用户名: 密码: 验证码:
木炭曝气生物滤池的特性及效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发高效低耗、投资省的先进的污水处理工艺技术,对防治水污染,缓解水危机具有重要的现实意义,是水处理永恒的主题。随着新型材料的开发和配套技术的不断完善,与活性污泥法同时出现的生物膜法工艺得到快速发展。作为生物膜法典型工艺的曝气生物滤池在污水的有机物去除、固液分离、硝化脱氮等方面有着良好的功效,应用范围不断扩大,由最初用于城市污水的高级处理,扩展到用作城市污水的二级处理、工业废水的处理、以及给水处理工艺中的预处理。
     曝气生物滤池的填料开发是其工艺发展的核心。目前应用较广泛的轻质陶粒填料克服了传统填料的诸多缺陷,但开发新的填料仍然是生物滤池处理技术广泛应用的一个重要方面,通过采用新型吸附型填料,可以大大强化曝气生物滤池对氮、磷和某些微量污染物的去除能力,从而在污水的高级处理和给水处理中发挥更大的作用。具有发达孔隙结构、巨大的比表面积和优良的吸附性能的活性炭,在水处理领域是最受青睐的一种填料,但活性炭价格高,限制了其更大范围的应用。研究替代活性炭的廉价材料仍然是目前的热点。相比之下,木炭价格较低,近年来受到人们的很大关注。本研究的协作单位在引进国外技术的基础上,开发了改性木炭污水处理及深度净化技术,这种技术在生活污水处理、湖泊水体修复、河流水生态环境保护等领域应用效果良好,处理出水水质可达到GB 3838-2002《地表水环境质量标准》Ⅳ类标准。但该技术结构单元多,有待于进一步的优化,应用于城市污水处理时存在诸多局限性;其除磷脱氮材料进口,费用较高;采用改性木炭对我国的污水水质是否必要还有待于进一步研究。
     本文结合曝气生物滤池和改性木炭技术的优点,将木炭这一轻质材料作为曝气生物滤池的填料,并以改性木炭和陶粒作对比,采用三套动态小试装置,研究其处理城市污水的效能和特性,主要研究内容为:研究木炭生物滤池工艺的快速稳定的启动方式;探讨反应器对COD、SS、NH_4~+-N、TN、TP等的去除规律及pH值、曝气强度、负荷、水温等对去除效果的影响,研究反应器的最佳工艺运行参数;采用扫描电镜和显微镜等微观手段,研究木炭曝气生物滤池的填料结构、生物膜结构及生物相构成;研究木炭曝气生物滤池对微量有机物的去除效能;研究木炭生物滤池的底物降解动力学,探求动力学参数,探讨木炭脱氮机理。
     研究结果表明,将木炭曝气生物滤池用于城市污水的处理有效可行,具体表现在以下几个方面:
     (1)采用闷曝接种挂膜有助于提高木炭生物滤池初始污染物的去除率,提高溶解氧的浓度有利于缩短生物膜的挂膜时间。在挂膜初始阶段,三种填料对氨氮有一定的吸附能力。壳聚糖改性的木炭填料不利于自养型的硝化菌的生长而影响氨氮的去除,木炭的表面性质和多孔结构更加有利于硝化菌的生长而使其效果明显好于陶粒填料
     (2)在水力负荷、溶解氧浓度、氨氮浓度和水温变化时,木炭滤池的除磷脱氮效果总体上优于陶粒滤池。在一定的填料高度下,木炭滤池的最佳水力停留时间为6h,DO浓度为2~3 mg/L,反冲洗周期为2~3 d。
     (3)环境扫描电镜和显微镜观察表明,木炭填料滤池的生物相丰富,木炭的空隙结构较陶粒更有利于原生动物、轮虫、线虫等动物的生长繁殖。
     (4)通过GC-MS检测,木炭生物滤池对水中残留的微量有机物去除的效果较好,优于陶粒,为木炭生物滤池在污水处理厂尾水深度处理方面提供了依据。
     (5)对木炭曝气生物滤池的底物去除动力学进行了研究,提出了基于Monod方程的半经验公式,即(?),公式考虑温度及有机负荷对反应速率常数的影响,主要针对COD和NH_4~+-N的进出水浓度随反应器填料高度的变化情况而确立。公式能较好地拟合底物的降解过程,可适用于工程设计计算和运行控制。
To prevent water pollution and alleviate water crisis, the development of advanced wastewater treatment processes with high effective, low consumption and investment saving, will have the vital practical significance to the districts which need pollution treatment urgently in a long time. Meanwhile, it is an eternal subject in water treatment. With the development of new material and improvement of the matched technology, biofilm method which is simultaneously invented with active sludge method obtains the fast development. As a typical process of biofilm method, the biological aerated filter (BAF) takes a good function in carbonaceous removal, liquid-solid separation and nitrification, expanding its application scope. It was firstly used as an advanced treatment in the urban sewage, and then served as the urban sewage second-level process, industrial wastewater process, as well as tap water pretreatment process.
     The development of the stuffing in the BAF is its core technology. At present, although wide - used light - weight haydite stuffing overcomes many shortcomings of traditional padding, development of new kinds of stuffings is still an important aspect of BAF in the application of BAF. By using new kinds of adsorptive stuffing, the removals of nitrogen, phosphorous and natural organic matters might be greatly strengthened by BAFs. And BAFs will take a more effective function in advanced treatment of sewage and tap water treatment. The activated carbon has great pore structure, huge specific surface area and perfect adsorption characteristics, which is regarded as one kind of most popular stuffing in the water treatment. But the high price restricts its wide application. Finding inexpensive material substitution for activated carbon is still a hot topic at present. Contrastly, the price of charcoal is low. Charcoal has attractived people's much attention in recent years. This research's cooperation company, based on the introduction of overseas technology, has developed a biological contact oxidation process called modified charcoal sewage treatment and the advanced purification technology, which gets some good effects in the treatment of domestic sewage, remediation of lake water, protection of river environmental and so on. The quality of effluent water is up to level IV specified in the Surface water Environment quality Standard GB 3838-2002. However, some problems are significant, for example: fussy structural units in this technology need to be optimized, some limitations need to be improved when used to treat urban sewage, the imported phosphorus and nitrogen removal material is costly, additionally, whether the modified charcoal is suitable to our country's sewage quality also needs to be further studied.
