用户名: 密码: 验证码:
空气源热泵常规除霜与蓄能除霜特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题为国家自然科学基金资助项目(项目号:50606007)。空气源热泵(Air Source Heat Pump,ASHP)是环保型高效节能的供热装置,其低位热源是环境空气,具有无污染物排放的特点,符合生态供暖的理想模式。目前,我国空气源热泵应用日趋广泛,在建筑节能,替代燃煤供热等工程中发挥着越来越重要的作用。但是,空气源热泵在低温高湿环境运行时室外换热器结霜而引起供热性能下降,需要周期性除霜来保证其正常运行。除霜的稳定性是保证空气源热泵全区域、全气象条件可靠运行的关键问题。
     本文全面分析了空气源热泵常规除霜特性,从理论上指出低位热源不足是导致常规除霜综合性能差的根本原因。基于能量时空合理利用理念提出了相变蓄能除霜新系统。新系统以CaCl_2·6H_2O作为相变材料(PCM),利用余热或正常供热蓄热,除霜时蓄热器充当系统主要低位热源,从而彻底解决了除霜热量来源不足问题,从全新的角度为空气源热泵除霜问题提出了可靠的解决方案。为了考察空气源热泵常规除霜与蓄能除霜新系统的特性,本文搭建了空气源热泵结、除霜实验台,对一台小型的分体式热泵型房间空调器进行改造,将研制的相变蓄能装置耦合到热泵系统中,完成了常规与蓄能两种模式下的多工况除霜实验。
     实验中对两种除霜模式时系统的温度、压力、功率、结、除霜量、过程变化时间等除霜参数进行了详细的测定与记录。通过对大量实验数据的整理与分析,得到了系统各部件在常规除霜与蓄能除霜时的特性变化规律。
     中度结霜工况常规除霜效果较好,但压缩机吸气压力低是其最大缺点。除霜时压缩机排气压力、功率均较低,室内换热器翅片管表面温度通常要下降30℃以上,并从供热环境中吸收大量的热量。室外换热器翅片管升温过程较慢,除霜时间长达8min。重度结霜工况时系统除霜性能参数指标全面下降,常规除霜系统应对恶劣结霜工况的能力不足。
     相变蓄能除霜具有速度快,除霜干净,对供热环境影响小等特点。蓄热器流程选择与蓄热、放热特性实验表明,蓄放热后PCM相变完全,蓄热效果好,放热速度快且充分。相变蓄热器与热泵系统耦合性很好,蓄热时对供热影响小。相变蓄能除霜可以显著提高压缩机吸气压力,使系统制冷剂质量流量明显增加,室内换热器从供热环境吸热量少,室外换热器翅片管表面温度上升速度快,总压缩机耗功比常规除霜少。
     本文从除霜热源与热汇两方面详细分析并计算了两种除霜模式的能耗,对各部分能耗进行了对比。指出常规除霜能量主要来自压缩机与室内换热器自然对流换热,蓄能除霜可优化除霜能量来源构成。
     本文还建立了基于实验参数的室外换热器表面水蒸发动态模型,通过模型求解,观察除霜时表面水蒸发和翅片管干热的动态特性。
     最后对空气源热泵误除霜问题进行了研究,分析了误除霜机理、特点及危害,并讨论其成因,提出了解决误除霜问题的策略。
This project is sponsored by national natural science foundation (Project No.: 50606007). Air source heat pump (ASHP) is a high efficiency energy saving environmental protection type heat supply unit, whose low position heat source is air and no pollutant discharging, which is in accordance with the ideal ecological heating mode. Now ASHP units are applied more and more extensive in China and playing important roles in architecture energy saving, coal-fired heating substitution etc. projects. But ASHP’s outdoor heat exchanger will frost in low temperature high humidity conditions, which decreases its performance and need periodical defrosting to ensure its normal running. So the stability of defrosting is the key to ASHP reliable running in all regions and all meteorological condition.
