用户名: 密码: 验证码:
改性聚氨酯填料生物膜系统脱氮特征及微生物学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物膜法是污水生物脱氮处理技术之一。填料作为生物膜的载体,对生物膜的生长、结构和活性均具有显著影响。适宜的填料可促进生物膜的形成和系统的启动过程,提高系统的处理效能,降低运行成本。因此,对于新型填料的开发一直是污水处理领域的热点研究问题。聚氨酯(PU)填料具有高孔隙率、高比表面积和低密度等诸多优点,可显著提高系统的生物量和处理效能,已在各种有机废水处理中得以应用。但关于PU填料生物膜系统的脱氮效能及其生物学机制仍然缺乏研究,限制了其在污水生物脱氮处理中的推广应用。本文采用自主研发的改性PU填料(MPU),构建了批式生物膜反应器(SBBR)污水生物膜脱氮系统,建立了基于改性PU填料的硝化反硝化动力学模型,解析了填料负载的生物膜硝化功能菌群的分布特征,为经济高效生物膜脱氮系统的构建提供了材料、技术和理论支撑。在对MPU生物膜脱氮效能和生物学机制研究的基础上,针对高氨氮和低C/N废水的处理对PU进行了改性试验制备出负载电气石聚氨酯填料(TPU)和负载淀粉聚氨酯填料(SPU),并考察了以其构建的生物膜系统的氨氧化和脱氮效能。
     与采用常规聚乙烯(PE)填料构建的SBBR的对比实验研究表明,在相同运行条件下启动并达到运行稳定后,以MPU填料构建的SBBR(MPU-SBBR),其氨氮和COD去除率与普通PE填料构建的SBBR(PE-SBBR)相当,分别约为92.0%和85.5%,但MPU-SBBR系统可在15d内启动成功并达到稳定运行,较PE-SBBR系统提前了21d,大幅缩短了生物膜脱氮系统的启动周期。
     对生物膜脱氮系统影响因素的研究表明,MPU-SBBR系统具有良好的脱氮效能。在常温(20℃)条件下,其生物脱氮的适宜条件为HRT6h、pH7.0~8.5和DO1.5~2.5mg/L,总氮去除率为75.4%左右。在DO维持在较低的0.5~1.0mg/L水平时,MPU-SBBR系统的总氮去除率仍可维持在70.6%上下。pH8.2最利于亚硝酸菌群的富集,系统的氨氮去除率可达90%以上。在水温为12℃时对硝酸菌群(NOB)受到较亚硝酸菌群(AOB)更大的抑制作用,系统会发生了亚硝酸盐的累积,而温度升高到15℃以上时,这一抑制作用逐渐得以消除,系统对氨氮的去除率随之提高。硝化反硝化反应动力学分析表明,MPU生物膜系统在脱氮过程中的硝酸盐饱和常数K D大于传统活性污泥系统,保持较高硝酸盐浓度有利于MPU生物膜系统的稳定脱氮。
     生物膜的功能微生物分析表明,在HRT6h、pH7.0~8.5和DO1.5~2.5mg/L条件下,MPU-SBBR生物膜的微生物多样性要显著高于其他工况,优势亚硝酸菌和硝酸菌分别以亚硝化单胞菌(Nitrosomonas sp.)和硝化螺旋菌(Nitrospira sp.)为主,而反硝化细菌则以陶厄氏菌(Thauera sp.)和红假单胞菌(Pseudomonas sp.)占据优势。进水C/N比(C和N分别以COD和总氮计)对系统短程硝化反硝化影响显著,C/N比越大,生物膜的生物多样性越高,最佳的氨氮去除率92.9%和总氮去除率79.0%分别出现在C/N比分别为5.0和1.8时,其硝化功能优势微生物为氨氧化菌(Unculturedammonia-oxidizing bacterium)、Nitrospira sp和硝化杆菌(Nitrobacter sp.),反硝化优势菌为Pseudomonas sp.,工程中可以通过对进水C/N比的调节实现对系统氮素转化和总氮去除的调控。
     针对高氨氮污水的处理,采用电气石负载对PU进行了改性而制备一种新型载体材料TPU。研究表明,与改性前的PU相比,TPU填料表面更粗糙,持水倍率更高,可对微环境pH进行有效调节。电气石良好的热电性和压电性进一步提高了填料的吸附性能,使TPU填料更有利于硝化细菌的富集。TPU填料生物膜中的亚硝酸细菌和硝酸细菌在数量上比PU填料生物膜分别提高了62.9%和46.4%,可显著强化系统的硝化作用。对于COD和氨氮浓度分别为600~650mg/L和230~250mg/L的污水,与PU生物膜处理系统相比,TPU生物膜处理系统的氨氮去除率提高了12.3%。
     针对低C/N比污水,采用淀粉负载对PU进行了改性而制备出另一种新型载体材料SPU。淀粉的负载对低C/N比污水脱氮起到了良好的持续调节作用。对于COD和C/N比分别为150mg/L和2.5的污水,SPU-SBBR系统表现出了更好的脱氮效率(65.3%),与聚己酸内酯(PCL)构建的SBBR系统(53.3%)相比,其总氮去除率提高了12%。
Biofilm process is one of biological nitrogen removal technology inwastewater treatment. The filler as a biological carrier, have significantinfluences on the growth, structure and activity of the biofilm. The suitable fillermay promote formation of biofilm and start-up of the system, improve the systemtreatment efficiency, reduce the operation cost. Therefore, the development ofnew filler has been a hot research in the field of wastewater treatment.Polyurethane (PU) filler has many advantages such as high porosity, anappropriate pore size, low density and so on. PU filler has been successf ully usedin a variety of organic wastewater treatment. But the nitrogen removal efficiencyof PU biofilm system and its biological mechanism is still a lack of research,which limits its popularization and application in nitrogen removal of wastewatertreatment. This experiment regarded self-developed modified PU filler (MPU),build a sequencing batch biofilm reactor (SBBR) biofilm wastewater nitrogenremoval system, and investigate the nitrogen removal efficiency, establish thenitrification and denitrification kinetic model, analysis distributioncharacteristics of the nitrifying functional bacteria, provides the material,technical and theoretical support for the construction of efficient biologicaleconomy biofilm system. Based on the nitrogen removal efficiency andbiological mechanism, Modification of PU was studied further to develop newPU load tourmaline and PU load starch to treat high ammonia wastewater andlow C/N ratio wastewater and investigate ammonia oxidation and nitrogenremoval efficiency.
