用户名: 密码: 验证码:
电气石在循环水养殖水处理系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水处理系统是循环水养殖系统的核心,水处理技术制约着整个养殖系统的水质状况和生产能力。生物膜法处理废水具有产生污泥少、抗冲击、负荷能力强、运行消耗少等特点,在循环水养殖水处理系统上得到了广泛应用。载体是保证生物膜反应器高效和经济运行的核心,它不仅提供微生物附着的场所,而且影响着生物膜的生长、脱落、形态和空间结构,对装置的运行效果和能耗有十分重要的影响。目前广泛研究应用的生物膜载体大都是生物惰性材料,不能主动提供微生物生长的良好环境,挂膜速度慢;因此研发具有主动调控微生物生长所需微环境的功能性生物膜载体对于提高生物过滤的效率,降低循环水养殖水处理系统的设备投资和操作费用,具有较大的理论意义和应用价值。
     本文较系统地研究电气石在水产养殖水处理的作用和功能,制备了具有主动调控微生物生长微环境的功能性生物膜载体(Functional Biofilter Media,FBM),并初步研究了FBM在三相好氧生物流化床(Draft-Tube Three-Phase Fluidized Bed,DTFB)反应器中对模拟养殖废水的处理效果。主要研究内容和结果如下:
     1.电气石在水产养殖水处理的作用和功能研究
     (1) 电气石对不同盐度海水的pH值调控试验结果表明:电气石能够调节初始pH值为3至10的海水的pH值趋向中性,对水体电导率基本无影响,盐度影响电气石调控海水pH的速率,但对最终pH基本无影响。
     (2) 以Cr~(3+)为重金属模型污染物,研究了电气石对水体中Cr~(3+)的去除及其重复利用性。结果表明:电气石对Cr~(3+)去除率达99%以上,pH值对去除率没有影响,处理后Cr~(3+)浓度、pH值均符合水产养殖水体的要求,并且电气石可重复利用。
     (3) 以亚甲基蓝为难降解有机污染物模型化合物,研究了电气石催化过氧化氢对亚甲基蓝的降解。结果发现,电气石/H_2O_2催化体系对亚甲基蓝水溶液有优良的降解作用,对浓度为5.34×10~(-5)mol/L的亚甲基蓝水溶液,在60℃下反应55分钟,降解率可达92.5%,COD去除率大于70%,且降解反应符合拟一级动力学方程。
     (4) 水是由若干水分子通过氢键结合形成的水分子团簇结构,水分子团簇的改变能产生多种生物学效应。本实验研究了电气石对液态水团簇的影响,结果显示,
A key to successful recirculating aquaculture system is the use of cost-effective water treatment system components. The biofiltration that has low energy cost and produces little excess sludge is widely applied in the water treatment of recirculating aquaculture system. Since the heart of any biofilter is the filter media, the type of filter media used strongly influences both the capital and operating costs of the biofilter. Although biofilters employing conventional natural and artificial non-toxic inert filter media such as gravel, fiber, dumped packings, structured packings have been used successfully in many applications, there is currently a need for further research on ways to optimize the properties of biofilter media. The manufacture and application of a novel functional biofilter media that has properties conducive to microorganism attachment and growth was of significance to the development of the recirculating aquaculture system.In the present study, based on the systematical study of the action and function of tourmaline in the aquacultural water treatment, a functional biofilter media (FBM) was prepared, and its applied effects was evaluated by the treatment of simulated aquaculture wastewater in Draft-Tube Three-Phase Fluidized Bed (DTFB).The results were as follows:1. Systematical study of the action and function of tourmaline in the aquacultural water treatment(1) The results showed that tourmaline controlled the pH values of seawater from 3 and 10 to 7.1 and 8.9, respectively. The increase of the pH value in low salinity solution was more than in high salinity of seawater and the finally pH values were all to about 8.0. The effect of tourmaline on the conductivity of the seawater was negligible. Factors affecting the regulating of seawater pH value, such as quantity of the tourmaline ,salinity and the initial pH value of seawater were also studied.(2) The treatment of chromium(Ⅲ) containing waster water using tourmaline was
    experimentally investigated. Results showed that Cr3+ could be removed effectively by tourmaline. Adding 2g tourmaline in 100 mL waster water containing 0 to 50 mg/L Cr3+, the removing rate of Cr3+ was more than 99% after 100 minutes. Initial pH value of waster water had no effect on the removing rate of Cr3+. Furthermore, the concentration of Cr3+ and pH value of the treated water both measured up the aquacultural demand. The tourmaline showed high repeated availability.(3) Methylene blue was selected as a model organic pollutant that was difficult to be degraded. The effectiveness of the tourmaline/I^Ch towards oxidative degradation of methylene blue was investigated. The results showed that methylene blue was remarkably degraded under the experimental conditions. It was found that the conversion rate was up to 99.1 % and the removal of COD reached 70 % when the initial concentrations of methylene blue was 5.34 X10"5 mol/L in the presence of 9.71 X 10"3 mol/L hydrogen peroxide and 20 g/L tourmaline at 60 °C for 150 min. The results showed that the degradation of methylene blue obeyed the pseudo-first order law.