用户名: 密码: 验证码:
颗粒生物填料除污染性能的应用对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文致力于颗粒生物填料及颗粒床反应器除污染机理与应用对比研究。在全面总结了各类颗粒填料及其适用的各类颗粒床反应器特性的基础上,采用高效挂膜轻质生物陶粒与Hat Creek煤载体两种价格低廉、性能独特的新型颗粒生物填料,结合滴滤床、固定床、流化床等典型颗粒填料生物反应器,分别进行了贫营养、富营养、高营养条件下,对废气、废水除污染性能的应用对比研究。研究表明,本文研究的两种颗粒生物填料各自具有优良特性,均可按照其性能特点加以选择,而作为颗粒床反应器理想的载体填料,能有效地对污染物进行去除。
    高效挂膜轻质生物陶粒为惰性材料经人工烧结而成的多孔性颗粒填料,由于其密度等理化性能可在烧结工艺过程中调整,因此尤其适用于作为流化床与固定床填料。由于其比表面极大、微孔结构丰富,因此容易固着丰富的生物相,在营养不成为限定因素的运行条件下,载体挂膜性能及除染物能力均比Hat Creek煤载体更优;由于其轻质高强、粒径均匀、形状规则及表面性能优越等特点,可以作为生物流化床及淹没式固定生物滤床的优选载体填料,用于对有机废水处理,可对CODCr、氨氮等均取得较Hat Creek煤更好的去除效果;而在贫营养条件下的低滤床反应器对废气与低浓度污水的处理中,则处理效果不如Creek煤载体。
    Hat Creek煤为自然界天然形成,其颗粒填料形状不规则、粒径不均匀,并具有在贫营养条件下可为微生物生长提供少量营养物质的理化特性,可用作固定床与滴滤床的生物载体填料,尤其适用于贫营养条件下作为滴滤床填料。由于其独特的理化特性,在营养成为限定因素的运行条件下,载体仍然可以正常挂膜并形成除污染能力;用作滴滤床填料处理有机气体,在低容积负荷的条件下,可不需另加营养液即可达到较好的去除效果;Hat Creek煤滴滤床在较低的污水浓度下运行也比陶粒滤床更有优势;而作为淹没式固定生物滤床的填料处理污水时,其硝化效果、滤床压力变化等各方面性能指标均低于高效挂膜轻质生物陶粒;Hat Creek煤比重较大,形状与尺度均不规则,流化能耗较高,因而不适宜作为流化床反应器的载体。
    本试验研究也对两种颗粒生物填料在各种反应器的应用取得了有价值的试验数据研究结果,有助于推动我国颗粒床生物反应器的研究与应用。
The thesis focuses on the comparative study of the practical application of theirremoving performances of two improved bio-packings. Based on the comprehensivecharacterization and generalization of the various particle carriers along with theirapplicable reactors, it is the first time to use the two new carriers for the comparativestudy on their removing performances for waste gas and wastewater under theexperimental condition of poor nutrition, rich nutrition as well as high nutrition,associated with trickling filter, stable bed and fluidized bed. Both of the two carriersare characteristic of low cost and special performance. The results indicate that boththem present quality characters and both can be selected as ideal biological carriersfor particular reactors according to their each performances and characters, which canremove organic pollutants effectively.
    High efficient Biological ceramics characteristic of lightweight and biofil-hanging areporous particular packings made of inert materials after manual sintering. Because ofthe density and other physicochemical properties which can be adjusted during theperiod of manual sintering, bio-ceramics are especially suited to be as carriers forfixed bed and fluidised bed. Compared to Hat Creek Coals, microorgnisms are easilyfixed to the surface of bio-ceramics because of their larger surfaces and abundantmicropores, which resulting into the better characters in terms of the ability ofremoving pollutants and the property of biofilm fixation in the case of nutritionsupplied unlimitedly;Moreover, with the characteristics of lightweight and highstrength, average particle size, regular shape, surface property superiority and thekind , bio-ceramics can be used as preferred carriers biological in the fluidided bedand submerged fixed bed used for treating organic wastewater, in which the removalrate of CODCr and Nitrogen is better that Hat creek coals bio-reactor;However, thetreatment efficiency is not as ideal as Hat Creek coal carriers in trickling filter usedfor the treatment of waste gas and low concentration wastewater in the runningcondition of poor nutrition .