     In this paper ASHP conventional defrosting characteristics are analyzed comprehensively, pointing out that the energy lack of low position heat source is the basic reason of poor defrosting synthesis performance. Based on time and space reasonable energy utilize theory, a new phase change energy storage defrosting system is proposed. The new system adopt CaCl_2·6H_2O as phase change material(PCM), and stored energy through residual heat or normal heating. The heat accumulator served as the main low position heat source when defrosting, which thoroughly solved the problem of lacking defrosting energy.
     This is a absolutely new way of doing with ASHP defrosting problem. To investigate the conventional and the new defrosting system’s characteristics, an experimental system was set up. A small heat pump type air condition is modified and the phase change energy storage was added into the heat pump system. A serial of conditional experiments were done in the two defrosting mode.
     In experiments the temperature, pressure, power, frost mass, course time, etc. defrosting parameters were carefully measured and recorded. Through analyzing the large number of experimental data, the system components’characteristics were found out in both conventional and the energy storage defrosting mode. The effect of conventional defrosting is satisfied when frost is moderate, but the low level suction pressure is its main shortcoming. The compressor discharge pressure and power are relatively low and indoor heat exchanger surface temperature will decrease greatly and adopt much heat from heating space. On the other hand, outdoor heat exchanger surface temperature increases slowly, defrosting lasts 8 minutes. In heavy frost conditions, the conventional defrosting system has poor performance, which means it has no ability to do with heavy frost.
     Energy storage defrosting has the feature of short time, cleanly defrosting, less affect to heat space. Heat accumulator working mode and its heat storage or release experiments show that the PCM phase change thoroughly and can storage much of heat. It releases heat rapidly and sufficiently. The accumulator worked well with heat pump system. The new defrosting way can evidently increase suction pressure and refrigerant mass flow rate, meanwhile, indoor heat exchanger absorbs little heat from heat space and outdoor heat exchanger fin-tube temperature increases rapidly and total compressor power consumption reduces comparing with the conventional system.
     Defrosting energy consumption were calculated from heat sauce and heat sink and their values were contrasted each other. Results showed that the conventional defrosting system energy mainly comes from compressor and indoor heat exchanger nature convection, whereas energy storage system may optimize the components of heat source.