     In this paper, combining the merits of BAF and modified charcoal process, charcoal was applied as a light - weight stuffing of biological filter to treat municipal sewage. The performance of three lab-scale biological filters was monitored to compare the characteristics and effect of charcoal with that of haydite and modified charcoal as stuffing. The main content of the study is: research on fast stable startup mode of charcoal biofilter; discussion the removal rules of COD、SS、NH_4~+-N、TN and TP, the influence of pH value, aeration intensity, loading rate and temperature on removal efficiency, optimizing the running parameters; adoptting scanning electron microscope (SEM) and the microscope observation to study structure of stuffing and biofilm, biofacies constitution; removal efficiency of natural organic matters by charcoal biofilter, and research the substrate removal kinetics of reactors, evaluation of dynamic parameters, and discussion the mechanism of denitrogen removal.
     The research indicated that it was efficient and feasible to treat wastewater by charcoal biological aerated filter. It can be proved as following.
     (1) Inoculated biofilm formation with merely aeration was benefit for initial removal efficiency of pollutants. Increasing the dissolved oxygen (DO) concentration can shorten the total time of biofilm formation. In the initial time of biofilm formation, three kinds of stuffing can adsorb ammonia nitrogen (NH_4~+-N) . The chitason modified charcoal stuffing was not adaptive to growth of autotroph nitrobacteria, which effect the NH_4~+-N removal. Charcoal's surface characteristic and pore structure was more adaptive to growth of autotroph nitrobacteria than that of haydite, and so the effect of charcoal filter was better than that of haydite.
     (2) By changing some parameters, such as the hydraulic loading, DO concentration, NH_4~+-N concentration and temperature, we investigated the removal of phosphorous and nitrogen. The removal performance of the charcoal biological filter was superior to that by haydite. Under the condition of certain stuffing height, the optimum parameters by charcoal biological filter were: hydraulic retention time 6 h, DO concentration 2-3 mg/L and the backwashing period 2-3 d.
     (3) The scanning electron microscope (SEM) and the microscope observation indicated that various types of organism existed on the surface of charcoal. The pore structure of charcoal was more benefit to the protozoon, rotifer and nematode's growth and reproduction than those on haydite.
     (4) The GC-MS examination indicated that the more efficient removal of natural organic matters by the charcoal than that by the haydite. It provided that the charcoal biofilter was an advanced technology for the treatment of tailwater from sewage treatment plant.
     (5) The substrates removal kinetics of reactors has been studied. On the basis of Monod equation, the half experiential formula of the reactor was established, viz.ln(S/S_i) = -1.024~((T-15)) k~*A/(QS_i)~nH. The influence of temperature and the organic loadingon reactor velocity constant was taken into account. It showed the concentration of COD and NH_4~+-N, which changed with the height of stuffing. The formula can model the degradation process of substrate and can be used in engineering design and running control.
引文
[1] 李广贺.水资源利用与保护[M].第一版.北京:中国建筑工业出版社,2003.10- 50.
    