     The contrast experimental study with the conventional polyethylene filler(PE) showed that, in the same operating conditions and after achieving stableoperation, the removal efficiency of ammonia nitrogen and the COD of SBBRsconstructed by MPU (MPU-SBBR) and constructed by normal PE (PE-SBBR)were92.0%and85.5%, respectively. But the MPU-SBBR system within15d toachieving stable operation ahead of21d by the PE-SBBR system, it significantlyshorten the start-up period of biofilm system.
     The study of influencing factors on the biofilm nitrogen removal systemshows that, MPU-SBBR has good nitrogen removal efficiency. At roomtemperature (20℃) conditions, the optimum biological nitrogen removalconditions is HRT6h, pH7.0~8.5, DO1.5~2.5mg/L, total nitrogen removalefficiency is about75.4%. The DO maintained at a relatively low level of0.5~1.0mg/L, total nitrogen removal efficiency of MPU-SBBR system can be maintained at70.6%. The pH8.2is the most beneficial to accumulate the nitrifying bacteria,the ammonia nitrogen removal efficiency can reach over90%. With watertemperature was12℃the nitrite-oxidizing bacteria (NOB) was more inhibitedthan ammonia-oxidizing bacteria (AOB), the system had the accumulation ofnitrite, and when the temperature up to15℃, the inhibitory effect on AOB andNOB by temperature have gradually eliminated, ammonia nitrogen removalefficiency of system increased. Nitrification and denitrification reaction kineticmodel analysis showed that, nitrate saturation constant of MPU biofilm system indenitrification process was bigger than conventional activated sludge system, anda high nitrate concentration was benefit to stable remove nitrogen in MPUbiofilm system.
     The microbial biofilm analysis indicates that, with condition of HRT6h, pH7.0~8.5, DO1.5~2.5mg/L, microbial diversity of MPU-SBBR biofilm wassignificantly higher than that in other conditions. The advantages of AOB andNOB were Nitrosomonas sp. and Nitrospira sp. respectively, the advantages ofdenitrifying bacteria were Thauera sp. and Pseudomonas sp..The influent C/Nratio (C and N represent COD and total nitrogen respectively) had a significanteffects on short-cut nitrification and denitrification. The higher C/N ratio, thehigher biofilm biodiversity. The best ammonia nitrogen removal efficiency was79%when C/N ratio was5and the best total nitrogen removal efficiency was92.9%when C/N ratio were1.8. The advantages of nitrifying bacterial wereuncultured ammonia-oxidizing bacterium, Nitrospira sp. and Nitrobacter sp.,denitrifying bacteria was Pseudomonas sp.. The nitrogen transformation and totalnitrogen removal can be controlled by adjusting the influent C/N ratio in theproject.
     For the treatment of high ammonia nitrogen wastewater, the tourmaline wasload on the PU to prepare new TPU materials. Research shows that, comparedwith the unmodified PU, TPU filler surface was rougher, water holding rate washigher, can adjust effectively to the pH microenvironment, and its goodpyroelectricity and piezoelectricity further improve the adsorption properties toenrich the nitrifying bacteria. Compared with PU biofilm, the number of AOBand NOB in the TPU biofilm increased by62.9%and46.4%, respectively, whichsignificantly enhanced nitrification. In treating COD concentration of600~650mg/L and ammonia nitrogen concentration of230~250mg/L wastewater,compared with PU biofilm system, ammonia nitrogen removal efficiencyincreased by12.3%in TPU biofilm system treating.
     For low C/N ratio sewage, the starch was load on the PU to develop a newSPU material. The SPU filler can take a good regulating effect to nitrogen removal of low C/N ratio wastewater. For COD and C/N ratio were150mg/L and2.5of sewage, the SPU-SBBR system showed better nitrogen removal efficiency(65.3%). Compared with polycaprolactone (PCL)-SBBR system (53.3%), thetotal nitrogen removal efficiency of SPU-SBBR system increased by12%.
引文
[1]洪义国,李猛,顾继东.海洋氮循环中细菌的厌氧氨氧化[J].微生物学报,2009,49(3):281-286.
    [2]贺纪正,张丽梅.氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406-415.
    [3] Mike S, Jetten M. The Microbial Nitrogen Cycle[J]. EnvironmentalMicrobiology,2008,10(11):2903-2909.
