用户名: 密码: 验证码:
SBBR技术特性和动力学机制及其在废水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先综述了序批式生物膜反应器(SBBR)技术及其在废水处理中应用研究的现状和发展趋势。SBBR技术是一种新型复合式生物膜反应器技术。它将序批式的运行模式与生物膜法相结合,具有两者的优点。本论文工作主要是以一种特定的系统来研究SBBR特性和动力学机制及其在废水处理中的应用。
     本论文工作的研究内容之一:SBBR技术的特性。它包括:反应器系统的组成和运行模式、运行阶段的选择;探讨SBBR同时进出水方式的可行性及确定体积置换率;测定反应器的停留时间分布;分析反应器中的流态;计算反应器中的水力剪切力和分析其影响;测定反应器中氧传递系数和充氧性能参数等。研究结果表明:本SBBR是一种序批式外循环固定床生物膜反应器。借助于专门设计的自控箱,SBBR可运行10余种工艺模式。在实验采用的曝气量和选定泵的作用下,反应器内水的循环周期仅为2分钟,处于高速循环流动的条件,保证了传质和混合的良好效果。在给定的工况下,SBBR的氧传递系数K_(La)在39-103(h~(-1))之间,系统的充氧能力在8.0×10~(-3)-20.5×10~(-3)kgO_2/h之间。本反应器固定床陶粒层具有多孔介质性。在不曝气的条件下,水流流过陶粒填料层时的流态为渗流,即,对本SBBR,在采用限制性曝气方式的进水期,水流流态为渗流。在给定条件下,渗透率K=3.0175×10~4μm~2。不同曝气量下填料层压差与流速的线性关系显著。在本反应器结构和运行条件下,反应器中存在明显的水力剪切力,其值为0.962 dyn/cm~2。水力剪切力对生物膜具有显著的影响,导致稳态的生物膜结构、平衡的生物膜厚度和密度。本SBBR在进(出)水期的水流流态是介于理想推流和完全混合流之间,并以推流为主要特征。当水流进入反应器和SBBR进入反应期后,很快就处于完全混合流态。只要适当控制进水水力负荷,反应器的同时进出水体积置换率可达65-74%。可通过几条途径提高反应器的同时进出水体积置换率。
     本论文工作的研究内容之二:SBBR技术处理模拟城市污水的可行性。它包括:系统降解含碳有机物(CODcr)、硝化及反硝化的性能和效率。具体包括:系统的启动(挂膜与驯化),模拟城市污水中CODcr和NH4~+-N去除的主要机理和影响因素,废水中总氮(T-N)去除程度及可能的脱氮途径,系统的氧利用效率,生物膜相的观
    
    察和分析。实验结果表明:SBBR的挂膜和启动方式多样、速度快。陶粒载体的挂
    膜属于表面吸附固定技术。在挂膜过程中存在的水力剪切力是有益的。未挂膜载
    体对CODc:和NH4十一没有初期吸附现象。生物膜对CODc:有明显的初期快速吸
    附作用。本系统对CODcr的去除非常有效,当CODcr容积负荷为1 .38一6.32K岁m,·d,
    CODcr的去除率在90%以上。在实验条件下,进水CODcr浓度对CODcr的去除率影
    响很小,CODcr的去除率都高达90%以上,.出水CODc「均不超过100 mg几,表明出
    水水质具有相当的稳定性,系统具有较强的抗冲击负荷能力。当水力停留时间
     (HRI,)少于75 min时,CODcr的去除率随H兀r的增加而增加,当HRT大于75 min
    时,CODcr的去除率基本达到极限。控制气水比在10:1左右使反应器中的DO保
    持在4一5 mg几,对于O段反应模式是合适的。在实验条件下,不同的 COD/N对
    CODcr的去除率几乎无影响,尽管柠檬酸钠的生物可降解性比蔗糖差,但在SBBR
    中用柠檬酸钠为碳源部分地或全部替换废水中的蔗糖并未引起明显的差异。当
    呱‘一N容积负荷在0.15一0.30 Kg/m3·d,相应的eoDer容积负荷为一35一3.22 Kg/m,·d
    时,NH4+入的去除率为61.5一87.0%,T一N的去除率为55.0一60.7%。随着进水NH礴十一N
    浓度上升(相应地CODcr容积负荷从 1 .4上升到6.3K岁m3·d),NH月气N和T一N的
    去除率下降。对于固定的进水NH4十一N和CODcr浓度,随着HR飞,的延长,NH礴+-N
    和T一的去除率都相应提高。随着COD加的增加,N日…4十一和T一的去除率相应
    增加,当CODfN为31 .4:1 .0时,NH4十一N和T一N的去除率达到90%以上。不同碳
    源对氮去除率的影响不大。在F(功一O模式下,在反应期处理水pH不断上升,使
    呈酸性的废水变成中性或弱碱性,这是有益的。本SBBR在处理不同碳源、不同
    浓度的进水时,出水55都较低,这与SBBR中以陶粒为填料有关。在SBBR运行
    模式下,不同的工况导致不同的污泥产率。在两种工况下求得的污泥产率分别为
    olZkgVSS/kgCOD和0.2IkgVSS/k gCoD。负荷越高,污泥产率也越高。在较
    高负荷处理系统中,N去除率不高,在有限的总氮去除中,通过同化合成去除的
    氮量占总去除氮量的90%以上,通过硝化反硝化途径去除的N量很有限。随着负
    荷的降低,相当于HRT延长,N去除率升高,在总氮去除中,有80%的N通过硝
    化反硝化途径去除,通过同化合成细胞而去除的N量降到20%。在适当的负荷或
    HRT条件下,尽管反应器处于不断曝气的好氧条件下,但却能发生SND现象,其
    机理可从几方面来分析。生物相镜检表明:微生物相较丰富,生物膜的质量较好。
    尹
    
    在一定的供气量下本反应器中氧的利用率为23.7%。
     本论文工作的研究内容之三三探讨用SBBR技术处理模拟植物制剂(大蒜和黄
    连)废水的工艺条件,进行生物相观察和分析。实验结果表明:采用SBBR技术
    处理具有生物抑
In this paper the state of the art is reviewed of Sequencing Batch Biofilm Reactor (SBBR) technology and its application in the wastewater treatment first. SBBR technology is a new type of combined biofilm reactor technology. It combines the sequencing batch operation mode with the biofilm process with both advantages.This research work focused on the study of the characteristics, kinetics and application in wastewater treatment of SBBR technology by means of a type of specific reactor systems.