(4) Water molecules form an extended and dynamic hydrogen-bonded network. The structural change of water clusters can lead to multiple biological effects. Structural change of water clusters of distilled water induced by polar crystal tourmaline was observed. The results showed that tourmaline reduced 17O NMR full width at half maximum intensity (FWHM) for distilled water and the volume of clusters of water molecules.(5) Adding tourmaline into the medium, the growth of the Rhodopseudomonas palustris could be greatly promoted. The dehydrogenase activity was improved and remained stable under condition of pH ranged from 5 to 11 when tourmaline was added. Besides structural change of water clusters, the promoted activity of dehydrogenase may be caused by electrolysis of water and pH self-controlling induced by tourmaline.(6) The purpose of this trial was to improve the concentration of nitrifying bacteria by adding tourmaline into the media. The result showed that tourmaline had effect on the concentration of nitrifying bacteria and the nitrifying rate. Under the condition of 30 °C, p(DO) > 2mg/L, the concentration of nitrifying bacteria achieved 2.0 X 108 MPN per
    gram sludge after enriched and cultivated for three weeks.(7) To further study the effects of the tourmaline-treated-water on the aquatic animals, Caco-2 cells were used to investigate the effects of tourmaline-treated-Dulbecco's Modified Eagle Medium (DMEM) on the cell growth and the activity of alkaline phosphatase. The results showed the growth of cell was promoted and the activity of alkaline phosphatase was improved when tourmaline-treated-DMEM was used to incubate the cell.2. Preparation of a functional biofilter media (FBM) and its effects on thenitrifying bacteria growth and nitrificationFBM containing tourmaline was prepared. By analyzing the concentration of NH4+-N, NCV-N and NO3"- N in water, the performances of the PBM and FBM were determined. The results showed that the performances of FBM were better in term of the nitrifying bacteria growth and its nitrification. This study provided useful information that FBM has properties conducive to microorganism attachment and growth.3. The applied effects FBM as the biofilm carrier in the treatment of simulatedaquaculture wastewater in Draft-Tube Three-Phase Fluidized Bed (DTFB)(1) FBM and PBM were used as the biofilm carrier in DFTB to comparatively study the formation of biofilm. It was found that the biofiim on the FBM surface reached to 74 urn after 12 days of start-up and the COD removal rate was 81.21%, TAN maintained as high as 94.24%. The biofiim on the PBM surface reached to 74 um after 15 days of start-up, the COD removal rate and TAN were 81.62% and 84.72%, respectively.(2) The result of start-up showed that the hydraulic retention time (HRT), airflow rate and pH had effect on the biofilm formation. In this study, when HRT was 1~2 hours and the airflow rate was 10 L/min, the start-up of the reactor were successful. After the formation of the biofilm was finished, the treatment of simulated aquaculture wastewater was studied by changing the operating parameter. It was found that when the HRT was shorter, the removal of the COD and NH4+-N were better. The results
    indicated that by regulating HRT, the proportion of the neterotrophic bacteria and autotrophic nitrifying bacteria of DFTB, organic compounds and NH/-N of aquaculture wastewater could be effectively removed.
引文
Alabaster J S, Shurben D G, Knowles G. 1979. The effect of dissolved oxygen and salinity on the toxicity of ammonia to smolts of salmon, Salmo J. Fish Biol, 15: 705-712.
    Alabaster J S, Shurben D G, Mallett M J. 1983. The acute lethal toxicity of mixtures of cyanide and ammonia to smolts of salmon, Salmo salar L. at low concentrations of dissolved oxygen. J. Fish Biol, 22: 215-222.
    Alderson R. 1979. The effect of ammonia on the growth of juvenile dover sole, Solea solea (L.) and turbot, Scophthalmus maximus (L.). Aquaculture, 17: 291-309.