    [4]刘全凤.浅谈氮循环及氮污染[J].现代农业科技,2007,12:189-193.
    [5]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006:66-82.
    [6]宋现财.分段进水SBR处理高氨氮生活污水试验研究[D].长安大学硕士论文,2011:10-11.
    [7] Jetten M S M, Logemann S, Muyzer G, et al. Novel Principles in theMicrobial Conversion of Nitrogen Compounds[J]. Antonie VanLeeuwenhoek,1997,71(1-2):75-93.
    [8] Ye R W, Thomas S M. Microbial Nitrogen Cycles: Physiology, Genomicsand Applications[J]. Current Opinionin Microbiology,2001,4(3):307-316.
    [9]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002:56-62.
    [10]朱琳,尹立红,浦跃朴.荧光原位杂交法检测环境硝化细菌实验条件优化及应用[J].东南大学学报(自然科学版),2005,35(2):266-270.
    [11] Bothe H, Jost G, Sehloter M, et al. Molecular Analysis of AmmoniaOxidation and Denitrification in Natural Environments[J]. FEMSMicrobiology Reviews,2000,24(5):673-690.
    [12] Logemann S, Sehantl J, Bijvank S, et al. Molecular Microbial Diversity ina Nitrifying Reactor System without Sludge Retention[J]. FEMSMicrobiology Ecology,1998,27(3):239-249.
    [13] Pommerening-Roser A, Rath G, Koops H P. Phylogenetic Diversity withinthe Genus Nitrosomonas[J]. Systematic and Applied Mierobiology,1996,19(3):344-351.
    [14] Voets J P, Vanstean H, Vemtrae W. Removal of Nitrogen from HighlyNitrogenous Wastewaters[J]. Journal of Water Pollution ControlFederation,1975,47,394-398.
    [15]马勇,王淑莹,曾薇,等. A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究[J].环境科学学报,2006,26(5):703-709.
    [16]韩燕.生物接触氧化工艺去除氨氮试验研究[J].山西建筑,2005,31(3):167-168.
    [17] Chui P C, Terashima Y J, Tay H, et al. Nitrogen Removal in a SubmergedFilter with no Effluent Recirculation[J]. Water Science Technology,2000,42(3-4):51-57.
    [18] Pochana K, Keller J, Lant P, et al. Model Development for SimultaneousNitrification and Denitrification[J]. Water Science Technology,1999,39(1):235-243.
    [19] Robertson L A, Van Neil E W, Torremans R A M, et al. SimultaneousNitrification and Denitrification in Aerobic Chemostat Cultures ofThiosphaera Pantotropha[J]. Applied Environmental Microbiology,1988,54(1):2812-2818.
    [20]周少奇,周吉林,范家明.同时硝化反硝化生物脱氮技术研究进展[J].环境技术,2002,2,38-44.
    [21]周毅,杨开,杨德勇.污水生物处理过程中的同步硝化反硝化研究概况[J].环境科学与技术,2001,6,6-8.
    [22]袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [23] Yoo H, Ahn K H, Lee H J, et al. Nitrogen Removal from SyntheticWastewater by Simultaneous Nitrification and Denitrification (SND) viaNitrite in an Intermittently-Aerated Reactor[J]. Water Research,1999,33(1):145-154.
    [24]邱国华,胡龙兴. A-O1-O2生物膜系统SND脱氮机理与影响因素的研究[J].水处理技术,2008,34(4):12-18.
    [25] Tal Y, Watts J E M, Schreier H J. Anaerobic Ammonia-Oxidizing Bacteriaand Related Activity in Baltimore Inner Harbor Sediment[J]. Applied andEnvironmental Microbiology.2005,71(4):1816-1821.
    [26] Mulder A, Van de Graff A A, Robertson L A, et al. Anaerobic AmmoniumOxidation Discovered in a Denitrifying Fluidized Bed Reactor[J]. FEMSMicrobiology Ecology,1995,16(3):177-184.
    [27] Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in aGas-Lift Reactor[J]. FEMS Microbiology Letters,2003,218(2):339-344.
    [28] Krul J M. Dissimilatory Nitrate and Nitrite Reduction under AerobicConditions by an Aerobieally and Anaerobically Grown Alcaligenes sp.and by Activated Sludge[J]. Journal of Applied Microbiology,1976,40(3):245-260.
    [29] Meiberg J B M, Bruinenberg P M, Harder W. Effect of Dissolve OxygenTension on the Metabolism of Methylated Amines in Hyphomiccrobium Xin the Absence and Presence of Nitrate: Evidence for AerobicDenitrification [J]. Microbiology,1980,120(2):453-463.
    [30] Hippen A, Rosenwinkel K H, Baurngarten G, et al. AerobicDeammonification: a New Experience in the Treatment of Wastewaters[J].Water Science Technology,1997,35(10):111-120.
    [31] Klangduen P. Study of Factors Affecting Simulataneous Nitrification andDenitrification (SND)[J]. Water Science Technology,1999,39(6):61-68.
    [32]谢曙光,张晓建,王占生.地表水处理中的好氧反硝化[J].中国给水排水,2002,18(3):7-9.
    [33] Brian D W, Stephen W. Cellular Growth in Biofilms[J]. BiotechnologyBioengineering,1999,64(6):656-670.
    [34] Brian D W, Stephen W. Diffusion and Reactor in Biofilms[J]. ChemicalEngineering Science,1998,53(3):397-425.