    The first part of the research work is on the characteristics of SBBR technology. It included the make-up and operation modes of reactor system, the selection of operation phases, the feasibility of feeding and draining simultaneously and the volumetric exchange rate, the measurement of retention time distribution (RTD)in the reactor, the analysis of flow pattern in the reactor, the calculation of hydrodynamic shear force in the reactor and the analysis of its effects and the measurement of oxygen transfer coefficients and oxygenating performance parameters. The research results showed that the SBBR employed is a type of packed bed SBBR with external recirculation loop. The reactor system is capable of operating in more than ten modes by means of the automatic control box designed specially. Under the conditions of aeration and the recirculation pump operation, the cycle time for water in the reactor is only two minutes long and the water is at the state of high speed recirculation resulting in the good mass
     transfer and mixing effects; Under the experimental conditions, the oxygen transfer coefficients KLa are between 39-103(h-1) and the oxygenating capacity is from 8.0 10 -3 to 20.5 10 -3 kgO2/h; The filling stuff composed of ceramic grains belongs to the porous media. Under the condition of no aeration, the flow pattern in the packed bed of the reactor is infiltration, i.e., during the phase of feeding and under the limited aeration mode, the flow pattern in the packed bed of the reactor is infiltration; Under the given conditions, the infiltration rate K equals 3.0175 104 m2, Under different
    
    
    aeration intensity the linear relationship between the pressure difference and flow speed in the packed bed was obvious. Under the operation conditions of the reactor there is the obvious hydrodynamic shear force which is typically equivalent to 0.962 dyn/cm2. Hydrodynamic shear force has the marked influences on the biofilm leading to the steady state structure, the equilibrium thickness and density of biofilm. During the feeding (draining) phase of the reactor the flow pattern is between ideal plug flow and completely mixing flow and is mainly characterized by plug flow. During the reaction phase, the influent, after entering the reactor, rapidly became the completely mixing flow. The volumetric exchange rate of feeding and draining simultaneously in the reactor can reach 65-74% if only the influent hydraulic loading rate is controlled properly. There are several ways to increase the volumetric exchange rate.