     A dynamic model of outdoor heat exchanger surface water evaporation was set up, which was based on experimental parameters. Through solving the model, characteristics of surface water vaporizing, fin-tube dry heating can be acquired. The paper also investigated the problem of fault defrosting, analyzed its mechanism, feature, detriment and discussed the cause of it and proposed the method to avoid it.
引文
1 中华人民共和国国家统计局. 中国统计年鉴—2006. 中国统计出版社, 北京, 2006:7
    2 《中国能源发展报告》编辑委员会. 2007 中国能源发展报告. 中国水利水电出版社, 北京, 2007:6,12
    3 国家统计局, 国家环境保护总局. 中国环境统计年鉴—2006. 中国统计出版社, 北京, 2006:12-14
    4 徐邦裕, 陆亚俊, 马最良. 热泵. 中国建筑工业出版社, 北京, 1988:14
    5 J.Bouma. International Heat Pump Status and Trends. 20th International Congress of Refrigeration, IIR/IIF, Sydney. 1999, (3):10
    6 T. Saito, T. Yshii. Regional reports - Asia and Pacific. 7th International Energy Agency Conference on Heat Pump Technologies. 2002, (1) :38-46
    7 张旭. 热泵技术. 化学工业出版社. 北京, 2007:5
    8 范存养, 龙惟定. 空气源热泵的应用与展望. 暖通空调, 1994, 24(6): 20-24
    9 马最良, 杨自强, 姚杨. 空气源热泵冷热水机组在寒冷地区应用的分析. 暖通空调, 2001, 31(3): 28-31
    10 沈炜, 周晋, 李树林. 空气源热泵在中国北方地区的运行经济性分析. 建筑热能通风空调, 2007, 26(1): 63-66
    11 何占江, 朱常琳.兰州市应用空气源热泵的可行性及对空气质量的改善. 甘肃科技. 2007, 23(2): 72-74
    12 张建中,龚延风.空气源热泵冷热水机组在南京的应用.现代空调,2001, 3(3): 141-156
    13 钟婷, 龙惟定. 风冷热泵在若干城市制热运行的调研与分析. 2002 年全国暖通空调制冷学术年会论文集: 410-413
    14 姚杨, 空气源热泵冷热水机组冬季结霜工况的模拟与分析. 哈尔滨工业大学博士学位论文. 2002:3-4
    15 刘志强, 汤广发, 赵福云. 风冷热泵除霜过程动态特性模拟和实验研究.制冷学报, 2003, 25(3): 1-5
    16 井上宇市. 空气调节手册. 中国建筑工业出版社, 1986
    17 姜益强, 姚杨, 马最良. 空气源热泵结霜除霜损失系数的计算. 暖通空调,2000, 30(5): 24-26
    18 S.M.Sami, T.Duong. Mass and Heat Transfer During Frost Growth. ASHRAE Trans, 1989,95(1):158-164
    19 S.P.Oskarasson, K.I.Krakow. Evaporator Models for Operation with Dry, Wet, and Frosted Finned Surface. ASHRAE Trans, 1990,96(1):373-380
    20 V.D.Baxter, J.C.Moyers. Field-measured cycling, frost and defrosting losses for a high efficiency air source heat pump. ASHRAE Trans, 1985, 91(2B-2): 537-554
    21 D.L. O’Neal, D.R. Tree. A Review of Frost Formation in Simple Geometries. ASHRAE Trans., 1985,91(2):267-282
    22 J.D. Yonko, C.F. Sepsy. An Investigation of the Thermal Conductivity of Frost while Forming on A Flat Horizontal Plate. ASHRAE Trans., 1967, 73(1):1-11
    23 Y. Hayashi, A. aoki, H. Yuhana. Study of Frost Properties Correlation with Frost Formation Types. J. of Heat Transfer, 1977,6(3)L79-94
    24 Y.X. Tao, R.W. Besant, K.S. Rezkallah. A Mathematical Model of for Predicting the Densification and Growth of Frost on A Flat Plate. Int. J of Heat & Mass Transfer, 1993, 36(2): 356-363
    25 R.Le Gall, J.M. Grillot. Modeling of Frost Growth and Densification. Int. J.of Heat & Mass Transfer, 1997, 40(13): 3177-3187
    26 H.Chen, L. Thomas, R.W. Besant. Modeling Frost Characteristics on Heat Exchanger Fins. ASHRAE Trans., 2001, 106(2):257-376
    27 Y.Mao, R.W. Besant, H. Chen. Frost Characteristics and Heat Transfer on A Flat Plate under Freezer Operating Conditions. ASHRAE Trans., 1999, 104(2): 231-259
    28 S.P. Oskarsson, K.I. Krakow. Lin. Evaporator Models for Operation with Dry, Wet, and Frosted Finned Surfaces. ASHRAE Trans, 1990,96(1):373-392
    29 X. Ogawa, N, Tanaka, M. Takeshita. Performance Improvement of Plate Fin-and-tube Heat exchangers under Frosting Conditions. ASHRAE Trans, 1993,99(1):762-771