    [35] Mark W F, Natalie P, Gene R. Biological Fixed-Film Systems. WaterEnvironment Research,1998,70(4):495-509.
    [36]刘灿灿,沈耀良.曝气生物滤池的工艺特性及运行控制[J].工业用水与废水,2008,39:20-23.
    [37]刘柳.沸石-火山岩双层滤料曝气生物滤池处理城市生活污水的试验研究[D].兰州理工大学硕士论文,2008:7-8.
    [38]白琴,董延军.曝气生物滤池工艺在炼油污水处理巾的应用研究[J].现代商贸工业,2008,11:377-378.
    [39]白爱梅,王秀莲.生物转盘处理生活污水[J].煤矿现代化,2006,增刊:105-106.
    [40]刘建勇,邹联沛.水污染防治工程技术与实践[M].北京:化学工业出版社,2009:35-41.
    [41]王亚宜,李探微,彭永臻.生物膜法非稳态可控制技术在污水处理中的应用[J].环境污染与防治网络版,2005(3):1~7.
    [42]崔建蔚,王增长.对一种接触氧化法新型填料性能的研究[J].科技情报开发与经济,2009,19(5):148-150.
    [43]马放,郭静波,赵立军,等.生物强化工程菌的构建及其在石化废水处理中的应用[J].环境科学学报,2008,28(5):885~891.
    [44]郭静波,马放,蒋侃,等.用于石化废水处理的聚氨酯泡沫球形载体的挂膜方法[J].环境工程学报,2008,2(10):1322~1326.
    [45]陈洪斌,屈计宁,何群彪.悬浮填料生物膜工艺的研究进展[J].应用与环境生物学报,2005,11(4):514~520.
    [46] Jun B H, Miyanaga K, Tanji Y, et al. Removal of Nitrogenous andCarbonaceous Substances by a Porous Filler-Membrane Hybrid Process forWastewater Treatment[J]. Biochemical Engineering Journal,2003,14(1):37-44.
    [47] Tsekova K, Ilieva S. Copper Removal from Aqueous Solution usingAspergillus Niger Mycelia in Free and Polyurethane-Bound Form[J].Applied Microbiology and Biotechnology,2001,55(5):636-637.
    [48] Joeng H, Choi E, Yun Z, et al. Practical Aspects of Nitrogen andPhosphorous Removal with Floating Media SBBR[J]. Journal ofEnvironmental Science and Health.2003,38(10):2135-2145.
    [49] Shareefdeen Z, Baltzis B C, Oh Y S, et al. Biofiltration of MethanolVapor[J]. Biotechnology Bioengineering,1993,41(5):512-514.
    [50] Leson G, Winer A M. Biofiltration: An Innovative Air Pollution ControlTechnology for VOC Emissions[J]. Journal of the Air and WasteManagement Association,1991,41(8):1045-1054.
    [51]张旭,李媛,柏丽梅,等.废水处理用聚乙烯生物填料表面改性与表征研究[J].环境工程学报,2010,4(5):961-966.
    [52]程江,张凡,海景,等.聚丙烯填料的生物亲和亲水磁化改性对其润湿及挂膜性能的影响[J].化工学报,2004,55(9):1564-1567.
    [53]王霞,刘俊良,马放,等.强化填料SBR工艺处理高浓度制药废水的研究[J].中国农村水利水电,2006,3:65-67.
    [54]赵薇,康勇,赵春景,等.水处理用纤维素载体的降解及生物膜附着性能[J].环境科学学报,2009,29(2):259-265.
    [55]梅荣武,韦彦斐,陆建海.一种多孔亲水性脱氮生物载体的制备方法及其用途.中国专利,CN102174253A,2011,7,7.
    [56]刘娜.某生活小区污水处理工程设计[J].湖南理工学院学报(自然科学版),2009,22(1):75-79.
    [57]李彦锋,马鹏程,周成林,等.改性纳米SiOx复合聚氨酯泡沫及其指标方法和应用.中国专利, CN1631976A.2005-06-29.
    [58]范闻.单分散壳聚糖纳米粒子的制备及其载体应用的研究[D].湖北大学硕士论文,2011.29-58.
    [59]蒋侃,马放,孙铁珩,等.电气石对好氧反硝化菌株反硝化特性的影响[J].硅酸盐学报,2007,35(8):1066-1069.
    [60]祝爱侠,刘海英,谢中国,等.不同因素对超细电气石调控海水pH值的影响[J].非金属矿,2011,34(14):50-52.
    [61]夏枚生.电气石在循环水养殖水处理系统中的应用研究[D].浙江大学博士论文,2005,41-91.
    [62]邵林广.南方城市污水处理工艺的选择[J].给水排水,2000,26(6):32-34.
    [63]邵林广.城市污水处理中初沉池的设置[J].给水排水,2001,27(9):5-7.
    [64] Ma F, Guo J B, Zhao J L, et al. Application of Bioaugmentation to Improvethe Activated Sludge System into the Contact Oxidation System TreatingPetrochemical Wastewater[J]. Bioresource Technology,2009,100(2):597-602.
    [65] Moe W M, L.Irvine R. Polyurethane Foam Medium for Biofiltration. I:Characterization[J]. Journal of Environmental Engineering (ASCE),2000,126(9):815-825.
    [66]邱珊.陶粒性能指标评价体系建立及净水效能研究[D].哈尔滨工业大学硕士论文,2006:20-25.