    The second part of the research work is on the feasibility of treatment of simulated municipal wastewater with SBBR technology. It included the performance and efficiency of the removal of carbonaceous organic wastes (COD) and nitrification and denitrification. It can be further divided into the followings: the start-up of the system (the immobilization and acclimation of microorganisms), the examination of principal mechanisms and influencing factors of the removal of COD and NH/-N, the examination of the degree and routes of the removal of total nitrogen (T-N) or NH4+-N, the estimation of oxygen utilization efficiency of the system and the microscopic examination and analysis of the phase of the microbial communities. The experimental results showed that there were several rapid ways to immobilize and acclimatize the microbial communities in SBBR. The immobilization of the microbial communities on the filling stuff of ceramic grains belonged to the surface adsorption immobilization process. The existence of hydrodynamic
引文
[1] 刘雨,赵庆良,郑兴灿.《生物膜法污水处理技术》[M].北京:中国建筑工业出版社,2000,3-7.
    [2] 李军,杨秀山,彭永臻.《微生物与水处理工程》[M].北京:化学工业出版社,2002,293-294.
    [3] Wilderer, P. A., Irvine, R. L., Goronszy, M. C. et al. 《Sequencing Batch Reactor Technology》[M].London : IWA publishing,2001,51-68.
    [4] Wilderer P.A. Sequencing Batch Biofilm Reactor Technology[C]. Ladisch, M.R. and Bose,A. Harnessing Biotechnology for the 21st Century. Washington,DC : American Chemical Society, 1992. 475-479.
    [5] Garzón-Zúiga, M. A.and González-Martnez,S. Biological Phosphate and Nitrogen Removal in a Biofilm Sequencing Batch Reactor[J]. Wat. Sci. & Tech., 1996, 34(1-2): 293-301.
    [6] Fang, H.H.P., Yeong,C.L.Y., Book, K.M. and Chiu, C.M. Removal of COD and Nitrogen in Wastewater Using Sequencing Batch Reactor with Fibrous Packing[J]. Wat. Sci. & Tech., 1993, 28(7): 125-131.
    [7] Rothemund, C., Camper, A. and Wilderer, P.A. Biofilms Growing on Gas Permeable Membranes[J]. Wat. Sci. & Tech. ,1994, 29(10-11):447-454.
    [8] Debus, O. and Wanner, O. Degradation of xylene by a Biofilm Growing on a Gas Permeable Membrane[J]. Wat. Sci. & Tech., 1992, 26(3-4) : 607-616.
    [9] Wobus, A. and Roske, I. Reactors with Membrane-grown Biofilm: Their Capacity to Cope with Fluctuating Inflow Conditions and with Shock Loads of Xenobiotics[J]. Wat. Res., 2000,34(1): 279-287.
    [10] Kniebusch, M.M., Wilderer, P.A. and Behling, R.D. Immobilization of Cells at Gas Permeable Membrane[C], Bont, J.A.M.,Visser, J. Mattiasson. B. and Tramper, J. Physiology of Immobilized Cells. Amsterdam: Elsevier Science,1990, 149-160.
    [11] Wobus, A., Ulrich, S.and I.Rske,I. Degradation of Chlorophenols by Biofilms on Semi-permeable Membranes in Two Types of Fixed Bed Reactors[J]. Wat. Sci. & Tech.,1995, 32(8): 205-212.
    [12] Rusten, B., Hem, L. J. and φdegaard, H. Nitrification of Municipal Wastewater in Moving-bed Biofilm Reactors[J]. Wat. Environ. Res.,1995, 67(1): 75-86.
