化点形式赋存。对于矿床,Cu>W>Mo在空间上(第一、二无标度区内或总体观测值)变异水平的降低,暗示矿化形态(程度)的依次有序或富集,但其它元素恰好相反;在第一、二无标度区间内,成矿元素的异常行为具有相似的演化趋势,而变异性呈不规则分离;另外,给出相应的轴向分带序列为:Hg-Sb-Zn-Bi-Au-Pb-Ag-U-W-Mo-As-S-Cu-Mn-Sn,可能存在独立于Mo矿化之外的一次岩浆热液(矿化)过程,并以Cu矿化为主,这一“轴向分带”乃是各期次成矿作用所形成的独立分带序列之空间统一
"Geochemical principle" and "statistical methods" are considered as the essence of exploration geochemistry. It is easy to test or extend the application of statistical ideas in exploration geochemistry based on the MATLAB platform, by virtue of a series of independent algorithms or program designs. Finally, this paper has availably realized the extraction of metallogenetic information, precision prediction model, and geochemical characteristics in both Tongcun Mo-Cu deposits and Zhexi region.
     Experimental results have established the Mo's metallogenetic predominance in both orefield and region (Cu next).Simultaneously, the 3E (EEI-EII-ESI) model for assessment of elemental enrichment feature or metallogenic prediction has been set up. Forward considerations, this paper has discussed the numeral characters of some simple fractal models as T1-2, D2-3,Hurst, etc, and delineated the scope of regional anomaly. Forward again, on a basis of the screening model of mixed massing, division rule of the original-overlying massing is proposed, which is a valuable criterion of the elemental geochemical behaviours in this region. Forward still, through lower order statistics, the ordered existences of chemical elements both in different forms and amounts have also been studied, namely the spacial anomaly and variability, then their decomposition modes within various non-scale ranges.Herein, "Forward"stands for a decline of the moment of n-th order.
     Anyhow, according to the geological setting of Tongcun deposits and Zhexi area, also the knowledge of element geochemistry, according to the integrative and decomposed methods, finally this paper has achieved the quantitative description of elemental enrichment characteristics from various points of view and believes that:
     1,As to the region, discussing the application of method of undetermined coefficients in delineating geochemical anomalies, and the demarcation rule of original sample and late superimposed one, so do their properties favorable for the concentration and mineralization. Generally, Sn、Mo、Cu and etc dominating in the potential、intensity and scope of metallogenetic anomaly, while V、Pb、Zn、U、Au、W only in some limited regions, performing as the associated elements or some small-scale ores.
     2,As to the deposit, the reducing of variability Cu>W>Mo may correspond to increasing in turn of the degree of order, others just doing the reverse, within both the non-scale range 1 & 2, where such 2 series of anomaly evolutionary process keeping the same, while the variability sequences separating irregularly. Besides,the axial zoning sequence appears as:Hg-Sb-Zn-Bi-Au-Pb-Ag-U-W-Mo-As-S-Cu-Mn-Sn,it is possible that an independently and Cu-enriching geological process relative to Mo, so this sequence ought to be the the unity of several independent sequences caused by the multistage metallogenesis which maybe characterized by nature of the hydrothermal solution and its invasion place.