    Anderson G K. 1994. Comparision of porous and non-porous media in upflow anaerobic filters when treating dairy wastewater. War. Res, 28: 2010-2019.
    Andou. Anticorrosive and antifouling additive for paints and paint containing the same. US Patent: 6294006. 2001-9-25.
    Atkins P W. 1978. Physical Chemistry. Oxford Unibersity press, 773-774.
    Avella M, Bornancin M. 1989. A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J. Exp. Biol, 142: 155-175.
    Barton R J. 1968. Absolute orientation of tourmaline by arcomalous dispersion of X-ray(abst). Gelolgical Society of America, special paper. 101: 11-12.
    Barton R J. 1969. Refinement of the crystal structure of buergerite and the absolute orientation of tourmaline. Acta Crystallogra B25: 1524-1533.
    Boiler M, Gujer W. 1986. Nitrification in tertiary trickling filters followed by deep filters. Wat. Res, 20: 1363-1369.
    Bovendeur J, Eding E H, Henken A M. 1987. Design and performance of water recirculation systems for high-density culture of the African catfish. Aquaculture, 63: 329-353.
    Brewaster D. 1824. Observations on the Pyro-Electricity of Minerals. Edinburgh Journal of Science. 1: 208.
    Brock J A, Main K L, 1994. A Guide to the Common Problems and Diseases of Cultured Penaeus vannamei. The World Aquaculture Society, Baton Rouge, 242.
    Characklis W G, Trulear M G. Dynamics of biofilm processes. Water Poll Contol Fed 54: 1288-1301.
    Chen J C, Kou Y Z. 1991. Accumulation of ammonia in the hemo lymph of Penaeus japonicus exposed to ambient ammonia. Dis. Aquat. Org, 11: 187-191.
    Chen J C, Nan F H. 1992. Effect of ambient ammonia onammonia-N excretion and ATPase activity of Penaeus chinensis. Aquatic Toxicology, 23: 1-10.
    Cooper P F. 1981. Complete Treatment of Sewage in a Two-Stage Fluidized-Bed System Part 1. Wat. Poilu. Control, 81(4): 447.
    Donnay G. 1977. Structure mechanism of pyrolelctricity in tourmaline. Acta Cryst. A33: 927-932.
    Evans D H, Cameron J N. 1986. Gill ammonia transport. J. Exp. Zool., 239: 17-23.
    Fan L S, Leyva-Ramos K D, et al. 1990. Diffusion of Phenol through a Biofilm Grown on Activated Carbon Particles in a Draft-Tube Three-Phase Fluidized-Bed Bioreactor. Biotechnology and Bioengineering, 35(2): 279-286.
    Fang H Y, Chou M S, Huang C W. 1993. Nitrification of ammonia-nitrogen in refinery wastewater. War Res. 27(12): 1761-1765.
    Fuat Y. 1997. Tourmaline: software package for tourmaline, tourmaline-rich rocks and related ore deposits. Comput Geosci. 23: 947-957
    Garrido J M, Campos J L, Menez R and Lema J M. 1997b. Nitrous oxide production by by nitrifying biofilms in a biofilm airlift suspension reactor, Water Science and Technology, 36(1): 157-163.
    Gergory J K, Clary D C, Liu K, et al. 1997. The water dipole moment in water clusters. Science. 275: 814-817.
    Gladikii V V, Zheludev I S. 1965. Methods and results of an investigation of the pyroelectric properties of some single crystals. Kristallografiya. 10: 63-67.
    Greiner A D, Timmons N B. 1998. Evaluation of the nitrification rates of microbead and trickling filters in an intensive recirculating tilapia production facility [J]. Aquacultural Engineering, 22: 189-200.
    Groeneweg J, Sellner B, Tappe W. 1994. Ammonia oxidation in Nitrosomonas at NH3 concentrations near Kin: Effects of pH and temperature. Wat. Res., 28: 2561-2566.
    Grommen R, Van H I, Van W and Verstraete M. 2002. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture, 211 (4): 115-124.
    He Y P, Chu S W, Walker W A. 1993. Nucleotide supplements later proliferation and differentiation of cultures human (Caco-2) and rat (IEC-6) intestinal epithelial cells. J Nutr. 123: 1017-1027.
    Hem L J, Rusten, B and Odegaard H. 1994. Nitrification in a moving bed biofilm reactor, Water Science and Technology, 28(6): 1425~1433.