    [13] Rusten, B., McCopy, M., Proctor, R. and Siljudalen, J. G. The Innovative Moving Bed Biofilm Reactor/Solid Contact Reaeration Process for Secondary Treatment of Municipal Wastewater[J]. Wat. Environ. Res., 1998, 70(5):1083-1089.
    [14] Helness,H. and φdegaard,H. Biological Phosphorus and Nitrogen Removal in a Sequencing Batch Moving Bed Biofilm Reactor[J].Wat. Sci. & Tech.,2001,43(1):233-240.
    [15] Helness,H. and φdegaard,H. Biological Phosphorus Removal in a Sequencing Batch Moving Bed Biofilm Reactor[J].Wat. Sci. & Tech.,1999,40(4-5):161-168.
    [16] Wilderer, EA. Technology of Membrane Biofilm Reactors Operated under Periodically Changing Process Conditions[J]. Wat. Sci. & Tech., 1995, 31(1): 173-183.
    [17] Woolard, C.R. The Advantages of Periodically Operated Biofilm Reactors for the Treatment of Highly Variable Wastewater[J]. Wat. Sci. & Tech.,1997,35(1): 199-206.
    [18] Irvine,R.L. and Moe,W.M. Period Biofilter Operation for Enhanced Performance during
    
    Unsteady-state Loading Conditions[J]. Wat. Sci. & Tech.,2001, 43(3): 231-239.
    [19] Chudoba, J.,Grau, P. and Ottova, V. Control of Activated Sludge Bulking. Ⅱ. Selection of Microorganisms by Means of a Selector[J]. Wat. Res., 1973, 7: 1389-1406.
    [20] Tomlinson, E. J., and Chambers, B. Methods for Preventing of Bulking in Activated Sludge[J]. Wat. Pollut. Control, 1979,78:524.
    [21] Chiesa, S. C. and Irvine, R. L. Growth and Control of Filamentous Microbes in Activated Sludge: an Integrated Hypothesis[J]. Wat. Res., 1985,19: 471-479.
    [22] Wilderer, P. A., Irvine, R. L., Goronszy, M.. C. et al. 《Sequencing Batch Reactor Technology》[M].London, UK :IWA publishing,2001,1-3.
    [23] Wilderer, P. A., Irvine, R. L., Goronszy, M. C. et al. 《Sequencing Batch Reactor Technology》[M].London, UK :IWA publishing,2001,11-13.
    [24] Dennis, R. W. and Irvine, R.L. Effect of Fill to React Ratio on Sequencing Batch Biological Reactors[J]. J. Wat. Pollut. Control Fed., 1979, 51: 255-263.
    [25] Gonzales-Martinez, S. and Wilderer, P. A. Phosphate Removal in a Biofilm Reactor[J]. Wat. Sci. & Tech., 1991, 23(7-9): 1405-1415.
    [26] Morgenroth, E. and Wilderer, P. A. Modelling of Enhanced Biological Phosphorus Removal in a Sequencing Batch Biofilm Reactor[J]. Wat. Sci. & Tech, 1998,37(4/5):583-588.
    [27] Kaballo, H., Zhao, .Y. and Wilderer, P. A. Elimination of p-Chlorophenol in Biofilm Reactor—A Comparative Study of Continuous Flow and Sequenced Batch Operation[J]. Wat. Sci. & Tech., 1995, 31(1): 51-60.
    [28] Wilderer, P. A., Roske, I., Ueberschar, A., and L. Davids. Continuous Flow and Sequenced Batch Operation of Biofilm Reactors: A Comparative Study of Shock Loading Responses[J]. Biofouling, 1993, 6: 295-304.
    [29] Irvine, R. L., Wildere, P. A. and Flemming, H. -C. Controlled Unsteady State Processes and Technologies: an Overview[J]. Wat. Sci. & Tech., 1997, 35(1), 1-10.
    [30] Bishop, P.L., Zhang, T. C. and Fu, Y. Effects of Biofilm Structure, Microbial Distributions and Mass Transport on Biodegradation Processes[J]. Wat. Sci. & Tech., 1995,31(1), 143-152.