    30 S. Song, C.W. Bullard, P.S. Hrnjak. Frost Deposition and Refrigerant Distribution in Microchannel Heat Exchangers. ASHRAE Trans, 2002,108(1):944-953
    31 D.L.O’Neal, K.T.Peterson etc. Refrigeration System Dynamics During the Reverse Cycle Defrost. ASHRAE Trans, 1989,95(2):689-698
    32 陆亚俊, 马最良. 低温空气调节机组. 哈尔滨建筑工程学院学报, 1983, (4): 70-79
    33 Y. Xia, Y. Zhong, P.S. Hrnjak. Frost, Defrost and Refrost and Its Impact On the Air-side Thermal_hydraulic Performance of Louvered-fin, Flat-tube Heat Exchangers. Int. J. of Refrig. 2006, 29(5): 1066-1079
    34 K.I. Krakow, L.Yan, S.Lin. A Model of Hot-Gas Defrosting of Evaporators-Part 1: Heat and Mass Transfer Theory. ASHRAE Trans, 1992,98(1):451-461
    35 K.I. Krakow, L.Yan, S.Lin. A Model of Hot-Gas Defrosting of Evaporators-Part 2: Experimental Analysis. ASHRAE Trans, 1992,98(1):452-474
    36 N. Hoffenbecker, S.A. Klein, D.T. Reindl. Hot Gas Defrost Model Development and Validation. Int. J. of Refrig. 2005, 28(1): 605-615
    37 史建春.两种不同节流系统对融霜的影响.流体机械, 1994, 22(7): 60-63
    38 吴贵森. 热泵除霜特性分析. 福建能源开发与节约. 2002, 1 :17-19
    39 黄东, 袁秀玲, 陈蕴光. 节流机构对风冷热泵冷热水机组逆循环除霜时间的影响. 西安交通大学学报, 2003, 37(5): 512-518
    40 D.L. O’Neal, K.Peterson. A Comparison of Orifice and Txv Control Characteristics During the Reverse-cycle Defrost. ASHRAE Trans, 1990, 96 (1), 337-342
    41 D. L. O’Neal, K. Peterson. Effect of short-tube orifice size on the performance of an air source heat pump during the reverse-cycle defrost. Int. J. of Refrigeration, 1991,14(1): 52-57
    42 仲华, 唐双波, 陈芝久.轿车空调蒸发器除霜实验研究. 流体机械, 2001, 29(1): 44-46
    43 S.J. Williams. Energy Equations for Five Defrost Methods. Refrigeration Engineering. 1952, (8):850-863
    44 K.I. Krakow, S.Lin, L.Yan. An Idealized Model of Reversed-cycle Hot Gas Defrosting-Part 1: Theory. ASHRAE Trans., 1993, 99(2): 317-328.
    45 K.I. Krakow, S.Lin, L.Yan. An Idealized Model of Reversed-cycle Hot Gas Defrosting-Part 2: Experimental Analysis and Validation. ASHRAE Trans., 1993, 99(2): 329-338
    46 黄虎, 李志浩, 虞维平. 风冷热泵冷热水机组除霜过程仿真. 东南大学学报, 2001,31(1): 52-56
    47 刘志强. 空气源热泵机组动态特性及性能改进研究. 湖南大学博士学位论文, 2003, 5
    48 D.H. Niderer. Frost and Defrosting Effect on Coil Heat Transfer. ASHRAE Trans., 1976, 83(1): 467-473
    49 W.F. Stoeker, J.J. Lux, etc. Energy Consideration in Hot-Gas Defrosting of Industrial Refrigeration Coils. ASHRAE Trans, 1983,89(2A): 549-573
    50 V.D.Baxter, J.C.Moyers. Field-measured Cycling, Frost and Defrosting Losses for A High Efficiency Air Source Heat Pump. ASHRAE Trans., 1985, 91(2B-2): 537-554
    51 R.A. Cole. Refrigeration Loads in A Freezer Due to Hot Gas Defrost and Their Associated Costs. ASHRAE Trans., 1989, 95(1): 1149-1154
    52 S.A. Sherif, M.G. Hertz. A semi-empirical Model for Electrical Defrosting of A Cylindrical Coil cooler. Int. J. of Energy Res. 1998, 22(1):85-92
    53 Nawaf K.Al-Mutawa, S.A.Sherif. Determination of Coil Defrosting Loads: Part 1: Experimental Facility Description. ASHRAE Trans., 1998, 104(1):
    268-288