    Hat Creek coal is naturally formed with irregular shape and uneven particular size. Itcan be selected as bio-carrier for fixed bed and trickling bed, especially suitable forpoor nutritional running trickling filter packing because of its unique physicochemicalproperty. Presenting this kind of characteristic physicochemical performance, HatCreek coal carriers can still be capable of removing pollutants due to the abundantbiofilm hanging and growth, even under the running condition that nutrition is thelimited factor of the process;Hat creek carrier tricking filter for disposing of wastegas can present the better removal efficiency in the running case of lower capacity
    load, without adding more nutrient solution;Hat Creek coal trickling filter is superiorto bio-ceramic carrier tricking filter with the low-concentration of wastewaterinfluent;In contrast, being as the medium of submerged fixed bed for sewagetreatment, the various performance indexes including nitrification efficiency, filterpressure are worse than that of bio-ceramic reactor;Hat Creek coal carrier is notsuitable for fluidized bed because of the high energy consumption resulting from itsirregular shape and heavy specific weight.The experimental study has gained the valuable data and result, which is helpful forimproving the development of research and application on particle bio-reactors inChina.
引文
[1] S .N.Kaul et al.,FluidizedBed Re actor for Wastewater Treatment .CE W ,1990 ,25 (2): 25-42.
    [2] Oppelt. E. T. Biological Fluidized Bed Treatment of Water and Wastewater. Ellishorwood Limited Publishers,edited by P. F.Cooper, 1981:165.
    [3] Robertson L.A.,Van Niel E.W.J.,Torremans R.A.M. and Keunen J.G..Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Envir. Microbiol.,1988,54(11):2812-2818
    [4] G. Hoyland. Aerobic Treatment in Oxitron Biological Fluidized Bed Plant at Coleshill .War Pollut . Control,1983,82(4):479.
    [5] P .F .Cooper. Complete Treatment of Sewage in a Two-Stage Fluidized-Bed System Part 1 War. Pollut.. Control, 1981, 81(4):447.
    [6] Robertson L.A.et al..Nitrogen remval from water and waste. In: Microbial control of pollution, Cambridge University Press, Cambridge, 1992:227-267
    [7] Keunen J.G.., Robertson L.A. combined nitrification and denitrification process. EMS Microbiol. Rev.,1994,15(2):109-117
    [8] Jaakko A Puhakka. Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents. Wat Res, 1992, 26(6):765-770.
    [9] G. Ryhiner. Operation of a three-phrase biof'ilm f'luidized sand bed reactor for aerobic wastewater treatmen.Biotechnology and Bioengineering, 1988, 32(5): 677-688.
    [10] J A Puhakka. Biodegradation of chlorophenols by mixed and pure cultures from a f'luidized-bed reactor. Applied Microbiol Biotech-not, 1995, 42(6): 951-957.
    [11] A Imara. Removal of refractory organics and nitrogen from landfill leachate by the microoganism-attached activeated carbonon fluidized bed process. Wat Res, 1993, 27(1): 143-145.
    [12] M A Moteleb. Anaerobic degradation -trinitrotoluene in granular activated carbon fluidized bed and batch reactors. Wat Sci Technol., 2001, 43(1):67-75.
    [13] T Tanaka. Algae-removal performance of a fluidized-bed biofilm reactor system for lake water treatment.Wat Sci Technol., 2001,43(1):277-283.
    [14] 王建龙,等. 复合生物反应器处理废水特性研究. 中国给水排水,1998(2):20-23
    [15] 秦麟源. 废水生物处理.上海:同济大学出版社,1989: 71
    [16] 郑之景.生物膜法处理污水.建筑工业出版社,1986:200
    [17] 汪群慧,陈乃霞. 污水生物处理技术的进展.工业水处理,1990,10(3):3-6
    [18] TatsuhikoSuzuki. A new sewage treatment system with f'luidized pellet bed separator[J]. Wat Sci Technol, 1993, 27(11): 185-192.
    [19] B Koch. Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen-containting aromatic compound. Wat Res, 1991, 25(1): 1-8.
    [20] Y Kuba, H Furumai. A kinetic study in methanogenesis by attached biomass in a fluidized bed.Wat Res, 1990, 24(11): 1365-1372.
    [21] C T M J Frijters. Extensive nitrogen removal in a new type of air-lift reactor. Wat Sci Technol.2000, 41(4-5) :469-476.
    [22] M C M Van Loosdrecht.Integration of nitrification and denitrif'ication in biof'ilm airlift suspension reactors. Wat Sci Technol., 2000,41(4-5):97-103.