    [2] 国家环境保护总局编.2007年中国环境状况公报.北京:2007.
    
    [3] 刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].第一版.北京:中国建筑工 业出版社,2000.51-52.
    
    [4] Iaconi C. Di, Lopez A, Ramadori R, et al. Combined chemical and biologicaldegradation of tannery wastewater by a periodic submerged filter (SBBR) [J].Water Research, 2002,36 (9): 2205-2214.
    
    [5] Rajasimman M, Karthikeyan C. Aerobic digestion of starch wastewater in afluidized bed bioreactor with low density biomass support [J]. Journal ofHazardous Materials, 2007,143 (1-2): 82-86.
    
    [6] Chowdhury Nabin, Nakhla George, Zhu Jesse. Load maximization of a liquid-solidcirculating fluidized bed bioreactor for nitrogen removal from synthetic municipalwastewater [J]. Chemosphere, 2008,71 (5): 807-815.
    
    [7] Celmer D, Oleszkiewicz J.A, Cicek N. Impact of shear force on the biofilmstructure and performance of a membrane biofilm reactor for tertiaryhydrogen-driven denitrification of municipal wastewater[J]. WaterResearch, 2008,42 (12): 3057-3065.
    
    [8] Satoh Hisashi, Ono Hideki, Rulin Bian, et al. Macroscale and microscale analysesof nitrification and denitrification in biofilms attached on membrane aeratedbiofilm reactors [J]. Water Research, 2004,38 ( 6): 1633-1641.
    
    [9] Chung Jinwook, Nerenberg Robert, Rittmann B. E. Bio-reduction of solublechromate using a hydrogen-based membrane biofilm reactor [J]. WaterResearch, 2006,40 (8): 1634-1642.
    
    [10] Loh Kai Chee, Ranganath Sudhir. External-loop fluidized bed airlift bioreactor (EFBAB) for the cometabolic biotransformation of 4-chlorophenol (4-cp) in the presence of phenol [J]. Chemical Engineering Science, 2005, 60 (22): 6313-6319.
    [11] Sikula Ivan, Jurascik Martin, Markos Jozef. Modeling of fermentation in an internal loop airlift bioreactor Chemical Engineering Science, 2007, 62 (18-20): 5216-5221.
    [12] Luostarinen Sari, Luste Sami, Valentin Lara, et al. Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures [J]. Water Research, 2006,40 (8): 1607-1615.
    [13] Jahren S.J, Rintala J.A, Qdegaard Hallvard. Aerobic moving bed biofilm reactor treating thermomechanical pulping Whitewater under thermophilic conditions [J]. Water Research, 2002,36 (4): 1067-1075.
    [14] Labelle Marc-Andre, Juteau Pierre, Jolicoeur Mario, et al. Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor [J]. Water Research, 2005,39 (14): 3409-3417.
    [15] Chung Jinwook, Bae Wookeun, Lee Yong-Woo, et al. Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors [J]. Process Biochemistry, 2007,42 (3): 320-328.
    [16] Zhan Xin-Min, Rodgers Michael, O Reilly Edmond. Biofilm growth and characteristics in an alternating pumped sequencing batch biofilm reactor (APSBBR) [J]. Water Research, 2006,40 (4): 817-825.
    [17] Miqueleto Ana Paula, Rodrigues J.A.D, Ratusznei .M, et al. Treatment of easily degradable wastewater in a stirred anaerobic sequencing batch biofilm reactor [J]. Water Research, 2005,39 (11): 2376-2384.
    [18] Hu Zhiqiang, Ferraina R.A, Ericson J.F, et al. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals [J]. Water Research, 2005,39 (4): 710-720.
    [19] Gieseke A, Arnz P, Amann R, et al. Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor- and microscale investigations [J]. Water Research, 2002,36 (2): 501-509.
    
    
    
    [20] Rakkoed A, Danteravanich S, Puetpaiboon U. Nitrogen removal in attached growthwaste stabilization ponds of wastewater from a rubber factory [J]. Water Scienceand Technology, 1999,40 (1): 45-52.
    
    [21] Hu Zhifei, Gagnon G.A. Impact of filter media on the performance of full-scalerecirculating biofilters for treating multi-residential wastewater. Water Research,2006,40 (7): 1474-1480.
    
    [22] Basu O.D, Huck P.M , Impact of support media in an integratedbiofilter-submerged membrane system [J]. Water Research, 2005, 39 (17):4220-4228.
    
    [23] Bergtold M, Mayr G, Traunspurger W. Nematodes in wastewaterbiofilms-Appearance anddensity of species in three biofilter reactors [J]. WaterResearch, 2007,41 (1): 145-151.
    
    [24] Fdz-polanco F , Mea N.E, Uruena AM.A, et al. Spatial distribution of heterotrophsand nitrifiers in a submerged biofilter for nitrification [J]. Water Research, 2000,34 (16): 4081-4089.
    
    [25] Wahman David G, Katz Lynn E, Speitel Jr Gerald E. Modeling of trihalomethanecometabolism innitrifying biofilters [J]. Water Research, 2007,41(2): 449 - 457.
    
    [26] Jokela J.P.Y, Kettunen R.H, Sormunen K.M, et al. Biological nitrogen removalfrom municipal landfill leachate: low-cost nitrification in biofilters and laboratoryscale in-situ denitrification [J]. Water Research, 2002,36 (16) : 4079-4087.
    
    [27] 李圭白,张杰.水质工程学[M].北京:中国建筑工业出版社,2005.45-495.
    
    [28] 郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例[M].北京: 化学工业出版社,2002.5-50.
    
    [29] Lei Yang, Lin-Sen Chou, Wen K. Shieh. Biofiler treatment of aquaculture water for reuse applications [J]. Wat Sci.Tech., 2001,35 (13) : 3097-3108.
    