    54 Nawaf K.Al-Mutawa, S.A.Sherif Determination of Coil Defrosting Loads: part 2: Instrumentation and Data-acquisition Systems. ASHRAE Trans., 1998,
    104(1): 289-302
    55 Nawaf K.Al-Mutawa, S.A.Sherif Determination of Coil Defrosting Loads: Part 3: Testing Procedures and Data Reduction. ASHRAE Trans., 1998, 104(1): 303-312
    56 Nawaf K.Al-Mutawa, S.A.Sherif Determination of Coil Defrosting Loads: Part 4: Refrigeration/Defrost Cycle Dynamics. ASHRAE Trans., 1998, 104(1): 313-343
    57 Nawaf K.Al-Mutawa, S.A.Sherif Determination of Coil Defrosting Loads: Part 5: Analysis of Loads. ASHRAE Trans., 1998, 104(1): 344-355
    58 任乐, 陈旭峻, 袁秀玲. 关于风冷热泵除霜问题的研究. 制冷, 2003, 22(3): 13-16
    59 陈旭峰, 任乐, 袁秀玲. 能量分析法在空气源热泵除霜中的应用. 制冷空调与电力机械, 2003, 24(2): 11-14
    60 罗鸣, 谢军龙, 沈国民. 风冷热泵机组中的热气除霜方法. 节能, 2003, 5:12-14
    61 刘井龙. 风冷热泵冷热水机组融霜控制方法的研究. 流体机械, 2003, 31(12): 53-55
    62 景步云, 谷波, 黎远光. 基于模型的热泵空调化霜控制方法研究. 流体机械, 2004, 32(1): 46-48
    63 何志龙, 黄东, 袁秀玲. 衡量结霜时间的指标――湿温比. 流体机械, 2000, 28(7): 55-57
    64 Thierry ARGAUD. Experimental Comparison of Two Method for Triggering The Defrosting of Reversible Air/Water Heat Pumps Time Delay & Air And Evaporator Temperature Difference. 20th International Congress pf Refrigeration, IIR/IIF, Sydney, 1999, (3): 201-208
    65 罗鸣, 谢军龙, 沈国民. 风冷热泵冷热水机组除霜研究. 建筑热能通风空调, 2002, (6): 15-17
    66 刘启芬 黄虎. 空气源热泵模糊除霜控制的实验研究. 南京理工大学学报. 2003, 27(6): 763-765
    67 符建坤, 欧阳海生, 刘凤珍. 高湿地区风冷热泵蒸发器除霜控制研究. 流体机械, 2003, 31(10): 44-47
    68 吴斌. 分体热泵空调新化霜控制模式的开发应用. 电机电器技术, 2003, (5): 30-31
    69 朱裕君, 麦丰收, 叶志勇. 热泵式冷暖空调器除霜控制的新方法. 电子控制技术. 2001, (5): 33-34
    70 夏清. 周兴禧. 周振宇. 不同参数对翅片管式蒸发器性能影响及热泵化霜周期的优化.上海交通大学学报, 1998, 32(7): 114-116
    71 王铁军, 唐景春, 刘向农. 风源热泵空调器除霜技术实验研究. 低温与超导, 2003, 31(4): 65-68
    72 陈汝东, 许东晟. 风冷热泵空调器除霜控制的研究. 流体机械, 1999, 27(2): 55-57
    73 雷江杭, 丁小江, 热泵空调器除霜分析. 制冷. 1999, 18(4): 26-28
    74 J.Allard, R.Heinzen. A Daptive Defrost. IEEE Transactions on Industry Application, 1988, 24(1): 39-42
    75 LG ELECTRONICS INC. Method for Controlling Defrosting of Heat Pump, Particularly in Concerned with Preventing Waste of Power Consumption and Improving the Heating Capacity. Korea Patient. KR2005005875-A
    76 Nutter, Darin W, D. L. O’Neal. Impact of The Suction Line Accumulator on The Performance of An Air Source Heat Pump With A Scroll Compressor. ASHRAE Trans, 1996,102(1): 284-290
    77 Nutter, Darin W, D. L. O’Neal. Shortening The Defrost Cycle Time with Active Enhancement Within The Suction-line Accumulator of An Air Source Heat Pump. Proceedings of the ASME Advanced Energy Systems Division, 1996: 59-67
    78 N.K Anand, J.S Schliesing, D.L.O’Neal Effect of Outdoor Coil Fan Pre-start on Pressure Transients During The Reverse Cycle Defrost of A Heat Pump. ASHRAE Trans, 1989, 95(2): 699-704
    79 Toshio Aihara, Taku Ohara, etc. Heat Transfer and Defrosting Characteristics of A Horizontal Array of Cooled Tubes Immerged in A Very Shallow Fluidized Bed. Int. J. Heat Mass Transfer, 1997, 40(8): 1807-1815