    [31] van Loosdrecht, M.C.M., Tijhuis, L., Wijdieks, A. M. S., Heijnen, J.J. Population Distribution in Aerobic Biofilms on Small Suspended Particles[J]. Wat. Sci. & Tech., 1995,31(1):163-171
    [32] Daigger, G.T., and Grady, C.P.L., The Dynamics of Microbial Growth on Soluble Substrates-A Unifying Theory[J]. Wat. Res., 1982,16: 365.
    [33] Moe, W. M. and Irvine, R.L. Intracellular Dynamics of Ribonucleic Acid (RNA) and Protein in Microorganisms from Periodically Operated Biofilters[J]. Wat. Sci. & Tech., 2001,43 (3): 241-248.
    [34] Daims,H., Purkhold, U., Bjerrum, L., Arnold, E., Wilderer, P.A. and Wagner, M. Nitrification in Sequencing Biofilm Batch Reactors: Lessons from Molecular Approaches[J]. Wat. Sci. & Tech., 2001,43 (3): 9-18.
    [35] Castillo, P.A., Gonzalez-Martinez, S. and Tejero, I. Observation during Start-up of Biological Phosphorus Removal in Biofilm Reactors[J]. Wat. Sci. & Tech., 2000,41 (4-5): 425-432.
    [36] Gieseke, A.,Arnz,P., Amann, R. and Schramm, A. Simultaneous P and N Removal in a Sequencing Batch Biofilm Reactor:Insights from Reactor- and Microscale investigations[J]. Wat. Res.,2002,36:501-509.
    [37] Cho,B-C, Chang, C-N, Liaw, S-L and Huang, P.T. The Feasible Sequential Control Strategy of
    
    Treating High Strength Organic Nitrogen Wastewater with Sequencing Batch Biofilm Reactor[J]. Wat. Sci. & Tech., 2001,43 (3): 115-122.
    [38] Protzman, R.S., Lee, P.-H., Ong, S.K. and Moorman, T.B. Treatment of Formulated Atrazine Rinsate by Agrobacterium Radiobacter Strain J14a in a Sequencing Batch Biofilm Reactor[J]. Wat. Res., 1999,33 (6): 1399-1404.
    [39] Wang, B., Li, J., Wang, L., Nie, M. and Li, J. Mechanism of Phosphorus Removal by SBR Submerged Biofilm System[J]. Wat. Res., 1998,32 (9): 2633-2638.
    [40] 李军.SBR浸没式生物膜法脱氮除磷[D],哈尔滨:哈尔滨建筑工程大学市政和环境工程系,1996,1-80.
    [41] Hirl, P.J. and Irvine, R.L. Reductive Dechlorination of Perchloroethylene Using Anaerobic Sequencing Batch Biofilm Reactors (AnSBBR)[J]. Wat. Sci. & Tech., 1997,35 (1): 49-56.
    [42] Arnz, P., Arnold, E. and Wilderer, P.A. Enhanced Biological Phosphorus Removal in a Semi-full Scale SBBR[J]. Wat. Sci. & Tech., 2001,43 (3): 167-174.
    [43] Chiou,R.J., Ouyang,C,F., Lin, K.H. and Chuang, S.H. The Characteristics of Phosphorus Removal in an Anaerobic/Aerobic Sequential Batch Biofilter Reactor[J]. Wat. Sci. & Tech., 2001,44 (1): 57-65.
    [44] Brinke-Seiferth,S., Behrendt, J. and Sekoulov, I. The Biofilm Filter Sequencing Batch Reactor (BFSBR)[J]. Wat. Sci. & Tech., 1999, 39 (8): 77-83.
    [45] Kaballo, H-P. Shock Loading Management with the sequencing Batch Biofilm Reactor Technology[J]. Wat. Sci. & Tech., 1997, 35(1):35-40.
    [46] Smith, R.G. and Wilderer, P.A. Treatment of Hazardous Landfill Leachate Using Sequencing Batch Reactors with Silicone Membrane Oxygenation[C]. Bell, J.M. 41st Indust. Waste Conf., Purdue University. Chelsea, MI: Lewis Publishers, 1987. 272-282.