    [30] Liu Fang, Zhao Chao-Cheng, Zhao Dong-Feng, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations [J]. Journal of Hazardous Materials, 2008,160 (1) : 161-167.
    [31] Yu Y, Feng Y, Qiu L, et al. Effect of grain-slag media for the treatment of wastewater in a biological aerated filter [J]. Bioresource Technology, 2008, 99 (10): 4120-4123.
    [32] Liang C. H, Chiang P. C, Chang E. E. Modeling the behaviors of adsorption and biodegradation in biological activated carbon filters [J]. Water Research, 2007, 41 (15): 3241-3250.
    [33] Timmons M.B, Holder J.L, Ebeling J.M. Application of microbead biological filters [J]. Aquacultural Engineering. 2006, 34 (5): 332-343.
    [34] Xie W, Wang Q, Song G , et al. Upflow biological filtration with floating filter media [J]. Process Biochemistry, 2004, 39 (2): 765-770.
    [35] Mann A, Fitzpatrick C. S. B, Stephenson T. A comparison of floating and sunken media biological aerated flters using tracer study techniques [J]. Trans. I ChemE, 1995, 73B: 137-143.
    [36] Mann A, Mendoza-espinosal L, Stephenson T. Performance of floating and sunken media biological aerated filters under unsteady state condition [J]. Water Research, 1999, 33 (4) : 1108 - 1113.
    [37] Hwang Yongwoo, Yoneyama Yutaka, Noguchi Hiroshi. Denitrification characteristics of rejectwater in upflow biofiltration [J]. Process Biochemistry, 2000,35: 1241-1245.
    [38] Chang W.S, Hong S.W, Park J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J]. Process Biochemistry, 2002, 37: 693-698.
    [39] Rebecca Moore, Joanne Quarmby, Tom Stephenson. Assesing the potential of foamed clay as a biological aerated filters (BAF) medium [J]. Biotechnology letters, 1999, (21) : 589-593.
    [40] Saliling WJ.B, Westerman P.W, Losordo T.M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations [J]. Aquacultural Engineering, 2007,
    ??37: 222-233.
    
    [41] Kent T. D, F itzpatrick C. S. B, Williams S. C. Testing of biological aerated filter(BAF ) media [J]. Wat. Sci. Tech., 1996,34 (3,4) : 363- 370.
    
    [42] Rebecca Moore, Joanne Quarmby, Tom Stephenson. The effects of media size onthe performance of biological aerated filters [J]. Wat.Sci. Tech, 2001,35 (10) :2514-2522.
    
    [43] 田文华,文湘华,钱易.沸石填料曝气生物滤池去除COD和氨氮[J].中国给水 排水,2002,18(12):13-15.
    
    [44] 郭春效,张东生.生物曝气滤池填料选择的试验研究[J].山东科技大学学报 (自然科学版).2004,23(2):112-114.
    
    [45]刘旭阳,杜茂安,范振强,等.污水处理曝气生物滤池填料性能研究[J].哈尔 滨工业大学学报.2006,38(11):1835-1839.
    
    [46] 熊小京,叶志隆.贝壳与球形塑料填料曝气生物滤池的硝化特性比较[J]. 厦 门大学学报(自然科学版).2005,44(4):538-541.
    
    [47] 叶志隆,熊小京,芦敏.贝壳填料曝气生物滤池的硝化特性研究[J].中国给水 排水.2006,22(3):1-4.
    
    [48] 兰善红,陈锡强,梁谋会,等.新型填料曝气生物滤池处理生活污水的研究[J]. 中国给水排水,2007,23(9):77-80.
    
    [49]刘灿灿,金吴云,沈耀良.上流式曝气生物滤池两种填料启动挂膜的试验研究 [J].江苏环境科技,2008,21(1):61-65.
    
    [50]代晋国,宋乾武,张晓丹.EPP填料曝气生物滤池处理城市污水厂二级出水的 中试研究[J].安全与环境工程,2008,15(1):42-45.
    
    [51] 曾正中,王厚成,李勃,等.曝气生物滤池两种填料挂膜的对比试验[J].环 境工程,2008,26(1):21-24.
    
    [52] 李善评,张启磊,付敬,等.高炉瓦斯灰曝气生物滤池填料的制备及其性能研 究[J].山东大学学报(理学版),2007,42(11):1-5.
    
    [53] 肖文胜.两种填料在曝气生物滤池中处理生活污水的对比研究[J].环境科学??与管理,2005,30(5):37-38.
    
    [54]张杰,曹相生,孟雪征.曝气生物滤池的研究进展[J].中国给水排水,2002, 18(8):26-29.
    
    [55] 陈美杉,胡细全.一种城市污水深度净化处理工艺.中国,ZL200510019107.1, 2007.1-1.
    
    [56]武汉市科学技术局科技成果鉴定申请[R].武汉新天达美环境科技有限公 司.2006,8.
    
    [57] Mizuta K, Matsumoto M, Hatate, et al. Removal of nitrate-nitrogen from drinkingwater using bamboo powder charcoal [J]. Bioresource Techno, 2004, 95 (3):255-257.
    
    [58] Babel S, Kurniawan T.A. Cr (VI) removal from synthetic wastewater usingcoconut shell charcoal and commercial activated carbon modified with oxidizingagents and/or chitosan [J]. Chemosphere, 2004,54 (2): 951-967.
    