引文
Arduini F,Fioravanti S,Giusto D D. A multifractal based approach to natural scene analysis[J]. CCECE'91,1991.2681~2684
    Cheng Q. Non-linear theory and power-law models for information integration and mineral resources quantitative assessments [J].Mathematical Geosciences,10.1007/s11004-008-9172-6
    Cheng Q. Multif ractality and spatial statistics [J].Computers & Geosciences,1999, (25):949~ 961
    Cheng Q. Multifractal imaging filtering and decomposition methods in space, fourier frequency, and egien domains [J].Non-Linear Processes in Geophysics,2007,(14):293~303
    Cheng Q. Discrete multif ractals [J].Mathematical Geology,1997, (29):245~266 Claude J. Allegre, Eric Lewin. Scaling laws and geochemical distributions [J]. Earth and Planetary Science Letters,1995,132:1~13
    Galuszka, A.,2007.A Review of Geochemical Background Concepts and an Example Using Data from Poland. Environmental Geology,52(5):861-870
    Mario A.T. Figueiredo,2002. Unsupervised Learning of Finite Mixture Models. IEEE Transactions On Pattern Analysis and Machine Intelligence,24(3):381~396
    MacQueen, J. B.,1967.Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley.281-297
    Monecke, Thomas; Monecke, Jochen.,etc.Truncated fractal frequency distribution of element abundance data:A dynamic model for the metasomatic enrichment of base and precious metals[J].Earth and Planetary Science Letters.2005,232(03-04):363~378
    Tukey, J. W.,1997. Exploratory Data Analysis, Reading.Addison-Wesley Publishing Company, Massachusetts
    Xie,S.,Bao, Z.,2004. Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology,36(7):847-864
    Xie, S.,Cheng, Q.,Chen, G.,et al.,2007a. Application of Local Singularity in Prospecting Oil/Gas Potential Targets. Nonlinear Processes in Geophysics,14:285-294
    Xie Shuyun, Cheng Qiuming, Ke Xianzhong, et al. Identification of Geochemical Anomaly by Multifractal Analysis[J].Journal of China University of Geosciences,2008,19(04):334~342
    Zhang, L. P.,Bai, G. P.,Zhao, K. B.,et al.,2006. Restudy of Acid-Extractable Hydrocarbon Data from Surface Geochemical Survey in the Yimeng Uplift of the Ordos Basin, China: Improvement of Geochemical Prospecting for Hydrocarbons. Marine and Petroleum Geology, 23(5):529-542
    陈春仔,金友渔.分形理论在成矿预测中的应用[J].矿产与地质,1997,4(11):1~275
    成秋明.多维分形理论和地球化学元素分布规律[J].地球科学—中国地质大学学报,2000,25(03):311~317
    成秋明.成矿过程奇异性与矿产预测定量化的新理论与新方法[J].地学前缘,2007,14(05):42~53
    成秋明.成矿过程奇异性与矿床多重分形分布[J].矿物岩石地球化学通报,2008,27(03):298~305
    程先富,黎彤.新疆北部地壳元素致矿序列及其找矿意义[J].地质与勘探,1999,35(06):23~25
    崔彬,赵磊,詹朝阳,等.硫同位素混合总体筛分.地球学报,2003,(06):494~496