    [47] Arnold, E., Bhm, B. and Wilderer, P.A. Application of Activated Water and Biofilm SBR Technology to Treat Reject Water from Sludge Dewatering Systems: a Comparison Study[J]. Wat. Sci. & Tech., 2000, 41(1), 115-122.
    [48] Gonzales-Martinez, S. and Wilderer, P.A. Phosphate Removal in a Biofilm Reactor[J]. Wat. Sci. & Tech., 1990, 23: 1405-1418.
    [49] Pastorelli, G., Canziani, R., Pedrazzi, L. and Rozzi, A. Phosphorus and Nitrogen Removal in Moving-bed Sequencing Batch Biofilm Reactor[J]. Wat. Sci. & Tech., 1999, 40(4-5): 169-176.
    [50] Castillo, P.A. Gonzalez-Martinez, S. and Tejero, I. Biological Phosphorus Removal Using a Biofilm Membrane Reactor: Operation at High Organic Loading Rates[J]. Wat. Sci. & Tech., 1999, 40(4-5): 321-329.
    [51] Chang, C-N., Chen, H.R., Huang, C.H. and Chao, A. Using Sequencing Batch Biofilm Reactor (SBBR) to Treat ABS Wastewater[J]. Wat. Sci. & Tech., 2000, 41(4-5): 433-440.
    [52] Quezada, M., Linares, I. And Bultron, G. Use of a Sequencing Batch Biofilter for Degradation of Azo Dyes (Acids and Bases)[J]. Wat Sci. & Tech., 2000, 42(5-6), 329-336.
    [53] Cruz, A. and Buitron, G. Biotransformation of Disperse Blue 79 by an Anaerobic Sequencing Batch Biofilter[J]. Wat. Sci. & Tech., 2000, 42(5-6), 317-320.
    [54] 詹伯君,陈国喜.膜法SBR工艺处理印染废水工程设计[J].给水排水,1997,23(7):25-28.
    [55] Iaconi,C. D.,Lopez, A., Ramadori, R., Pinto,A. C. D. and Passino, R. Combined Chemical and Biological Degradation of Tannery Wastewater by a Periodic. Submerged Filter (SBBR)[J]. Wat.
    
    Res.,2002,36:2205-2214.
    [56] Melgoza, R.M. and Bultron, G. Degradation of P-nitrophenol in a Batch Biofilter under Sequential Anaerobic/Aerobic Environments[J]. Wat. Sci. & Tech., 2001, 44(4): 151-157.
    [57] 周海峰,詹伯君.兼氧生物膜法SBR工艺在碱减量废水处理中的应用[J].环境工程,1999,17(6):18-20.
    [58] White, D.M. and Schnabel, W. Treatment of Cyanide Waste in a Sequencing Batch Biofilm Reactor[J]. Wat. Res., 1998, 32(1): 254-257.
    [59] White, D.M., Pilon, T.A. and Woolard, C. Biological Treatment of Cyanide Containing Wastewater[J]. Wat. Res., 2000, 34(7): 2105-2109.
    [60] 王乾扬,方士,陈国喜,詹伯君,陈学群.膜法SBR工艺处理皮革废水研究[J].中国给水排水,1999,15(3):54-56.
    [61] Woolard, C.R. and Irvine, R.L. Response of a Periodically Operated Halophilic Biofilm Reactor to Change in Salt Concentration[J]. Wat. Sci. & Tech., 1995, 31(1): 41-50.
    [62] Jaar, M.A.A. and Wilderer, P.A. Granular Activated Carbon Sequencing Batch Biofilm Reactor to Treat Problematic Wastewaters[J]. Wat. Sci. & Tech., 1992, 26(5-6): 1195-1203.
    [63] Irvine, R.L., Yocum, P.S., Early, J.P. and Chozick, R. Periodic Processes for in situ and on-sate Bioremediation of Leachates and Soils[J]. Wat. Sci. & Tech., 1993, 27(7-8): 97-104.