    [23] Daniel E. Edwards , et al. Laboratory-scale evaluation aerobic fluidized bed reactors for the biotreatment of a synthetic,high 一 strength chemical industry waste stream[ J ] . War . Environ. Res., 1994,66(1):70-83.
    [24] P . M . Sutton ,et al . Activated carbon based biological fluidized beds for contaminated water and wastewater treat ment. War. Sci. Technol,1996,68(9):102-104
    [25] M.X.Loukidou,A.I.Zouboulis. Comparision of Biological Treatment Processes using Attache-growth Biomass for Sanitary Landfill Leachate treatment. Environmental Pollution 111(2001):273-281
    [26] HIROAKI TANAKA, etal. CURRENT SEWAGE TECHNOLO-GY IN JAPAN. ASIA WATER AND SEWAGE,JULYAUG 1995
    [27] H фdeegaard. Advanced compact wastewater treatment based on coagulalion and moving bed biofilm processes. Water Science and Technology. 1997,42(12):33-48
    [28] 李清雪, 等. 厌氧浮动床生物膜反应器启动试验.中国给水排水,1998(5):22-24
    [29] 王世和, 等. 好氧流化床处理含酚废水的基本特性分. 中国给水排水,1991,7(5):4-8
    [30] 王学江, 等悬浮填料生物膜.法处理石化废水试验研究工业水处. 2001,6(21):26-31
    [31] 肖宏亮, 韦朝海, 高孔荣, 等.三相流化床生物反应器在降解有机废的应用研. 2000,9(10):61-63
    [32] 周建,杨平,方治华. 厌氧流化床处理硫酸盐草浆废水的研究[J].水处理技术,1997, 23(6):363-366.
    [33] 刘峰,杨平,方治华,等. 预酸析-厌氧流化床处理碱法草浆黑液的研究[J].环境科学学报,1999,19(2):214-217
    [34] 蔡建安, 等. 三相气提升循环流化床处理焦化废水[J]. 水处理技术,1997,23(2):110-114.
    [35] 王学江, 等. 浮填料生物膜A/O法处理石化废水试验研究. 工业水处理,2002(6):26-31
    [36] 郑礼胜, 等. 内循环三相生物流化床处理生活污水. 中国环境科学,1999,19(1):51-55
    [37] 韦朝海,吴锦华,慎义勇,等. 优势菌种与三重环流三相流化床耦合处理油制气厂废水.环境科学学报,2002, 22(2):171-176
    [38] 黄延林, 等.生物流化床去除水中 DB PS 先质的实验研究. 环境工程, 1998,16( 4):28-32
    [39] 李锋, 等. MBBR 法处理桃浦工业废水的中试研究给水排水,2001, 4(27): 47-49
    [40] 胡秒生. 厌氧生物活性炭流化床处理制药废水. 中国给水排水, 1996, 12(4):39~41
    [41] 刘建荣,吴国庆,朱志卿. 磁态厌氧流化床处理印染废水.中国环境科学, 1996,16(1):64-6
    [42] 张仲燕, 等. 生物三相流化床处理废水工艺条件研究. 上海环境科学,1993,12(4):5-8
    [43] 贺延龄. 废水的厌氧生物处理[M]. 北京:中国轻工业出版社,1998.
    [44] 周平, 钱易.内循环三相好氧流化床处理化工有机废水研究.中国给水排水, 1994, 9(3):12-15
    [45] 周平, 等. 内循环生物流化床处理石化废水的中试研究.环境科学,1997,18(1) :26-29
    [46] 周平,汪诚文,吴晓磊,等.内循环生物流化床处理石化废水的中试研究.环境科学,1997, 18(1): 26 -29.
    [47] 周平, 等.内循环生物流化床处理化工有机废水的研究.中国给水排水,1994,10(6):28-31.
    [48] 刘霞,等. 生物粒子浮动床处理城市污水研究.中国给水排水,1998, 10(3):54-57
    [49] 夏四清, 等. 多级悬浮填料生物反应器处理石化废水. 中国给水排水,2002,1(18): 9-12
    [50] B .Kach,et al . Degradation of Phenol and Benzoic Acid in a Three-Phrase Fluidized-Bed Reactor. War Res .1991,25(1):10-15
    [51] Cooper. P. F;Atkinson, B. Biological Fluidised Bed Treatment of Water and Waste Water,1981:306-340
    [52] TatsuhikoSuzuki. A new sewage treatment system with fluidized pellet bed separator. Wat Sci Technol, 1993,27(11):185-192.