    80 Payne.Vance, O’Neal.Dennis L. Examination of Alternate Defrost Strategies for An Air Source Heat Pump: Multi-stage Defrost. American Society of Mechanical Engineers, Advance Energy Systems Division (publication) AES, v28,Rrecent Research in Heat Pump Design, Analysis, and Application, 1992: 71-77
    81 Richard J. Watters, D. L. O’Neal et al Effect of Fin Staging on Frost/Defrost Performance of A Two-row Heat Pump Evaporator under Heavy Frosting Conditions. ASHRAE Trans., 2001, 107(1), 250-258
    82 Sung Jhee, Kwan-Soo Lee, etc. Effect of Surface Treatments on The Frosting/Defrosting Behavior of A Fin-tube Heat Exchanger. Int. J. of Refri. 2002, 25: 1047-1052
    83 V. Payne D.L.O’Neal Defrost Cycle Performance for An Air Source Heat Pump with A Scroll and A Reciprocating Compressor. Int. J. of Refri. 1995, 18(2): 107-112
    84 江辉民. 带热水供应的热泵空调器的运行特性研究. 哈尔滨工业大学博士学位论文, 2006
    85 MATSUSHITA DENKI SANGYO KK (MATU), Heat Pump Type Air Conditioning and Hot Water Supply Equipment, Uses Heat Exchange Device to Exchange Heat Between Hot Water of Storage Tank and Refrigerant in Outdoor Heat Exchanger. Japan Patient: JP2004218944-A
    86 TOSHIBA KIKI KK (TSKI), Hot-water Supply Apparatus Circulates Hot Water Obtained From Upper Portion of Tank Storing Hot water, Through Heating Circuit, to Lower Portion of Tank,Through Defrosting Circuit of Evaporator of Heat Pump. Japan Patient: JP2004183908-A
    87 HITACHI HOME & LIFE SOLUTION KK. Heat Pump Type Water Heater Controls Hot Water Supply Circuit to Provide Hot Water Supply over Entire Day and Night During Defrosting of Evaporator in Heat Pump Circuit. Japan Patient: JP2005106416-A
    88 NISHIHARA Y, TAKEUCHI A. Heat Pump Hot-water Supply Apparatus for e.g. Bathtub, Has Expansion Valve Which Is Opened After Opening Fluid Circulation Selector Valve at Time of Defrost Startup. Japan Patient: JP2005147610-A
    89 王少为, 刘震炎, 赵可可等. 蓄能和热水器复合空调器冬季运行实验研究. 流体机械, 2004, 32(9): 45-48
    90 樊栓狮, 梁德青, 杨向阳. 储能材料与技术. 化学工业出版社, 2004, 4-5
    91 张寅平, 胡汉平, 孔祥东等. 相变贮能—理论和应用. 中国科学技术大学出版社, 1996: 10-11
    92 S.M.Hasnain.Review on Sustainable Thermal Energy Storage Technologies, PartI:Heat Storage Materials and Techniques . EnergyConvers&Mgmt. 1998, 39(11): 1127-1138
    93 戴或, 唐黎明. 相变储热材料研究进展. 化学世界, 2001,12:662-665
    94 Mohammed M.Farid, Amar M.Khudhair, Siddique Ali K.Razack. A Reviewon Phase Change Energy Storage: Materials and Applications. EnergyConversion and Management. 2004, 45: 1597-1615
    95 张国正, 文磊, 方晓明等. 复合相变储热材料的研究与发展. 化工进展, 2003, 22(4): 462-465
    96 曾艳, 田怀璋, 余鹏. 固液相变蓄能中有效导热系数的数值分析与实验研究.太阳能学报, 2003, 24(4): 497-503
    97 朱颖秋, 张寅平, 江亿. 内通传热流体的圆管外相变材料的无量纲储传热准则的研究. 太阳能学报, 1999, 20(3): 244-250
    98 李香玲, 陈超, 蹇瑞欢. 填充板状定形相变材料蓄热槽蓄/放热特性实验研究. 暖通空调, 2005, 35(10): 122-126
    99 曲丰作, 于长顺, 王岩. 三水合醋酸钠体系蓄放热性能的实验研究. 大连轻工业学院学报. 2005, 24(2): 93-95
    100 Ahmet. Z., Sahin, Ibrahim Dincer. Analytical Modeling of Transient Phase –change Problems. Int. J. of Energy Research. 2000, 24(10): 1029-1039
    101 Y.W. Zhang, A. Faghri. Heat Transfer Enhancement in Latent Heat Thermal Energy Storage System by Using the Internally Finned Tube. Int. J. Heat Mass Transfer, 1996, 39(15): 3165-3173.