    [67]蔡笠.几种填料在生物接触氧化工艺中的应用特性及工艺改良研究[D].哈尔滨工业大学硕士论文,2011:37-40.
    [68]刘春晓.生物接触氧化工艺的启动及处理效能研究[D].长安大学硕士论文,2010:45-47.
    [69]徐磊,韩雪峰,尤飞,等.聚氨酯和聚苯乙烯热解前后的结构演变[J].消防科学与技术,2012,31(2):118-121.
    [70]李彦锋,赵光辉,马鹏程,等.改性载体固定化微生物处理高氨氮废水的研究[J].安徽农业科学,2008,36(7):2877-2879.
    [71]王亚宜,李探微,韦甦,等.序批式生物膜技术(SBBR)的应用及其发展[J].浙江工业大学学报,2006,34(2):213-219.
    [72] Woolard C R. The Advantages of Periodically Operated Biofilm Reactorsfor the Treatment of Highly Variable Wastewater. Water Science andTechnology,1997,35(1):199-206.
    [73] Giuseppe P. Phosphorus and Nitrogen Removal in Moving Bed SequencingBatch Biofilm Reactors. Water Science and Technology,1999,41(4-5):169-176.
    [74]田卫东.三种方法提取活性污泥胞外聚合物的比较[J].节能技术,2009,27(2):184-186.
    [75] Dubis M, Gilles K A, Hamilton J K, et al. Colorimetric Method forDetermination of Sugar and Related Substance[J]. Analytical Chemistry,1956,28:350-354.
    [76]徐锡莲,童微星,雷引林,等.盐藻胞外多糖分离纯化方法研究[J].食品与生物技术学报,2007,26(4):28-33.
    [77]宿玮,常耀光,薛长湖,等.海地瓜多糖中蛋白含量测定方法比较[J].食品科学,2011,32(2):201-204.
    [78] Kowalchuk G A, Stephen J R, DeBoer W, et al. Analysis ofAmmonia-Oxidizing Bacteria of the Beta Subdivision of the ClassProteobacteria in Coastal Sand Dunes by Denaturing Gradient GelElectrophoresis and Sequencing of PCR-Amplified16S Ribosomal DNAFragments[J]. Applied and Environmental Microbiology,1997,63(4):1489-1497.
    [79] Dionisi H M, Layton A C, Harms G, et al. Quantificaiton of NitrosomonasOlogotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. fromFulll-Scale Wastewater Treatment Plant[J]. Applied EnvironmentalMicrobiology,2002,68(1):245-253.
    [80] Hebe M D, Alice C L, Gerda H, et al. Quantification of NitrosomonasOligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira sp. fromFull-Scale Wastewater Treatment Plants by Competitive PCR[J]. Appliedand Environmental Microbiology,2002,68(1):245-253.
    [81] Xu G D. Combined treatment of dyeing wastewater by a new sequentialbicycling biological fluidized bed[J]. Journal of Shanghai University,2006,10(2):179-184.
    [82]张旭,李媛,陈胜,等.两种改性方法对聚乙烯填料表面生物膜特性的影响[J].北京林业大学学报,2010,32(6):120-124.
    [83]马放,常玉广,远立江,等.高效絮凝菌的细胞融合及产絮特性研究[J].环境科学学报,2006,26(12):1994-1999.
    [84]马放,杨基先,金文标.环境生物制剂的开发与应用[M].北京:化学工业出版社,2004:37-42.
    [85]孟繁夫,沈文豪,聂大仕.带辐照改性聚丙烯填料的气升式内环流反应器处理废水的研究[J].化学工业与工程技术,2005,26(3):8-10.
    [86] Hanaki K, Wantawin C, Ohgaki S. Nitrification at Low Levels ofDissolved Oxygen with and without Organic Loading in aSuspended-Growth Reactor[J]. Water Research,1990,24(3):297-302.
    [87] Laanbroek H J, Bodelier P L E, Gerards S. Oxygen Consumption Kineticsof Nitrosomonas Europaea and Nitrobacter Hamburgensis Grown in MixedContinuous Cultures at Different Oxygen Concentrations[J]. Archives ofMicrobiology,1994,161(2):156-162.
    [88] Grobicki A, Stuchey D C. Hydraudynamic Characteristics of the AnaerobicBaffled Readtor[J]. Water Research,1992,26(3):371-378.
    [89] Okabe S, Oozawa Y, Hirata K, et al. Relationship between PopulationDynamics of Nitrifiers in Biofilm and Reactor Performance at Various C:N Ratios[J]. Water Research,1996,30(7):1563-1572.
    [90] Yang S F, Tay J H, Liu Y. Respirometric Activities of Heterotrophic andNitrifying Populations in Aerobic Granules Developed at DifferentDubstrate N/COD Ratios[J]. Current Microbiology,2004,49(1):42-46.
    [91]王歆鹏,陈坚,华兆哲.硝化菌在不同条件下的增殖速率和硝化活性[J].应用与环境生物学报,1999,5(1):64-68.
    [92] Kuba T, van Loosdrecht M C M, Heijnen J J. Phosphorus and NitrogenRemoval with Minimal COD Requirement by Integration of DenitrifyingDephosphatation and Nitrificaiton in a Two-Sludge System[J]. WaterResearch,1996,30(7):1702-1710.