    Hopkins J S, Sandifer P A., Browdy C L. 1995. A review of water management regimes which abate the environmental impacts of shrimp farming. In: Browdy, C. L., Hopkins, J. S. Eds., Swimming Through Troubled Water. Proceedings of the Special Session Shrimp Farming, The World Aquaculture Society, Baton Rouge, 157-166.
    Hulyka Y, Serdar S, Celebi. 2000. Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme and Microbial Technology, (26): 22-27.
    Jan T K, Young D R. 1978. Chromium speciation in municipal wastewaters and seawater. Water pollut Control Fed. 50: 2327-2336.
    Jin Z Z, Ji Z J, Liang J S, et al. 2003. Observation of spontaneous polarization of tourmaline. Chinese Physics. 12: 222-225.
    Kach B, et al. 1999. Degradation of Phenol and Benzoic Acid in a Three Phrase Fluidized Bed Reactor. Wat. Res, 25(1): 1.
    Kaushik S J, Cowey C B. 1991. Dietary factors affecting nitrogen excretion by fish. In: Cowey C. B. and Cho C. Y. (eds), Nutritional strategies and aquaculture waste, Academic Press, 3-19.
    Kubo T. 1989. Engineering application of solid state physics. Interface activity of water given rise to by Tourmaline. Solid State Physics. 27: 303-313
    Kubo T. 1989. Interface activity of water given rise by tourmaline. Solid state physics. 24: 121-123.
    Kubo T. 1989.Interface activity of water given rise by tourmaline. Solid State Physics, 24(12).
    Kubo T. 1991. Surface tension and permeability of water treated by polar crystal tourmaline. Nippon Shokuhin Kogyo Gakkaishi. 38: 422.
    Kubo T. 1998-03-17. Apparatus and method for producing air containing minus alkali ion. United States Patent: 5728288.
    Lang S B. 1999. The history ofpyroelecticity: from ancient Greece to space missions. Ferroleleetrics. 230: 99-108
    Lawson T B. 1995. Fundamentals of Aquacultural Engineering. Chapman & Hall, NY. Liu K, Cruzan J D and Saykally R J. 1996. Water clusters. Science. 271: 929-933.
    Liu Y. 1995. Adhesion kinetics of nitrifying bacteria on various thermoplastic supports. Colloids and Surface B: Biointerfaces. (5): 213-319.
    Los Y, Li W C, Huang S H. 2000. Water clusters in life. Medical Hypotheses. 54: 948-953.
    Lowry O H, Rosenbrough N J, Farr A L, et al. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193: 265-275.
    Mathews C K, Holde K E. 1990. Introduction to metabolism. In: Bioche-mistry, The Benjamin/Cummings publishing compary, Inc. 404-426.
    Matsumura K, et al. 1999. Ecological uses of tourmaline proceedings first international symposium on environmentally conscious design and inverse manufacturing, 2 (1-3): 912-915.
    Nakamura T, Fujishiro K, Kubo T, et al. 1994. Tourmaline and lithium niobate reaction with water. Ferroelectrics. 155: 207-212.
    Nakamura T, Fujishiro K, Kubo T, et al. 1994. Tourmaline and lithium niobate reaction with water. Ferroelectrics. 155: 207-212.
    Nakamura T, Kubo T. 1992. The tourmaline group crystals reaction with water. Ferroelectrics. 137: 13-31.
    Nakamura T, Kubo T. 1992. Tourmaline group crystals reaction with water. Ferroelectrics, 137: 13-31.
    Nishi Y P. 1996. self-controlling induced by tourmaline. Journal of Intelligent Material Systems and Structures, 7: 260-263.
    Nishi Y, Yazawa A, Oguri K. 1996. pH self-controlling induced by tourmaline. Journal of intelligent material systems and structures. 7: 260-263.
    Nwtzer AA, Bowers J N. 1978. "Removal of heavy metals from wastewater by lime" Proceedings of the 16th conference on Great Lakes Research. Huron. 260-265.
    Okabe S, Oozawa Y, Hirata K, Watanabe Y. 1996. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C: N ratios. War. Res. 30: 1563-1572.
    Olson K R, Fromm P O. 1971. Excretion of urea by two teleosts exposed to different concentrations of ambient ammonia. Comp. Biochem. Physiol, 40A: 999-1007.
    Oppelt E T. 1981. Biological Fluidized Bed Treatment of Water and Wastewater. EUishorwood Limited Publishers, 165.
    Painter H A. 1970. A Review of literature on inorganic nitrogen metabolism in microorganisms. Wat. Res. 4: 393-450.