    102 张寅平, 康艳兵, 江亿. 相变和化学反应储能在建筑供暖空调领域的应用研究. 暖通空调, 1999, 29(5): 34-37
    103 M. Yamagushi, S Synma. Heat Storage with Phase Change Material for House Floor Heating. Proc. of the 7th Inter. Conf. On Thermal Energy Storage, June, 1997, Sappro, Japan, 349-353
    104 S Hokoi, T. Kurlki. Use of Phase Change Material to Control Indoor Thermal Environment. Proc. of the 7th Inter. Conf. On Thermal Energy Storage, June, 1997, Sappro, Japan, 337-342
    105 康艳兵. 夜间通风相变贮能吊顶系统研究. 清华大学博士学位论文, 2001
    106 D. Feldman, D. Banu, D. Hawes. Obtaining An Energy Storing Building Material by Direct Incorporation of An Organic Change Material in Gypsum Wallboard. Solar Energy Materials, 1991,22(2): 231-242
    107 Hawes D.W. Feldman D. Absorption of Phase Change Materials in Concrete. Solar Energy Materials and Solar Cells, 1992, 27: 91-101
    108 Hawes D.W, Banu D. Feldman D. The Stability of Phase Change Materials in Concrete. Solar Energy Materials and Solar Cells, 1992, 27: 103-118
    109 陈超, 欧阳军, 王秀丽. 空气源热泵机组冬季除霜热量补偿新方法. 制冷学报, 2006, 27(4): 37-40
    110 曾文良, 曲景年. 几种蓄热热泵空调器的性能比较. 暖通空调, 2004, 34(11): 66-68
    111 S.M. Hasnain.Review on sustaintable thermal energy storage technologies. Part Ⅰ : heat storage materials and techniques. Energy Convers. Mgmt, 1998,(39)1127-1138
    112 谢全安, 郑丹星, 武向红. Na2S04·10H20 共晶盐的热化学研究. 太阳能学报, 2002, 23(2): 70-75
    113 方修睦.建筑环境测试技术. 中国建筑工业出版社. 2002:15-16
    114 田胜元, 萧日嵘. 实验设计与数据处理. 中国建筑工业出版社, 北京.1988: 45-46
    115 M.J. Skovrup, H.J. Knudsen, H.V. Holm. Refrigerant Utilities. Dep. Of Energy Engineering , DTU, 1998
    116 J.P. Holman. Heat Transfer. China Machine Press, 2005: 321-323
    117 陆亚俊, 马最良, 姚杨. 空调工程中的制冷技术. 哈尔滨工程大学出版社, 1997: 111-112
    118 柴沁虎, 马国远. 空气源热泵低温适用性研究的现状与进展. 能源工程, 2002, 22(5): 25-31
    119 何雪冰, 刘宪英. 空气源热泵冷热水机组设计选型. 暖通空调, 2004, 34(3): 55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700