    [53] Bjrn Rusten et al, M oving bed Siofilm reactors and chem ical precipitation for high efficiency treatment ofwastewater from small communities,W at., W at. Set Tech,1997,5(35): 6
    [54] 迟玉霞. 填料在水处理中的应用.化工给排水设计. 1998, 15(2):43-44
    [55] 蔡建安等. 三相流化床中混合载体的协同作用. 环境科学, 1995, 16(6):50-52
    [56] 李探微. 气提升循环反应器生物载体的选择[J]. 污染防治技术,1999,12(4) :231-232
    [57] 国家环保局. 水污染防治及城市污水资源化技术. 科学出版社,1992:673-914
    [58] G. Andreottola et al . Upgrading of a Small Wastewater Treatment Plant in a Cold Climate Region Using a Moving Bed Biofilm Reater( MBBR) System. Water Science &Technology 141(1):177-185
    [59] Yutaka Suzuki et al,Development of Simulation Model for a Combined Activated 一 Sludge and Biofilm Process to Remove Nitrogen and Phosphorus Water Environment Research. 1988, 21(5):388-397
    [60] Munch E.V.et al..Simultaneous nitrification and denitrfication in bench-scale sequencing batch reactors. Water Res., 1996, 30: 277-284
    [61] Walker, P.L. Jr. and K.A. Kini. 1965. Fuel, Lond.1885, 44-453
    [62] Greenslade, W,J. 1975.surface studies of B.C. COALS. Report for the degree of Master in Eng., Dept. of Minl. Eng., UBC, Vancouver, B.C., Canada.KALDNES. MOVING BIOFILM PROCESS. WATER SERVICE.1995(5)
    [63] Coulthard, T.l. and S.M. Fadl. 1974. The adsorption of water pollutants by coal. A report for water pollution control Branch, Water Resources service, Dept. of lands, Forests and Water Resources, July 1974
    [64] Coulthard, T.l. and S.M. Fadl. 1976. The adsorption of waterpollutants by a coal sorption process. II. Removal of heavy metals. Paper No. 76-404 presented of at the annual meetings of CSAE
    [65] Hendren, M.K. and W.K. Oldham. 1973. Storm sewer discharge study, Okanagan Basin Study Task No. 133, September.
    [66] Hendren, M.K. 1974.Heavy metals removal by using coal. M.A.Sc. Thesis, Dept. of Civil Eng., U.B.C, Vancouver, B.C., Canada.
    [67] Fornwalt, H.J.and R.A. Hutchins. 1966. Purifying liquids with activated carbon, Chemical Engineering, 11(4):179-184
    [68] V. lazarova et al, Advacned in Siofilm aerobic reactors ensuring effective Siofilm activity control, W at. Set Tech,1994,(29):10-11
    [69] Friedel, R.A. and J.A. Queiser. 1956. Infra-red analysis of bituminous coals and other carbonaceous materials. Anlyt. Chem. 28:22-30
    [70] Roy, M.M. 1957 J.Sc. Ind. Research(India) 16B:274
    [71] Berkowitz, N. 1971. Deterioration of coal during storage and transportation, Mineral transportatin proceesings of the first international symposium on transport and handling of minerals, Vancouver, B.,C., October 20-23, P.154-173.
    [72] Stronach S M. Anaerobic digestion process in industrial wastewater treatment[ M]. Berlin: Springer-Verlag. 1986.