    Pouliquen D, Gallois Y. 2001. Physicochemical properties of structured water in human albumin and gammaglobulin solutions. Biochimie. 83: 891-898.
    Randall D J, Wright P A. 1987. Ammonia distribution and excretion in fish. Fish Physiol. Biochem, 3: 107-120.
    Ravikumar J X, Gurol M. 1994. Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environ. Sci. Technol. 28: 394-400.
    Rodney M. 2002. Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, 8(9): 881-890.
    Rosa M F, Angela A L, Furtado R T. 1998. Biofilm development and ammonia removal in the nitrification of a saline wastewater, Bioresource Technology, 65: 135-138.
    Ruyet J P, Chartois H, Quemener L. 1995. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture, 136: 181-194.
    Sakai Y, Tani K, Takahashi F. 1992. Sewage treatment under conditions of balancing microbial growth and cell decay with a high concentration of activated sludge supplemented with ferromagnetic powder. J. of Fermentation and Bioengineering, 74(6): 413-417.
    SAS. 1989. Institute Inc. SAS/STAT User'sGuide, Version 6. SAS Institute Inc., Cary, North Carolina.
    Sawada H, Rogers P L. 1977. Photosynthetic bacteria in waste treatment: pure culture studies with Rhodopseudomonas eapsulata. J Ferment Technol. 55: 297-310.
    Sawada H. 1997. Photosynthetic bacteria in waster treament. Fetment Technol. 55: 311-316.
    Schoonen M A, Xu Y, Stongin D R. 1998. An introduction to geocatalysis. J.Geochem Explor. 62: 201-215.
    Sergei V S, Alice V. 2002. Electric induced transition in water cluster. J Mol Stru: Theochem. 593: 19-32.
    Shpigel M A, Neori A, Popper D M, et al. 1993. A proposed model for "environmentally clean" land based culture of fish, bivalves and seaweeds Aquaculture, 117: 115-1281.
    Sorial G A, Suidan M T, Vidic R D, Brenner R C. 1993. "Effect of GAC Characteristics on Adsorption of Organic Pollutants," Research Journal of WEF, 56, 1: 53-57.
    Sprague J B. 1971. Measurement of pollutant toxicity to fish-Ⅲ. Sublethal effects and "safe" concentrations. Wat. Res, 5: 245-266.
    Sugihara, et al. 1999-1-26. Rayon fiber containing tourmaline particles and method for the preparation thereof. US Patent: 5863653.
    Tanaka H, Dunn I J. 1982. Kinetics of biofilm nitrification, Biotech. and Bioeng., 24: 669-689.
    Tappe W. 1996. Cultibation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention. Fems Micro-biol, Eol. 19(1): 47-52.
    Thurston R V, Phillips G R, Russo R C. 1981. Increased toxicity of ammonia to rainbow trout (Salmo gairdneri) resulting from reduced concentrations of dissolved oxygen. Can. J. Fish. Aquat. Sci., 38: 983-989.
    Tijhuis L, et al. 1994. Formation and growth of heterotrophic aerobic biofilms on small suspended partical in airlift reactors. Biotech. and Bioeng., 44: 595-608.
    Timmons M B, Losordo T M. 1994. Aquaculture Water reuse Systems: Engineering Design and Management. Elsevier Science B. V.
    Torii K, Niwa K. 1999-12-21. Far-infrared radiation material. United States Patent, Patent number 6, 004, 588.
    Treatability studies for the inorganic chemicals manufacturing point source category, USEPA 440/1-80/103(July, 1980).
    Trussell R P. 1972. The percent un-ionized ammonia in aqueous ammonia solutions at different pH levels and temperatures. J. Fish. Res. Board Canada, 29: 1505-1507.
    Tsuchiya K. 1996. Effect of homogeneous and inhomogeneous high magnetic fields on the growth ofEscherichia coi. Ferment. Bioeng, 81(4): 343-348.
    Van W A J, Van M C M and Heijnen J J. 1997. Process design for nitrogen removal using nitrifying biofilm and denitrifying suspended growth in a biofilm airlift suspension reactor, Water Science and Technology, 36(1): 199-128.
    Wilson G J, Khodadoust A P, Suidan M T, Brenner R C. 1997. "Anaerobic/Aerobic Biodegradation of Pentachlorophenol Using GAC Fluidized Bed Reactors: Optimization of the Empty Bed Contact Time," Water Science and Technology, 36, 6-7: 107-115.