    [64] Arnz, P. Esterl, S., Nerger, C., Delgado, A. and Wilderer, P.A. Simultaneous Loading and Dracning as a Means to Enhance Efficacy of Sequencing Biofilm Batch Reactors[J]. Wat. Res., 2000, 34(5): 1763-1766.
    [65] Wilderer, P.A., Irvine, R.L., Goronszy, M.C. etal. 《Sequencing Batch Reactor Technology》[M]. London: IWA Publishing, 2001, 31.
    [66] Zipper, T., Fleischmann,N. and Habel, R. Development of a New System for Control and Optimization of Small Wastewater Treatment Plants Using Oxidation-reduction Potential (ORP)[J]. Wat. Sci. & Tech., 1998, 38(3): 307-314.
    [67] Plisson-saune, S., Capdeville, B., Mauret, M., Deguin, A. and Baptiste, P. Real-time Control of Nitrogen Removal Using Three ORP Bending-points: Signification, Control Strategy and Results[J]. Wat. Sci. & Tech., 1996, 33(1): 275-280.
    [68] Nielsen, M. K and Onnerth, T.B. Strategies for Handling of On-line Information for Optimizing Nutrient Removal[J]. Wat. Sci. & Tech., 1996, 33(1), 211-222.
    [69] Hao, O.J. and Huang, J. Alternating Aerobic-anaerobic Process for Nitrogen Removal: Process Evaluation[J]. Wat. Environ. Res., 1996, 68(1), 83-93.
    [70] Yu, R.E, Liaw, S.L., Chang, C.N., Lu, H.J. and Cheng, W.Y. Monitoring and Control Using On-line ORP on the Continuous Flow Activated Sludge Batch Reactor System[J]. Wat. Sci. & Tech., 1997, 35(1), 57-66.
    [71] Yu, R.E, Liaw, S.L., Chang, C.N. and Cheng, W.Y. Applying Real-time Control to Enhance the Performance of Nitrogen Removal in the Continuous-flow SBR System[J]. Wat. Sci. & Tech., 1998, 38(3), 271-280.
    [72] Chen,K.,Chen,C.,Peng,J. and Houng,J.Real-time Control of an Immobilized-cell Reactor for Wastewater Treatment Using ORP[J]. Wat. Res.,2002,36:230-238.
    [73] 张自杰.排水工程(下册)[M].第3版.北京:中国建筑工业出版社,1996,114-115.
    [74] Rodgers, M. Organic Carbon Removal Using a New Biofilm Reactor[J]. Wat. Res., 1999,33(6): 1495-1499.
    
    
    [75] Bear,J.,多孔介质流体力学[M],中国建筑工业出版社(北京),1983,9-10.
    [76] 刘雨,赵庆良,郑兴灿.《生物膜法污水处理技术》[M].北京:中国建筑工业出版社,2000,120-123.
    [77] 刘雨,赵庆良,郑兴灿.《生物膜法污水处理技术》[M].北京:中国建筑工业出版社,2000,123.
    [78] Kwok WK,Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ. Influence of biomass production and detachment force on biofilm structures in a biofilm airlift suspension reactor. Bioteclmol. Bioeng. 1998, 58: 400-7.
    [79] Van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ, Biofilm structures. Wat. Sci. & Tech., 1995, 32: 35-43.
    [80] Wijeyekoon S, Mino T, Satoh H, Matsuo T, Growth and novel structural features of tubular biofilms produced under different hydrodynamic conditions Wat. Sci. & Tech, 2000, 41:129-38.
    [81] Beyenal H, Lewandowski Z, Combined effect of substrate concentration and flow velocity on effective diffusivity in biofilms. Water Res. 2000, 34: 528-38.
    [82] Tanyolac A, Beyenal H, Prediction of average biofilm density and performance of a spherical particle under substrate inhibition. Biotechnol. Bioeng. 1997, 56:319-29.
    [83] Onuma M, Onura T, Mass transfer characteristics within microbial system. Wat. Sci. & Tech, 1982, 14: 553-65.
    [84] Liu Y, Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm. J.Environ.Eng. 1997, 123: 198-202.
    [85] Ohashi A, Harada H, Adhesion strength of biofilm developed in an attached-growth reactor. Wat. Sci. & Tech., 1994, 29; 10-1.