    [73] Mortensen, J.L. 1963. Soil Sci. Soc. Amer. Proc. 27:179
    [74] Schitzer, M. 1969. Soil Sci. Soc. Amer. Proc. 133:75
    [75] Schitzer, M. 1971. In soil biochemistry, Dekker, Inc., New York, Vol. 2:60-65
    [76] Schitzer, M., S.U. Khan. 1972. Humic Substances in the Environment, Marcel Dekker, Inc., P206
    [77] Schitzer, M. 1971. In soil biochemistry, Dekker, Inc., New york,2:60
    [78] Schitzer, M. and S.I.M. Skinner. 1965a. Organo-metallic interactions in soils:4 Charboxy1 and Hydroxy1 group in organic matter and metal retention, Soil sci. 99: 278-284
    [79] F.M.C. Corporation, Princeton, New Jersey. 1971. Improving granular carbon treatments, for the EPA project No.17020, GDN, July 1971
    [80] McAteer. D. (1996). Private communication. Nampak, Bellville, 1996:17-19
    [81] Davies. C. (1996). Private communication. Sappi, Enstra, Springs, 1996: 19-22
    [82] Reid. J. C. (1996). Private communication. Mondi Paper, Merebank, 1996: 14-17
    [83] Aspden. D. (1996) Private communication. Eskom, Megawatt Park. 1996: 19-22
    [84] Muller. J. (1996) Private communication. Abakor, Pretoria. 1996:76-100
    [85] Van Tonder. G. (1996). Private communication. ISCOR, Pretoria 1996:203-210
    [86] Marais. S. W. (1996). Private communication. Aquatek (Pty) Ltd, Pretoria. 1996
    [87] Asano. T. and Levine, A. D. Wastewater reclamation, recycling and reuse: past, present and future, Wat. Sci. Tech., 1996,33(10): 1-14
    [88] Chang. A. Developing human health-related chemical guidelines for reclaimed wastewater and sewage sludge applications in agriculture. Geneva Switzerland. 1995:114-115
    [89] Cuillaume. P. and Xanthoulis. D. Irrigation of vegetable crops as a means of recycling wastewater: applied to Hesbaye Frost, Wat. Sci. Tech., 1996,33(4):10-11
    [90] The California Potable Reuse Committee, A Proposed Framework for Regulating the Indirect
    [91] Marecos do Monte. H. Angelakis, A. and Asano, T., Necessity and basis for establishment of European guidelines for reclaimed wastewater in the Mediterranean region, Wat. Sci. Tech., 1996,33(10-11)303-316
    [92] Shelef. G. and Azov Y. The coming era of intensive wastewater reuse in the Mediterranean region. Wat. Sci. Tech., 1996,20(10)115-126,
    [93] 刘凡清等. 纤维深层过滤器的最新发展及应用. 过滤与分离,1996(2):11-13
    [94] 栾兆坤等. 微絮凝—深床过滤理论与应用的研究.环境科学, 1997(11):8-10
    [95] 宋长仁等. 高效纤维过滤器及其应用. 冶金动力, 1998(2):18-19
    [96] 耿士锁. 纤维球过滤的适应性和稳定性的研究. 环境与开发, 1996(3):10-12
    [97] “八五”国家科技攻关专题承担单位.各专题研究技术报告,1995:23-250
    [98] 国家环境保护局编.水污染防治及城市污水资源化技术.“七五”攻关各专题单位.北京;科学出版社,1993
    [99] 王业俊 许保玖主审.水和废水技术研究.严煦世主编.北京:中国建筑工业出版社,1992
    [100] Water Environment Federation. Design of M unicipal Wastewater Treatment Plants. Alexandria,1992
    [101] Takashi Asano. Wastewater Reclamation and  Reuse. Lancaster:Technomic Publishing Compang, Inc.,1998
    [102] 周彤 编著.城市污水回用.北京:中国建筑技术发展中心建筑情报研究所,1984
    [103] 郑兴灿, 李亚新. 污水除磷脱氮技术. 中国建筑工业出版社,1998
    [104] 王建龙. 环境工程导论[M]第三版, 北京:清华大学出版社,2001
    [105] 周彤,郭晓,鲍宪枝. 城市污水回用于循环冷却水时氨氮去除. 工业用水与废水,2000
    [106] 王宗平,陶涛,金儒林。污水生物脱氮研究进展,1999,suppl.:124-129
    [107] 吕锡武,李锋,稻森悠平等。氨氮废水处理过程中的好氧反硝化。给水排水,2000,26(4):17-20
    [108] Turk O., Mavinic D.S. Maintaining nitrite buuild-up in a system acclimated to free ammonia. Water Res., 1989,23(11):1383-1388
    [109] Viiaverde S., FDZ-POLANCO,Garcia P.A..Nitrifying biofilm acclimation to free ammonia in submerged biofilters: Start-up influence. Water Res., 2000, 34(2):602-610
    [110] Van Benthum W.A.J.et al.. Nitrogen removal using niteification biofilm growth and denitrification suspended growth in a biofilm airlift suspension reactor coupled with a chemostst. Water Res., 1998, 32(7): 2009-2018
    [111] 王志盈,袁林江,彭党聪等。内循环生物流化床硝化过程的选择性研究。中国给水排水,2000,16(4):1-4
    [112] 袁林江,王志盈。短程硝化-反硝化生物脱氮。中国给水排水,2000,16(2):29-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700