    Wilson R W, Taylor E W. 1992. Transbranchial ammonia gradient and acid-base resposes to high extermal ammonia in rainbow trout (Oncorhynchus myskiss) accilmated to different salinity. J. Exp. Biol., 166: 95-112.
    Wood C M. 1993. Ammonia and urea metabolism and excretion. In: D. H. Evans (Editor), The Physiology of Fishes. CRC Press, Boca Raton, FL, 379-425.
    Wortman B, Wheaton F W. 1991. Temperature effects on biodrum nitrification. Aquacultural Engineering, 10: 183-205.
    Wright P A. 1995. Nitrogen excretion : three end products, many physiological role. J. Exp. Biol., 198: 273-281.
    Xie W M, Wang Q H, Song G L, et al. 2004. Upflow biological filtration with floating filter media. Process Biochemistry, 39(6): 767-772.
    Yamaguchi, S. 1983. Surface electric fields of tourmaline. Applied Physics A: Solids and Surfaces. A31( 4): 183-185.
    Yoshio Maehi. 2001. Physiology effects when wearing AP fiber cloth containing special tourmaline crystal powder. Journal of International Society of Life Information Science, 19(1).
    Zhu C. 1999. An experimental study on nitrification biofilms performances using a series reactor system. Aquacultural Engineering, 23: 245-259.
    Zhu X, Suidan M T, Alonso C, Yu T, Kim B J, Kim B R. 2001. "Biofilm Structure and Mass Transfer in a Gas Phase Trickle-Bed Biofilter," Water Science and Technology, 43, 1: 285-293.
    《三废治理与利用》编委会.1995.三废治理与利用.北京:冶金工业出版社.131-156.
    保坂幸尚等.1986.流动层生物学的水处理.化学装置,28(4):102.
    蔡宏道.1981.环境污染与卫生检测.北京:人民卫生出版社.62-72.
    蔡建安,李俊,钟梅英,王效东.1997.三相气提升循环流化床处理焦化废水.水处理技术,23(2):110-114.
    柴诚敬,贾绍义,李宗堂,等.1999.磁化技术在化工分离领域中的应用.化学工业与工程,16(4):245-248.
    陈佳容.1993.水化学实验指导书.北京:中国农业出版社,229.
    陈金声,史家梁,徐亚同.1996.硝化速率测定和硝化菌计数考察脱氮效果的应用上海环境科学,15(3):18-20.
    陈英旭,骆永明,朱永官,等.1994.土壤中铬的化学行为研究Ⅴ.土壤对Cr(Ⅲ)吸附和沉淀作用的影响因素.土壤学报,31(1):77-85.
    陈源高,戴全裕,陈灿惠,等.1991.银离子对鱼类及其它水生生物的毒性水产学报,15(1):55-61.
    成一知.1997.废水处理酶促填料试验研究.重庆:重庆建筑大学.
    程江,张凡,海景,杨卓如,等.2004.聚丙烯填料的生物亲和亲水磁化改性对其润湿及挂膜性能的影响.化工学报,55(9):1564-1567.
    崔连起等.1986.生物流化床法处理废水技术发展概况.兰化科技,4(1):47-52.
    邓洪权等.2001.内循环生物流化床反应器数学模型分析.四川大学学报(工程科学版),33(2):52-56.
    丁宁.2002.陶粒填料的挂膜行为及其对模拟废水处理的特性.广州:华南理工大学.
    丁永良,曲善庆.2003.回眸工业化养鱼30年,现代渔业信息,18(1):9-14.
    丁永良,张明华.2003台湾省的特色水产养殖业与工业化养鱼.现代渔业信息,18(6):9-13.
    丁永良.1999.世界工业化养鱼发展动向.河南水产,(1):33-34.
    丁永良.2003.纳米科技养鱼新技术综述.现代渔业信息,18(12):3-8.
    杜近义,秦际威.1998.光合细菌的开发应用进展.生物学通报,33(11):15-18.
    段菊兰,王濂生等.2001.负离子纤维的性能与应用.金山油化纤,2:53-56.
    范康年.2001.谱学导论.北京:高等教育出版社.11-12.
    方振东,赵刚,王占生,等.1998.生物陶粒反应器中硝化自养菌与异养菌生长关系的研究.中国给水排水,14(1):18-20.
    高长有,李安,封麟先.1998.促进组织生长的聚合物骨架材料.功能高分子学报,11(9):408-409.
    郭力.2004.电气石—多功能环保健康新材料.中国非金属矿工业导刊,43(5):56-58.
    郭银松,黄种买,张敬东.1997.磁处理对水体生物性质影响的研究.武汉水利电力大学学报,30(3):93-95.