    [59] Mukherjee S, Kumar S, Misra A.K et al. Removal of phenols from waterenvironment by activated carbon, bagasse ash and wood charcoal [J]. Chem Eng J.2007,129 (1-3): 133-142.
    
    [60] Mishra P.C, Patel R.K. Removal of endosulfan by sal wood charcoal [J]. Journal ofHazardous Materials, 2008, 152 (2): 730-736.
    
    [61] Mukherjee Somnath, Kumar Sunil, Misra Amal K, et al. Removal of phenols fromwater environment by activated carbon, bagasse ash and wood charcoal [J].Chemical Engineering Journal, 2007,129 (1-3): 133-1.
    
    [62] Abe I, Fukuhara T, Maruyama J, et al. Preparation of carbonaceous adsorbents forremoval of chloroform from drinking water[J]. Carbon, 2001, 39 (6): 1069-1073.
    
    [63] Asada T, Ishihara S, Yamane T, et al. Science of bamboo charcoal: study oncarbonizing temperature of bamboo charcoal and removal capability of harmfulgases [J]. Health Sci, 2002,48 (6): 473-479.
    
    [64] Santhosh G, Venkatachalam S, Ninan K.N, et al. Adsorption of ammoniumdinitramide (ADN ) from aqueous solutions 1. Adsorption on powdered activated??charcoal [J]. Hazardous Materials, 2003, 98 (3): 117-126.
    
    [65] 郝晓地,戴吉,周军等.磷回收提高生物除磷效果的验证[J].中国给水排水. 2006,22(17):22-25.
    
    [66] 国家环境保护总局编.水和废水检测分析方法[M].第四版.北京:中国环境 科学出版社,2002.88-284.
    
    [67] 肖锦,周勤.天然高分子絮凝剂[M].第一版.北京:化学工业出版社, 2005.108-190.
    
    [68] Zeng Defang, Wu Juanjuan, Kennedy John F. Application of a chitosan flocculantto water treatment [J]. Carbohydrate Polymers, 2008,71 (1): 135-139.
    
    [69] Ivo Georgiev Lalov, Illia Illiev Guerginov, Milka Asenova Krysteva, et al.Treatment of waste water from distilleries with chitosan [J]. Water Research, 2000,34 (5): 1503-1506.
    
    [70] Moreno B, G6mez M.A, Ramos A, et al. Influence of inocula over start up of adenitrifying submerged filter applied to nitrate contaminated groundwater treatment[J] Journal of Hazardous Materials, 2005,127 (1-3): 180-186.
    
    [71] Gross Amit, Nemirovsky Anna, Zilberg Dina, et al. Soil nitrifying enrichments asbiofilter starters in intensive recirculating saline water aquaculture[J].Aquaculture, 2003,223 (1-4): 51-62.
    
    [72] Blonskaja V, Menert A, Vilu R. Use of two-stage anaerobic treatment for distillerywaste [J].Advances in Environmental Research, 2003,7 (3): 671-678.
    
    [73] Jokela J. P. Y, Kettunen R. H, Sormunen K. M, et al. Biological nitrogen removalfrom municipal landfill leachate: low-cost nitrification in biofilters and laboratoryscale in-situ denitrification [J].Water Research, 2002,36 (16): 4079-4087.
    
    [74] Pereira M. A, Mota M, Alves M. M. Operation of an anaerobic filter and an EGSBreactor for the treatment of an oleic acid-based effluent: influence of inoculumquality [J].Process Biochemistry, 2002,37 (9): 1025-1031.
    
    [75] Michaud S6bastien, Bernet Nicolas, Buffiere Pierre, et al. Methane yield as amonitoring parameter for the start-up of anaerobic fixed film reactors [J].Water Research, 2002,36 (5): 1385-1391.
    
    [76] Pu(?)al A, Trevisan M, Rozzi A, et al. Influence of C: N ratio on the start-up ofup-flow anaerobic filter reactors [J].Water Research, 2000,34 (9): 2614-2619.
    
    [77] Villaverde S, Fdz-Polanco F, Garcia P. A. Nitrifying biofilm acclimation to freeammonia in submerged biofilters: Start-up influence [J].Water Research, 2000,34 (2): 602-610.
    
    [78] Bello-Mendoza R, Castillo-Rivera M. F. Start-up of an anaerobic hybrid (UASB/Filter) reactor treating wastewater from a coffee processing plant[J].Anaerobe, 1998 ,4 (5): 219-225.
    
    [79] Bacquet G, Joret J. C, Rogalla F, et al. Biofilm start-up and control in aerated filter[J]. Envrion Tech, 1991,12: 747-756.
    
    [80]郑俊,吴浩汀,程寒飞,曝气生物滤池污水处理新技术及工程实例[M].第一版. 北京:化学工业出版社,2002.117-120.
    
    [81] 龙腾锐,方芳,郭劲松.酶促填料变速生物滤池的生产性启动研究[J].给水排 水,2000,26(11):12-15.
    