    戴塔根,龚玲兰,张起钻.应用地球化学[M].长沙:中南大学出版社,2005:6~221
    高惠璇.统计计算[M].北京:北京大学出版社,1995:10~30
    龚庆杰,张德会,韩东昱.一种确定地球化学异常下限的简便方法[J].地质地球化学,2001,29(3):215~219
    郭科,陈聆,唐菊兴,等.分形含量梯度法确定地球化学浓集中心的新探索[J].地学前缘,2007,14(05):285~289
    韩东昱,龚庆杰,向运川.区域化探数据处理的几种分形方法[J].地质通报,2004,23(07):714~719
    韩吟文,马振东.地球化学[M].北京:地质出版社,2003:3~150
    侯翠霞,申维.浙西成矿带铜多金属矿床成矿预测:[硕士学位论文].北京:中国地质大学(北京),2010:1~50
    蒋敬业,程建萍.应用地球化学[M].武汉:中国地质大学出版社,2006:4~126
    蒋志.统计地球化学及其应用[M].北京:冶金工业出版社,2006:1~20
    黎彤,倪守斌.地球和地壳的元素丰度[M].北京:地质出版社,1990:1~20
    黎彤.地壳元素丰度的若干统计特征[J].地质与勘探,1992,28(10):1~7
    李长江,麻土华.矿产勘查中的分形、混沌与ANN[M]北京:地质出版社,1999:1-76
    李建东,龚庆杰,窦金龙,等.分形理论在勘查地球化学中的应用[J].中国矿业,2006,15(11):91~94
    李守义,叶松青.矿产勘查学[M].北京:地质出版社,2006:10~230
    李水银.分形[M].北京:高等教育出版社,2004:1~98
    李志鹄.金属矿床矿床地化[M].长沙:中南工业大学出版社,1987:5-95
    罗先熔,文美兰,欧阳菲,等.勘查地球化学[M].北京:冶金工业出版社,2008:10~60
    吕惠进,王建.浙西寒武系底部黑色岩系含矿性和有用组分的赋存状态[J].矿床地质,2005,24(05):567~573
    蒙晓莲.粤东地区地层含矿性探讨系列[J].有色金属矿产与勘查,1994,3(03):151~157
    孟宪国,赵鹏大,林碧英.方位—分维估算法[J].地球科学,1992,(17):63
    施俊法.地球化学现象的分形特性及其意义[J].国外地质勘探技术,1996,(03):16~20
    申维.分形混沌与成矿预测[M].北京:地质出版社,2002:20~29
    申维.分形求和法及其在地球化学数据分组中的应用[J].物探化探计算技术,2007,29(2):134~137
    申维.初论分形地质学[J].世界地质,1998,17(04):75~83
    疏志明,彭省临,王雄军,等.多重分形在个旧花岗岩凹陷带地球化学数据分析中的应用[J].物探与化探,2009,33(03):327~344
    隋延辉,戚长谋.关于元素丰度与元素的分散和成相[J].吉林地质,2005,24(01):5
    孙霞,吴自勤,黄畇.分形原理及其应用[M].合肥:中国科技大学出版社,2006:1~230
    谭文娟,魏俊浩,郭大招等.地质流体及成矿作用研究综述[J].矿产与地质,2005,03(19):227-230
    唐元骏,殷庆和,於崇文.地层地球化学研究的思想和方法[J].矿物岩石地球化学通讯,1987,(03):126~127
    王丽丽,张德会.浙江桐村钼(铜)矿床蚀变矿化特征及其原生晕地球化学:[学位硕士论文].北京:中国地质大学(北京),2010:1~74
    王世进.分形理论视野下的部分与整体研究[J].系统科学学报,2006,14(01):40~44
    王汪根,张德会.地球化学数据处理软件系统设计:[学位硕士论文].北京:中国地质大学(北京),2006:1~44
    吴信民,张展适.概率图法在茅排金矿的应用[J].华东地质学院学报,1998,21(03):254~256
    武延辉,张德会.混合总体筛分模型在化探数据处理中的应用:[硕士学位论文].北京:中国地质大学(北京),2010:1~64
    夏庆霖,张寿庭,赵鹏大,等.幂律度与成矿预测[J].成都理工大学学报(自然科学版),2003,30(05):453~456
    谢淑云,鲍征宇.多重分形方法在金属成矿潜力评价中的应用[J].成都理工大学学报(自然科学
    版),2004,31(01):28~32
    阳正熙,吴宏堑,彭直兴,等.地学数据分析教程[M].北京:科学出版社,2008:1~119
    严生贤,陈萌,章益民,等.浙西北寒武系碳酸盐岩内找萤石矿地质因素与前景[J].化工矿产地质,2008,30(02):85~90
    於崇文.矿床在混沌边缘分形生长(上卷)[M].合肥:安徽教育出版社,2007:1~1101
    赵鹏大,胡旺亮,李紫金.矿床统计预测[M].北京:地质出版社,1983:10~50
    赵鹏大,池顺都,陈永清.查明地质异常:成矿预测的基础[J].高校地质学报,1996,02(04):361-371
    章振根,元素本底值分级对地质研究及找矿的意义[J].地质与勘探,1985,(03):10~14
    张德会,叶荣.注重辩证统一的地球化学思维教育[J].中国地质教育,1999,(02):16~21
    张松林,袁旭音,吴礼道,等.浙江湖州—长兴地区地层含矿性的地球化学评价[J].火山地质与矿产,1995,16(3):31~42
    浙江省地质矿产局.浙江省区域地质志.北京:地质出版社,1989:272~280
    邹林,彭省临,杨自安,等.青海阿尔茨托山地区地球化学(异常)场的多重分形研究[J].中国地质,2004,31(04):436~441

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700