    郝新保,张利朝.1997.MTT比色法测定细胞生长曲线.第四军医大学学报,18:390-390.
    胡晖,高红,贾绍义.2000.磁场对物质理化性质的影响.磁性材料及器件,31(3): 36-41.
    黄发源.1992.淡水养殖水化学.北京:高等教育出版社.83-84.
    冀志江,金宗哲,梁金生,等.2002.电气石对水体pH值的影响.中国环境科学,22:515-519.
    冀志江,梁金生,金宗哲,等.2002.极性晶体电气石颗粒的电极性观察.人工晶体学报,31(5):507-512.
    贾立敏,王凯军,杜兵.1999.气提反应器在油脂废水处理工程中的应用.给水排水,25(5):25-29.
    姜红,李月红,黄权.2000.养殖水体的有机物负荷及其减轻对策.中国水产,2:32-33
    金惠铭,梁光波,张国平.2003.用Millicell低膜培养皿研究Tourmaline对ECV-304细胞增殖的影响.中国微循环,7:309-312.
    金涌,祝京旭,汪展文,等.2001.流态化工程.北京:清华大学出版社.
    孔繁翔,尹大强,严国安.2000.环境生物学.北京:高等教育出版社.27.
    雷霁霖.2003.关于我国北方沿海当前工厂化养鱼的一些问题和建议.北京水产,(6):10-13.
    李福功,李素珍等.2003.健康新材料—托玛琳在饮用水净化中的作用.陶瓷,6:34-36.
    李福志,张晓健,吕木坚.2004.用17O-核磁共振研究液态水的团簇结构.环境科学学报,24.6-9.
    李探微,韦苏,陈红英,等.1999.气提升循环反应器生物载体的选择.污染防治技术,12(4):23 1-232.
    梁金生,梁广川,祁洪飞,等.2003.稀土复合磷酸盐无机抗菌材料对陶瓷活化水性能的影响.中国稀土学报,21:214-243.
    蔺玉华,卢建民,梁智龙,等.2000.铬对鲤、草鱼胚胎发育及鱼苗的毒性影响.水产学杂志,12(2):31-35.
    刘长发,綦志仁,何洁,等.2002.环境友好的水产养殖业.大连水产学院学报,17(3):220-226.
    刘强,陈衍夏等.2004.电气石纳米材料在卫生保健纺织品领域的应用.印染,7: 16-19.
    刘如林,刀虎欣,梁风来,等.1991.光合细菌及其应用.北京冲国农业科技出版社.72-91.
    刘焱,杨平,方治华.1999.生物流化床中生物膜特性与反应器效率的关系.环境科学进展,7(5):113-123.
    刘燕芳,夏雨,余莹,等.2004.纳米改性陶粒——高比表面积水处理填料的研制.江西化工,2:91-96.
    刘雨,赵庆良,郑兴灿.2001.生物膜法污水处理技术.北京:中国建筑工业出版社,31-35.
    龙腾锐,张勤,郭劲松,等.2000.酶促填料与某些多孔填料挂膜特性对比试验研究.给水排水,26(3):22-25.
    鲁安怀.2003.无机界矿物天然自净化功能之矿物光催化作用.岩石矿物学杂志.22(4):323-341.
    潘永亮,杨平,方治华.2001.三相流化床中载体表面生物膜形成与膜厚影响因素实验研究.四川大学学报(工程科学版),33(1):42-45.
    平田彰.1982.水处理技术最近动向.水处理技术,23(15):29.
    钱易,米样友主编.1993.现代废水处理新技术.北京:中国科学技术出版社.
    沈耀良.1995.固定化微生物技术及其在废水处理中的应用.污染防治技术,8(1):12-18.
    沈耀良.2001.废水生物处理新技术:理论与应用.中国环境科学出版社.
    施伟红.2000.生物流化床在废水处理中应用.上海化工,(6):15-17.
    室山胜彦.1985.生物膜付着活性炭粒子用流动层好性水处理操作解析.水处理技术,26(3):149-158.
    隋军,施旗.2001.一种用于水处理的活性填料.中国发明专利,CN 1279213A.
    孙振亚,祝春水,龚文琪.2003.铁(氢)氧化物矿物对有机污染物的光催化氧化作用.矿物学报,23(4):341-348
    汤云晖,吴瑞华,章希焕.2002.电气石对含Cu~(2+)废水的净化原理探讨.岩石矿物学杂志,21(2):192-196.