    [82]顾国维.水污染治理技术研究[M].上海:同济大学出版社,1997.185-186
    
    [83]傅金祥,许海良,赵玉华,等.曝气生物滤池在污水回用中的挂膜启动试验研 究[J].工业水处理,2007,27(3):38-40
    
    [84]傅金祥,许海良,陈正清.不同原水条件下曝气生物滤池的挂膜启动[J].中国 给水排水,2006,22(11):90-92
    
    [85]傅金祥,陈正清,赵玉华,等.挂膜方式对曝气生物滤池的影响[J].水处理技 术,2006,32(8):42-45.
    
    [86] 于颂明,张东伟,张宝杰,等.曝气生物滤池处理尿素解吸废水的启动性能研 究[J].哈尔滨理工大学学报,2006,11(5):94-96
    
    [87]张杰,曹相生,孟雪征,等.好气滤池3种挂膜方法的实验研究[J].哈尔滨工 业大学学报,2003,35(10):1216-1219.
    
    [88] Moreno B, G'omez M.A, Ramos A, et al. Influence of inocula over start up of a denitrifying submerged filter applied to nitrate contaminated groundwater treatment [J]. Journal of Hazardous Materials, 2005,127 (1-3) : 180-186.
    
    [89] Mustapha S, Ashhuby B, Rashid M, et al. Start-up strategy of a thermophilicupflow anaerobic filter for treating palm oil mill effluent [J] .Process Safety andEnvironmental Protection, 2003,81 (4) : 262-266.
    
    [90] Lin Ying-Feng, Jing Shuh-Ren, Lee Der-Yuan, et al. Nitrate removal fromgroundwater using constructed wetlands under various hydraulic loading rates [J].Bioresource Technology, 2008, 99 (16): 7504-7513.
    
    [91] Piotrowski R, Brdys M.A, Konarczak K, et al. Hierarchical dissolved oxygencontrol for activated sludge processes [J]. Control Engineering Practice, 2008, 16 (1): 114-131.
    
    [92] Teck Wee Tan, How Yong Ng. Influence of mixed liquor recycle ratio anddissolved oxygen on performance of pre-denitrification submerged membranebioreactors [Jl.Water Research, 2008, 42 (4-5): 1122-1132.
    
    [93] 孙光远,孙巍.氨氮浓度对活性炭深度处理工艺选择的影响[J].中国给水排 水,2007,23(17):106-108.
    
    [94] 冯志刚,蒋林时,张洪林,等.水中氨氮含量对活性污泥性能的影响[J].江西 师范大学学报(自然科学版),2006,30(4):392-395.
    
    [95] Anderson G.K, Donnelly T, Mckeown K.J. Identification and control of inhibitionin anaerobic treatment of industrial wastewaters [J]. Process Biochem, 1982, 17 (4) : 28-32.
    
    [96] Koster I.W, Koomem E. Ammonia inhibition of the maximum growth rate ofhydrogen otrophic methanogens at various pH levels and temperatures [J]. ApplMicrobiol Biotechnol, 1988, 28 (4-5) : 500-505.
    
    [97] Hendriksen H.V, Ahring B.K. Effect s of ammonia on growth and morphology ofthermophilic hydrogen - oxidizing methanogenic bacteria [J]. FEMS MicrobiolEcol, 1991, 85 (3) : 241-246.
    
    [98] Koster I.W, Lettinga G. The influence of ammonia nitrogen on the specific activityof pelletized methanogenic sludge [J].Agric Wastes, 1984, 9 (3) : 205-216.
    
    [99] 汪大翚,雷乐成.水处理新技术及工程设计.第一版.北京:化学工业出版社.??2001.212-242.
    
    [100]张自杰,周帆.活性污泥生物学与反应动力学[M].第一版.北京:中国环境科 学出版社,1989.178-287.
    
    [101]顾夏声,胡洪营,文湘华等.水处理生物学[M].第四版.北京:中国建筑工业 出版社,2006.62-75.
    
    [102] Aouabed D.E, Hadj Boussaad, R. Ben Aim. Morphological characteristics andfractal approach of the floes obtained from the natural organic matter extracts ofwater of the Keddara dam (Algeria) [J]. Desalination, 2008, 231 (1-3) :314-322.
    
    [103] Yang Hun Choi, Han S. Kim, Ji Hyang Kweon. Role of hydrophobic naturalorganic matter flocs on the fouling in coagulation-membrane processes [J].Separation and Purification Technology, 2008, 62 (3) : 529-534.
    
    [104] Rivera-Utrilla J, Sanchez-Polo M, Mendez-Diaz J.D, et al. Behavior of twodifferent constituents of natural organic matter in the removal of sodiumdodecylbenzenesulfonate by O3 and O3-based advanced oxidation processes[J].Journal of Colloid and Interface Science, 2008 , 325 (2) : 432-439.
    
    [105] Hua Chang Hong, Ming Hung Wong, Asit Mazumder, et al. Trophic state,natural organic matter content, and disinfection by-product formation potential ofsix drinking water reservoirs in the Pearl River Delta, China [J]. Journal ofHydrology, 2008, 359 (1-2) : 164-173.
    