    [93] Chiu Y C, Lee L L, Chang C N, et al. Control of Carbon and AmmoniumRatio for Simultaneous Nitrification and Denitrification in a SequencingBatch Bioreactor[J]. International Biodeterioration and Biodegradation,2007,59(1):1-7.
    [94] Munch E V, Lant P, Keller J. Simultaneous Nitrification andDenitrification in Bench-Scale Sequencing Batch Reactors[J]. WaterResearch,1996,30(2):277-284.
    [95]张龙,肖文德,李伟,等. SBR系统中同时硝化反硝化生物脱氮研究[J].环境工程,2005,23(4):29-32.
    [96] Ding D H, Feng C P, Jin Y X, et al. Domestic Sewage Treatment in aSequencing Batch Biofilm Reactor (SBBR) with an Intelligent ControllingSystem[J]. Desalination.2011,276,260-265.
    [97]张鹏,苏宏.生物膜系统同时硝化和反硝化的实验研究[J].环境科学与技术,2005,28(3):16-18.
    [98]石永,周少奇,张鸿郭. SBR法处理垃圾渗滤液及其同时硝化反硝化生物脱氮研究[J].四川环境,2006,25(2):21-25.
    [99]高景峰,彭永臻,王淑莹.有机碳源对低C/N比生活污水好氧脱氮的影响[J].安全与环境学报,2005,5(6):11-15.
    [100]胡林林,王建龙,文湘华,等.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报,2003,9(4):444-447.
    [101] Kroeker E J, Schulte D D, Sparling A B, et al. Anaerobic TreatmentProcess Stability[J]. Journal Water Pollution Control Federation,1979,51(4):718-727.
    [102] Anthonisen A C, Loehr R C, Prakasam T B S, et al. Inhibition ofNitrification by Ammonia and Nitrous Acid[J]. Journal of the WaterPollution Control Federation,1976,48(5):35-52.
    [103] Balmelle B, Nguyen M, Capdeville B, et al.. Study of Factors ControllingNitrite Build-Up in Biological Processes for Water Nitrification[J]. WaterScience and Technology,1992,26(5-6):1017-1025.
    [104] Sliekers A O, Derworth N, Gomez J L, et al. Completely AutotrophicNitrogen Removal over Nitrite in one Single Reactor[J]. Water Resarch,2002,36(10):2475-2482.
    [105]方芳,杨国红,郭劲松,等. DO和曝停比对单级自养脱氮工艺影响试验研究[J].环境科学,2007,28(9):1975-1980.
    [106] Qi R, Yany K, Yu Z X. Treatment of Coke Plant Wastewater by SNDFixed Biofilm Hybrid System[J]. Journal of Environmental Sciences,2007,19(2):153-159.
    [107] Henze M, Gujer W, Mino T, et al. Activated Sludge Models: ASM1, ASM2,ASM2d and ASM3[M]. London: IWA Publishing,2000:124-131.
    [108] Garrido J M, van Benthum W A J, van Loosdrecht M C M, et al.Influence of Dissolved Oxygen Concentration on Nitrite Accumulation in aBiofilm Airlift Suspension Reaetor[J]. Bioteehnology and Bioengineering,1997,53(2):168-178.
    [109] Zumft W G. Cell Biology and Molecular Basis of Denitrification[J].Microbiology and Molecular Biology Reviews,1997,61(4):533-616.
    [110] Zhu G B, Peng Y Z, Li B K, et al. Biological Removal of Nitrogen fromWastewater[J]. Reviews of Environment Contamination and Toxicology,2008,192:159-195.
    [111] Van de Graaf A A, Mulder A, Bruijn P D, et al. Anaerobic Oxidation ofAmmonium Biologically Mediated Process[J]. Applied and EnviromentalMicrobiology,1995,61(4):1246-1255.
    [112]徐伟锋,郑淑平.生物膜法同步硝化反硝化影响因素的分析[J].天津城市建设学院学报,2003,9(1):4-7.
    [113]熊振湖,汪艳宁.溶解氧和pH值对CAST工艺脱氮效果的影响[J].环境工程,2003,21(6):14-16.
    [114]阮文权,卞庆荣. COD与DO对好氧颗粒污泥同步硝化反硝化脱氮的影响[J].应用环境与生物学报,2004,10(3):366-369.
    [115] Zhu G B, Wang S Y, Li T W, et al. Separation of Solid and Liquid bySludge Filtration[J]. Journal of Harbin Institute of Technology,2004,36(6):739-742.
    [116] Third K A, Burnett N, Cord-Ruwisch R. Simultaneous Nitrification andDenitrification using Stored Substrate (PHB) as the Electron Donor in aSBR[J]. Biotechnology and Bioengineering,2003,83(6):706-720.
    [117] Holman J B, Wareham D G. COD, Ammonia and Dissolved Oxygen TimeProfiles in the Simultaneous Nitrification and Denitrification Process[J].Biochemical Engineering Journal,2005,22(2):125-133.
    [118] Pochana K, Keller J. Study of Factors Affecting Simultaneous Nitrificationand Denitrification (SND). Water Science and Technology,1999,39(6),61-68.
    [119]吉芳英,胥驰,万小军,等.曝气量对侧流除磷分段进水SBR脱氮除磷的影响[J].中国给水排水,2010,26(19):5-9.
    [120]周艳丽.组合填料SBBR工艺处理污染河水研究[D].中国海洋大学硕士论文,2011:33-38.
    [121]孙文杰.组合填料SBR工艺处理生活污水研究[D].中国海洋大学,硕士论文,2011:36-40.