    汤云晖.2002.电气石的表面吸附与电极反应研究.北京:中国地质大学.
    唐传祥.1993.新型生物膜法废水处理中生物载体填料的研讨.化工给排水设计,3:24-28.
    汪大翚,徐新华,宋爽.2000.工业废水中专项污染物处理手册.北京:化学工业出版社.28-30.
    王波,雷霁霖,张榭令,等.2003.工厂化养殖的大菱鲆生长特性.水产学报,27(4):358-363.
    王圣武,马兆昆.2004.生物膜污水处理技术和生物膜载体.江苏化工,32(4):36-38.
    王世和等.1991.生物流化床水处理基本特性研究.中国环境科学,11(4):290-295.
    韦朝海,谢波,张献忠,等.2001.内循环流化床结构参数及其反应器性能的相关性.高校化学工程学报,15(3):236-241.
    邬建平.2000.UFO球碟形磁性生物填料.中国发明专利,CN1263054A.
    吴瑞华,汤云晖,张晓晖.2001.电气石的电场效应及其在环境领域中的应用前景.岩石矿物学杂志,20(4):474-478.
    相建海.2001.海水养殖生物病害发生与控制.北京:海洋出版社.
    徐传龙,张明杰,沈秀娣,等.1997.铝(氢)基蒙托石与亚甲基蓝反应研究.非金属矿,118:26-30.
    杨海涛,王广基.2000.Caco-2单层细胞模型及其在药学中的应用.药学学报,35:797-800.
    杨南如.1990.无机非金属材料测试方法.武汉:武汉工业大学出版社.237.
    杨如增,廖宗廷等.2000.天然黑色电气石热释电特性的研究.宝石和宝石学杂志,(2):34-37.
    杨如增,杨满珍,廖宗廷,等.2002.天然黑色电气石红外辐射特性研究.同济大学学报,30(2):183-188.
    岳筱萍,路立.1995.“磁约束”的防垢、除垢机理分析.郑州纺织工学院学报,6(3):72-74.
    战培荣,刘伟,曹广斌,等.2004.流化床生物滤器净化循环水养鱼系统的工艺与特性研究.农业工程学报,20(2):226-230.
    张建平,赵林,谭欣.2004.水分子团簇结构的改变及其生物效应.化学通报,67: 278-283.
    张近.1999.塑料塔填料表面改性技术.现代塑料加工应用,11(2):51-55.
    张明华,丁永良,杨菁,王祖钧,张旭.2004.鱼菜共生技术及系统工程研究.现代渔业信息,19(4):7-12.
    张明华,杨菁,王秉心,等.2004.工厂化海水养鱼循环系统的工艺流程研究.海洋水产研究,25(4):65-70.
    张晓晖,吴瑞华,汤云晖.2004.电气石的自发电极性在水质净化和改善领域的用研究.中国非金属矿工业导刊.
    张永明,俞俊棠,王建龙,钱易.2000.增加内循环的生物反应器对啤酒废水处理效率的研究.环境科学学报,20(6):727-730.
    张志湘,冯安生,郭珍旭.2003.电气石的自发极化效应在环境与健康领域的应用.中国非金属矿工业导刊,(1):47-49.
    郑礼胜,施汉昌,钱易.1999.内循环三相生物流化床处理生活污水[J].中国环境科学,19(1):51-55.
    郑丽波,叶瑛,季珊珊,等.2004.Mg/Al型双金属氧化物对六价铬的吸附作用.地球化学,33(2):208-214.
    郑元景等编著.1988.生物膜法处理污水.中国建筑工业出版社.
    周春生,尹军.1996.TTC—脱氢酶活性检测方法的研究.环境科学学报,16:400-405.
    周化民,何建国,莫福,等.2001.斑节对虾白斑综合症暴发流行与水体理化因子的关系.厦门大学学报(自然科学版),40(3):775-781.
    周平,何嘉汉,钱易.1996.内循环三相生物流化床反应器的相含率及氧传递特性研究.环境科学学报,16(2):211.
    周平,钱易.1995.内循环生物流化床反应器的理论分析.环境科学,16(2):88-90.
    周平等.1997.内循环生物流化床处理石化废水的中试研究.环境科学,18(1):26-29.
    周勤慧,沈孟长,丁益,等.1986.Cr(Ⅲ)离子在水溶液中的状态.中国科学,B(2):137-145.
    朱乐辉,朱衷榜.2001.水处理滤料—球形轻质陶粒的研制.环境保护,1:35—37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700