    [106] Anne-Laure Badin, Pierre Faure, Jean-Philippe Bedell, et al. Distribution oforganic pollutants and natural organic matter in urban storm water sediments as afunction of grain size [J]. Science of The Total Environment, 2008, 403 (1-3) :178-187.
    
    [107] Buchanan W, Roddick F, Porter N. Removal of VUV pre-treated natural organicmatter by biologically activated carbon columns [J]. Water Research, 2008, 42 (13) : 3335-3342.
    
    [108] Qi Shaoying, Schideman Lance C. An overall isotherm for activated carbonadsorption of dissolved natural organic matter in water [J]. Water Research, 2008, 42 (13) : 3353-3360.
    [109] Kim Jaeshin, Cai Zhenxiao, Benjamin Mark M. Effects of adsorbents on membrane fouling by natural organic matter [J]. Journal of Membrane Science, 2008, 310 (1-2) : 356-364.
    
    [110] Hugues Humbert, Herve Gallard, Herve Suty, et al. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC) [J]. Water Research, 2008,42 (6-7) : 1635-1643.
    [111] Ulrich Lankes, Hans-Dietrich Ludemann, Fritz H. Frimmel. Search for basic relationships between "molecular size" and "chemical structure" of aquatic natural organic matter—Answers from 13C and 15N CPMAS NMR spectroscopy [J]. Water Research, 2008, 42 (4-5) : 1051-1060.
    [112] Sun F, Chen J, Tong Q, et al. Managing the performance risk of conventional waterworks in compliance with the natural organic matter regulation [J]. Water Research, 2008, 42 (1-2) : 229-237.
    [113] Frederik Hammes, Sebastien Meylan, Elisabeth Salhi, et al. (NOM) fractions during ozonation of phytoplankton [J]. Water Research, 2007,41 (7): 1447-1454.
    [114] Kim Hyun-Chul, Yu Myong-Jin. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control [J]. Water Research, 2005, 39 (19) : 4779-4789.
    [115] Korshin Gregory V, Ferguson John F, Lancaster Alice N. Influence of natural organic matter on the morphology of corroding lead surfaces and behavior of lead-containing particles [J]. Water Research, 2005 , 39 (5) : 811-818.
    [116] Swietlik Joanna, Sikorska Ewa. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone [J]. Water Research, 2004,38 (17) : 3791-3799.
    [117] Raczyk-Stanisawiak U, Swietlik J, Dbrowska A, et al. Biodegradability of organic by-products after natural organic matter oxidation with ClO_2—case study [J]. Water Research, 2004, 38 (4) : 1044-1054.
    
    
    [118] Matsui Yoshihiko, Fukuda Yoshitaka, Inoue Takanobu, et al. Effect of naturalorganic matter on powdered activated carbon adsorption of trace contaminants:characteristics and mechanism of competitive adsorption [J]. Water Research, 2003,37 (18) : 4413-4424.
    
    [119] Swietlik J, Raczyk-Stanisawiak U, Biozor S, et al. Adsorption of natural organicmatter oxidized with ClO_2 on granular activated carbon [J]. Water Research, 2002,36 (9) : 2328-2336.
    
    [120] Lebeau T, Lelievre C, Wolbert D, et al. Effect of natural organic matter loading onthe atrazine adsorption capacity of an aging powdered activated carbon slurry [J].Water Research, 1999,33 (7) : 1695-1705.
    
    [121] White Daniel M, Hodkinson Ian D, Seelen Sarah J, et al. Characterization of soilcarbon from a Svalbard glacier-retreat chronosequence using pyrolysis-GC/MSanalysis [J]. Journal of Analytical and Applied Pyrolysis, 2007,78 (1) : 70-75.
    
    [122] Pamaudean Virginie, Dignac Mane-France. The organic matter composition ofvarious wastewater sludges and their neutral detergent fractions as revealed bypyrolysis-GC/MS [J]. Journal of Analytical and Applied Pyrolysis, 2007,78 (1) :140-152
    
    [123] Dignac M.-F, Houot S, Derenne S. How the polarity of the separation column mayinfluence the characterization of compost organic matter by pyrolysis-GC/MS [J].Journal of Analytical and Applied Pyrolysis, 2006,75 (2) : 128-139.
    
    [124] Andreas Klingberg, Jürgen Odermatt, Dietrich Meier. Influence of parameters onpyrolysis-GC/MS of lignin in the presence of tetramethylammonium hydroxide [J].Journal of Analytical and Applied Pyrolysis, 2005,74 (1-2) : 104-109.
    
    [125] Andres Fullana, Jesse A. Contreras, Richard C. Striebich, et al. MultidimensionalGC/MS analysis of pyrolytic oils [J]. Journal of Analytical and AppliedPyrolysis, 2005,74 (1-2) : 315-326.
    
    [126] Lawrence Akoto, Roel Pel, Hubertus Irth, et al. Automated GC-MS analysis ofraw biological samples : Application to fatty acid profiling of aquaticmicro-organisms [J]. Journal of Analytical and Applied Pyrolysis, 2005, 73 (1) :??69-75.
    
    [127] Daniel M. White, D. Sarah Garland, Lothar Beyer, et al. Pyrolysis-GC/MSfingerprinting of environmental samples [J]. Journal of Analytical and AppliedPyrolysis, 2004,71 (1) : 107-118.
    