    [122]孙振世,柯强,陈英旭. SBR生物脱氮机理及其影响因素[J].中国沼气,2001,19(2):16-19.
    [123]张锦荣.生物接触氧化法处理生活污水[J].油气田环境保护,1997,4(7):17-18.
    [124]沈耀良,赵丹.强化SBR工艺脱氮除磷效果的若干对策[J].中国给水排水,2002,16(7):23-25.
    [125] Borregaard V R. Experience with Nutrient Removal in a Fixed-FilmSystem at Full-Scale Wastewater Treatment Plants[J]. Water Science andTechnology,2009,36(1):129-137.
    [126]张杰.环境工程手册(水污染防治卷)[M].北京:高等教育出版社,1996:156-162.
    [127] Cao H B,Li X G,Wu J C, et al. Simulation of the Effects of Direct ElectricCurrent on Multispecies Biofilm[J]. Process Biochemistry,2007,38(8):1139-1145.
    [128] Chudoba P, Pujol R. A Three-Stage Biofiltration Process: Performances ofa Pilot Plant[J]. Water Science and Technology,2009,38(8-9):257-265.
    [129] Boller M, Gujer W, Tschui M. Parameters Affecting Nitrifying BiofilmReactor[J]. Water Science and Technology,2009,29(10-11):1-11.
    [130] Wu H F, Wang S H, Kong H L, et al. Performance of Combined Process ofAnoxic Baffled Reactor-Biological Contact Oxidation Treating Printingand Dyeing Wastewater[J]. Bioresource Technology,2007,98(7):1501-1504.
    [131] Hellinga C, Schellen A, Mulder J W, et al. The Sharon Process: anInnovative Method for Nitrogen Removal from Ammonium RichWastewater[J]. Water Science and Technology,1998,37(9):135-142.
    [132] Heijnen J J, van Loosdrecht M C M, Mulder A, et al. Formation ofBiofilms in a Biofilm Air-Lift Suspension Reactor[J]. Water Sciencetechnology,1992,26(5):647-654.
    [133] Tijhuis L, van Loosdrecht M C M, Heijnen J J. Formation and Growth onHeterotrophic Aerobic Biofilm on Small Suspended Particles in AirliftReactors[J]. Bioengineering,1994,44(5):595-608.
    [134]高艳玲.悬浮载体生物流化床反应器脱氮试验研究[D].哈尔滨:哈尔滨工业大学博士论文,2007:120-126.
    [135]郑兴灿,李亚新.污水脱氮除磷技术[M].北京:中国建筑工业出版社,1998:285-192.
    [136]岳春梅,明镇寰.分子生物学技术在环境微生物监测中的应用[J].微生物学通报,2000,27(3):215-218.
    [137] Masseret E, Bourdier G, Amblard C. Changes in the Structure andMetabolic Activities of Periphytic Communities in a Stream ReceivingTreated Sewage from a Waste Stabilization Pond[J]. Water Research,1998,32(8):2299-2314.
    [138] Grabowski A, Nercessian O, Fayolle F, et al. Microbial Diversity inProduction Waters of a Low-Temperature Biodegraded Oil Reservoir[J].FEMS Microbiology Ecology,2005,54(3):427-443.
    [139]任艳红,徐向阳,唐全.降解五氯酚厌氧生物反应器微生物种群结构的分子特性研究[J].环境科学学报,2005,25(2):214-219.
    [140] Lin S S, Jin Y, Fu L, et al. Microbial Community Variation and Functionsto Excess Sludge Reduction in a Novel Gravel Contact OxidationReactor[J]. Journal of Hazardous Materials,2009,165(1-3):1083-1090.
    [141] Hunik J H, Tramper J, Wijffels R H. A Strategy to Scale up NitrificationProcesses with Immobilized Cells of Nitrosomonas Europaea andNitrobacter Agilis[J]. Biotechnology and Bioprocess Engineering,1994,11(2):73-82.
    [142] Van der Star W R, Miclea A I, van Dongen U G et al. The MembraneBioreactor: A Novel Tool to Grow Anammox Bacteria as Free Cells[J].Biotechnology Bioengineering,2009,101(2):286-294.
    [143] Kindaichi T, Ito T, Okabe S. Ecophysiological Interaction betweenNitrifying Bacteria and Heterotrophic Bacteria in Autotrophic NitrifyingBiofilms as Determined by Microautoradiography-Fluorescence in SituHybridization[J]. Applied and Environmental Microbiology,2007,70(3):1641-1650.
    [144] Park H D, Noguera D R. Evaluating the Effect of Dissolved Oxygen onAmmonia-Oxidizing Bacterial Communities in Activated Sludge[J]. WaterResearch,2004,38(14-15):3275-3286.
    [145] Egli K, Bosshard F, Werlen C, et al. Microbial Composition and Structureof a Rotating Biological Contactor Biofilm Treating Ammonium-RichWastewater without Organic Carbon[J]. Microbilogy Ecology,2003,45(4):419-432.
    [146] Rowan A K, Snape J R, Fearnside D, et al. Compositionand Diversity ofAmmonia-Oxidising Bacterial Communities in Wastewater TreatmentReactors of Different Design Treating Identical Wastewater[J]. FEMSMicrobiology Ecology,2003,43(2):195-206.