    [86] Trinet F, Heim R, Amar D, Chang HT, Rittmann BE, Study of biofilm and fluidization of bioparticles in a three-phase fluidized-bed reactor. War. Sci. & Tech, 1991, 23: 1347-54.
    [87] Tsuneda S, Park S, Hayashi H, Jung J,Hirata A, Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria. Wat. Sci. & Tech, 2001; 43:197-204.
    [88] Vanderborght JP.Gilliard C. BOD removal in fluidized beds: high biomass concentration or high oxygen transfer . In: Cooper PF. Atkinson B, editors. Biological Fluidized Bed Treatment of Water and Wastewater. 1981, p.383-9. Ellis Horwood. Cichester.
    [89] Selna MW, Schroeder ED, Response of activated sludge processes to organic transient. J.Water Pollut. Control Fed. 1979; 51:150-7.
    [90] Liu Y, Tay JH, Metabolic response of biofilm to shear stress in fixed-film culture. J.Appl. Microbiol. 2001; 90:337-43.
    [91] Trevors JT, The measurement of electron transport system (ETS) activity infreshwater sediment.Water Res. 1984; 18: 581-4.
    [92] Babcock GT, Wikstrom M, Oxygen activation and the conservation of energy in cell respriration. Nature, 1992; 356: 301-9.
    [93] 戚以政,汪叔雄.《生化反应动力学与反应器》,第二版[M].北京:化学工业出版社,1999,349-355.
    [94] 国家环保局《水和水质检测分析方法》编委会编.水和水质检测分析方法,第三版[M].北京:中国环境科学出版社,1994.
    [95] 张希衡.《水污染控制工程》[M].第二版.北京:冶金工业出版社,2000,86-87.
    [96] 秦麟源.《废水生物处理》[M].上海:同济大学出版社,1989,117-119.
    
    
    [97] Robertson L A and Kuenen J G .Aerobic denitrification: a controversy revived[J]. Arch. Microbiol., 1984, 139: 351-354.
    [98] Lloyd D,Boddy L and Davies K J P. Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception[J]. FEMS Microbiol. Ecol.,1987,45: 185-190.
    [99] 吕锡武,李峰等.氨氮废水处理过程中的好氧反硝化研究[J].给水排水,2000,26(4):17-20.
    [100] R.S.拉马尔奥 著,严忠琪,王风石 译.《废水处理概论》[M].北京:中国建筑工业出版社,1981:134-163.
    [101] 王昉,胡龙兴,卞华松.水解-接触氧化-絮凝工艺处理植物制剂废水的试验研究[J].上海大学学报(自然科学版),2002,18(4):341-344.
    [102] Rittmann B.E. and McCarty P.L. Variable order model of bacterial film kinetics[J]. J.Environ.Eng., ASCE ,1978, 104:889-900.
    [103] Suidan M.T. and Wang T.T .Unified analysis of biofilm kinetics[J]. J.Environ.Eng., ASCE ,1985, 11:634-647.
    [104] Liu Y. A growth yield model for substrate -sufficient continuous culture of microorganisms[J]. Environmental Technol.,1996,17:649-653.
    [105] Liu Y..Estimating minimum fixed biomass concentration and active thickness of nitrifying biofilm[J]. J. of Environ. Eng. ASCE, 1997,123:198-202.
    [106] Liu Y. Energy uncoupling in microbial growth under substrate sufficient conditions[J].Appl. Microbiol. Biotechnol.,1998, 5:500-505.
    [107] Pedro A. Castillo, Simon Gonzalez-Martinez and Inaki Tejero. Biological phosphorus removal using a biofilm membrane reactor: operation at high organic loading rates[J], Wat. Sci. & Tech., 1999,40(4-5):321-329.
    [108] 刘宇陆.非定常高阶泰勒剪切弥散理论[J].水动力学研究与进展A,1997,12(3):372-378.
    [109] Liu Yulu, Cai Shutang. Contaminant Contraction in two-dimensional Oscillatory flows[J]. Applied Mathematics and Mechanics, 1993, 14(11): 949-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700