    [128] B.N.Estevinho, A.Ferraz, F.Rocha, et al. Interference of chitosan in glucoseanalysis by high-performance liquild chromatography with evaporative lightscattering detection [J]. Anal Bioanal Chem,2008,391: 1183-1188.
    
    [129] Teruyuki Usui, Miku Yoshino, Hirohito Watanabe, et al. Determination ofglyceraldehydes formed in glucose degradation and glycation. Biosci BiotechnolBiochem, 2007,71 (9) : 2162-2168.
    
    [130] Shin Kwang-Soo, Lee Samkeun, Jin Cha Byeong. Suppression of phytopathogenicfungi by hexane extract of Nepenthes ventricosa x maxima leaf [J].Fitoterapia, 2007,78 (7-8) : 585-586.
    
    [131] Jeffrey Clri-Sheng Wu, En-Hsien Lee. Ultrafiltration of soybean oil/hexaneextract by porous ceramic membranes [J]. Journal of Membrane Science, 1999,154 (2) : 251-259.
    
    [132] Chen Yi, Yan Yan, Xie Ming-Yong, et al. Development of a chromatographicfingerprint for the chloroform extracts of Ganoderma lucidum by HPLC andLC-MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47 (3 ) :469-477.
    
    [133] Chattopadhyay Sankha, Das M.K, Sarkar B.R, et al. Stabilisation of [1311]meta-iodobenzylguanidine at room temperature as organic extract in ethylacetate/chloroform [J]. Applied Radiation and Isotopes, 2001, 54 (2) : 241-244.
    
    [134] Amin Ardestani, Razieh Yazdanparast. Inhibitory effects of ethyl acetate extract ofTeucrium polium on in vitro protein glycoxidation [J]. Food and ChemicalToxicology, 2007,45 (12) : 2402-2411.
    
    [135] Shon Mi-Yae, Choi Sang-Do, Kahng Goon-Gjung, et al. Antimutagenic,antioxidant and free radical scavenging activity of ethyl acetate extracts from white,yellow and red onions [J]. Food and Chemical Toxicology, 2004, 42 (4) :??659-666.
    
    [136]许保玖.当代给水与废水处理原理[M].第二版.北京: 高等教育出版社,2000. 49-537.
    
    [137]张自杰.排水工程下册[M].第四版.北京:中国建筑工业出版社,2000.58-105
    
    [138]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社,1993.28-41.
    
    [139] Rittmann B.E, McCarty P L. Model of steady state biofilm kinetics [J].Biotechnology and Bioengeering, 1980, 22 (11) : 2343-2357.
    
    [140] Rittmann B.E. The effect of shear stress on biofilm loss rate [J]. Biotechnology andBioengeering, 1982, 24 (11) : 501-506.
    
    [141] Liu Y, Capdeville B. Kinetic behaviors of nitrifying biofilm growth in wastewaternitrification process [J]. Environmental technology, 1994, 15(11): 1001-1013.
    
    [142] Liu Y, Capdeville B. Growth dynamics of nitrifying biofilm in biological nitrogenremoval process [J]. Water science and technology, 1994, 29: 377-380.
    
    [143] Colasanti R. Cellular automata models of microbial colonies [J]. Binary, 1992, 4:191-193.
    
    [144] Wimpenny J. W. T, Colasanti R. A unifying hypothesis for the structure ofmicrobial biofilms based on cellular automaton models [J]. FEMS MicrobiologyEcology, 1997, 22 (1) : 1-16.
    
    [145] Picioreanu C, Van Loosdreeht MC.M, Heijnen J J. Discrete differential modelingof biofilm structure [J]. Water science and technology, 1999, 39 (7) : 115-122.
    
    [146] Rittmann B. E, Pettis M, Reeves H. W, et al. How biofilm clusters affect substrateflux and ecological selection [J]. Water science and technology, 1999, 39(7) :99-105.
    
    [147] Noguera D. R, Pizarro G, Stahl D. A, et al. Simulation of multi-species biofilmdevelopment in three dimensions [J]. Water science and technology, 1999, 39(7):123-130.
    
    [148] Laspidou C.S, Rittmann B.E. Modeling the development of biofilm densityincluding active bacteria, inert biomass, and extracellular Polymeric substances [J].??Water research, 2004, 38 (14-15) : 3349-3361.
    
    [149] Laspidou C.S, Rittmanr B.E. Evaluating trends in biofilm density using theUMCCA model [J]. Water research, 2004, 38 (14-15) : 3362-3372.
    
    [150] Pizarro G, Griffeath D, Noguera D. R. Quantitative cellular automatic for biofilms[J]. Journal of environment engineering, 2001, 127(9) : 782-789.
    
    [151] Mann A.T, Stephenson T. Modelling biological aerated filters for wastewatertreatment [J]. Water Research, 1997,31 (10) : 2443-2448.
    
    [152]王春荣,李军,王宝贞,张国柱.2种不同填料曝气生物滤池处理生活污水的经 验模型[J].环境污染治理技术与设备,2005,6(12):56-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700