    [147] Moussavi G, Khavanin A, Sharifi A. Ammonia Removal from a Waste AirTream using a Biotrickling Filter Packed with Polyurethane Foam throughthe SND Process[J]. Bioresource Technology,2010,102(3):2517-2522.
    [148] Wagner M, Loy A. Bacterial Community Composition and Function inSewage Treatment Systems[J]. Current Opinion in Biotechnology,2002,13(3):218-227.
    [149] Ginige M P, Hugenholtz P, Daims H, et al. Use of Stable-Isotope Probing,Full-Cycle rRNA Analysis, and Fluorescence in SituHybridization-Microautoradiography to Study a Methanol-FedDenitrifying Microbial Community[J]. Applied Microbiology andBiotechnology,2004,70(1):588-596.
    [150]秦宇. SBBR单级自养脱氮工艺及其微生态特性研究[D].重庆大学博士论文,2009:65-68.
    [151] Kindaichi T, Tsushima I, Ogasawara Y, et al. In situ Activity and SpatialOrganization of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria inBiofilms. Applied and Environmental Microbiology,2007,73(15):4931-4939.
    [152]梁志伟.短程硝化反硝化联合脱氮工艺运行策略与硝化生物膜特性研究[D].浙江大学博士论文,2010:51-55.
    [153] Xia W W, Zhang C X, Zeng X W, et al. Autotrophic Growth of NitrifyingCommunity in an Agricultural Soil[J]. The ISME Journal,2011,5,1226-1236.
    [154] Kasai T, Suzuki T, Ono K, et al. Pea Extracellular Cu/Zn-SuperoxideDismutase Responsive to Signal Molecules from a Fungal Pathogen[J].Journal of General Plant Pathology,2006,72(5):265-272.
    [155] Aoi Y, Miyoshi T, Okamoto T, et al. Microbial Ecology of NitrifyingBacteria in Wastewater Treatment Process Examined by Fluorescence inSitu Hybridization[J]. Journal of Bioscience and Bioengineering,2000,90(3),234-240.
    [156] Mota C, Head M A, Ridenoure J A, et al. Effects of Aeration Cycles onNitrifying Bacterial Populations and Nitrogen Removal in IntermittentlyAerated Reactors[J]. Applied and Environmental Microbiology,2005,71(12),8565-8572.
    [157] Nittami T, Ootake H, Imai Y, et al. Partial Nitrification in a ContinuousPre-Denitrification Submerged Membrane Bioreactor and its NitrifyingBacterial Activity and Community Dynamics[J]. Biochemical EngineeringJournal,2011,55(2):101-107.
    [158] Satoh H, Okabe S, Norimatsu N, et al. Significance of Substrate C/N Ratioon Structure and Activity of Nitrifying Biofilms Determined by in SituHybridization and the Use of Microelectrodes[J]. Water ScienceTechnology,2000,41(4):317-321.
    [159]梅翔,占晶,沙昊,等.以红薯浸泡液为碳源的生物反硝化[J].环境工程学报,2010,4(5):1032-1036.
    [160]魏存弟,孙彦彬,杨殿范,等.电气石活化水效应的应用[J].吉林大学学报(地球科学版),2010,40(6):1451-1455.
    [161]李杰.新型生物载体的制备、表征及在废水生物处理中的应用基础研究
    [D].西安:西安建筑科技大学博士论文,2008:66-78.
    [162]吴小付.亲水性多孔载体在流化床中的生物膜形成过程分析[J].环境工程学报,2008,2(6):727-732.
    [163]王武生.水性聚氨酯产品设计[J].聚氨酯,2007,6(61):65-68.
    [164] Honda Y, Osawa Z. Microbial Denitrification of Wastewater usingBiodegradable Polycaprolactone[J]. Polymer Degradation and Stability,2002,76(2):321-327.
    [165] Walters E, Hille A, He M, et al. Simultaneous Nitrification/Denitrificationin a Biofilm Airlift Suspension (BAS) Reactor with Biodegradable FillerMaterial[J]. Water Research,2009,43(18):4461-4468.
    [166] Nogueira R, Melo L F, Purkhold U, et al. Nitrifying and HeterotrophicPopulation Dynamics in Biofilm Reactors: Effects of Hydraulic RetentionTime and the Presence of Organic Carbon[J]. Water Research,2002,36(2):469-481.
    [167] Peng Y Z, Zhu G B. Biological Nitrogen Removal with Nitrification andDenitrification via Nitrite Pathway[J]. Applied MicrobiologyBiotechnology,2006,73(1):15-26.
    [168] Gao D W, Peng Y Z, Li B K, et al. Shortcut Nitrification-Denitrification byReal-Time Control Strategies[J]. Bioresource Technology,2009,100(7):2298-2300.
    [169] Wang J L, Peng Y Z, Wang S Y, et al. Nitrogen Removal by SimultaneousNitrification and Denitrification via Nitrite in a Sequence HybridBiological Reactor. China Journal Chemical Engineering,2008,16(5):778-784.
    [170]施永生.亚硝酸型生物脱氮技术[J].给水排水,2000,26(11):21-24.
    [171] Chu L B, Wang J L. Comparison of Polyurethane Foam and BiodegradablePolymer as Fillers in Moving Bed Biofilm Reactor for TreatingWastewater with a Low C/N Ratio[J]. Chemosphere,2011,83(1):63-68.
    [172] Simpson D R. Biofilm Processed in Biologically Active Carbon WaterPurification[J]. Water Research,2008,42(12):2839-2848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700