用户名: 密码: 验证码:
利用双污泥反硝化除磷工艺降低污水处理过程中N_2O的产生
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着城市化和工业化进程的不断提高,低碳氮比(C/N)污水日益增多。然而,传统生物脱氮除磷工艺由于存在反硝化菌和聚磷菌对碳源竞争的问题,难以实现低C/N污水的达标处理。反硝化除磷作为一种新型脱氮除磷技术能“一碳两用”,可有效处理低C/N污水,达到高效脱氮除磷的目的。然而,反硝化除磷过程可产生大量温室气体N20,因此研究其N20的产生机理和控制方法,为推广反硝化除磷工艺的应用具有重要意义。
     本论文构建了双污泥反硝化除磷系统,研究了其处理低C/N城市污水过程中N20的产生特征,明确了系统中N20的主要产生阶段;探讨了双污泥系统曝气硝化阶段以及缺氧反硝化除磷阶段N20产生的机理和影响因素,确定了曝气和缺氧阶段的最佳运行条件;提出了双污泥系统处理低C/N城市污水过程中N20产生的减量化控制措施,并对减排效果进行了评价。主要研究内容及结果如下:
     (1)阐明了双污泥系统中氮、磷的去除效果和N2O的产生特征。双污泥系统对低C/N城市污水具有较高的处理效果,总氮和总磷的去除效率高达92.13%和95.18%。双污泥处理低C/N城市污水过程中有大量N20的产生,每周期N20产生量占总氮去除的比例高达1.47%;其中曝气阶段、缺氧反硝化除磷阶段以及后曝气阶段N20产生量占总氮去除的比例分别为0.86%、0.41%以及0.20%。
     (2)明确了双污泥系统曝气硝化过程中N2O产生的来源,确定了曝气硝化阶段的最佳DO浓度。双污泥系统曝气阶段N2O产生主要来源于自养菌的硝化作用,其对N2O产生的贡献率高达97.1%,而异养菌的反硝化作用对N20的产生几乎没有贡献。DO浓度对曝气阶段N20的产生具有重要的影响,当DO浓度为2.5mg/L时,N20的产生量最低,其周期产生量只有0.20mg/L。
     (3)揭示了双污泥系统缺氧反硝化除磷过程中N20产生的机理,确定了可减少缺氧反硝化除磷阶段N20产生的运行方式。反硝化除磷过程中N20产生的主要原因是,反硝化聚磷菌以胞内聚合物(PHA)为碳源进行反硝化,导致反硝化酶对电子形成竞争,使氧化亚氮还原酶无法获得足够的电子将N20还原,并引起亚硝酸盐的积累。连续的硝酸盐投加方式、以丙酸为碳源,均可明显减少反硝化除磷过程中亚硝酸盐的积累,降低N20的产生。
     (4)研究了碳源类型对反硝化除磷过程N20产生的影响机制,揭示了以丙酸为碳源时反硝化除磷过程N20产生量低的原因。碳源类型明显影响了反硝化除磷过程中N20的产生,以乙酸为碳源时,N20的产生量最高,占总氮去除的16.32%;而以混合酸(乙酸和丙酸)和丙酸为碳源时,N20的产生量仅占总氮去除的1.92%和0.43%。丙酸系统N20产生量低的主要原因是,以丙酸为单一碳源,反硝化除磷系统中不存在反硝化酶对电子的竞争作用,亚硝酸盐和氧化亚氮还原酶的活性不会受到抑制,不会导致亚硝酸盐的积累。
     (5)建立了可有效提高氮磷去除效果、降低N20产生的双污泥系统及其优化控制方案。控制曝气阶段DO条件以及采用丙酸作为碳源,能有效降低双污泥系统N20的产生,并可实现氮磷的高效去除。构建的双污泥系统出水中的总氮和总磷浓度分别只有3.16mg/L和0.39mg/L,去除率都达到90%以上;其N20产生量只占总氮去除的0.75%,远低于常规污水处理工艺(1.72%)和文献中报告的其他工艺的产生量。
In recent years, with the improvement of urbanization and industrialization, wastewater with low C/N ratio is increasing. However, due to both denitrifiers and phosphate accumulating orgasims (PAOs) require carbon source, the effluent could not reach the discharge standards when conventional biological nutrient removal (BNR) was used to treat the wastewater with low C/N ratio. Denitrifying phosphorus removal which could remove nitrogen and phosphorus simultaneously using the same carbon source is a new prominent biological wastewater treatment technique, and it is particularly suitable for treating low COD/N wastewater. However, several studies have reported that denitrifying phosphorus removal process could produce a lot of nitrous oxide (N2O). Therefore, effective control of N2O emission from denitrifying phosphorus removal process is of great importance and attracts increasingly more attention.
     In this study, the denitrifying phosphorus removal was achieved in a two-sludge system which was used to treat municipal sewage with low C/N ratio, and the N2O production characteristics during this system were systemically studied, and the main N2O production phase was clear; the mechanism and influence factors of N2O production during the aerobic nitrification stage and anoxic denitrifying phosphorus removal stage in two-sludge system was investigated, and the best operating conditions during aerobic and anoxic stages was clear; feasible N2O reduction strategies in two-sludge system were proposed, and the reduction effects of the proposed strategies were evaluated. The main research conclusions are as follows:
     (1) The nitrogen and phosphorous removal rates and N2O production characteristics in two-sludge system was clear. It was found that the TN and TP removal rates in two-sludge system reached92.13%and95.18%respectively. A lot of N2O was produced in two-sludge system, N2O production during one cycle accounted for1.47%of the total nitrogen removal, and the production amounts during aerobic, anoxic and post-aerobic stages were0.86%,0.41%and0.20%of the TN removal.
     (2) The sources of N2O production and the best DO concentrations in aerobic stage of two-sludge system were clear. Autotrophic nitrification which accounted for97.1%of the N2O production was the main source due to no heterotrophic denitrification occurred in aerobic stage of two-sludge system. DO concentrations significantly affected N2O production in aerobic stage. When DO concentration was2.5mg/L, the N2O production was lowest, and the amount during one cycle was only0.20mg/L.
     (3) The mechanism of N2O production and the best operating conditions which could decrease N2O production during anoxic denitrifying phosphorus removal stage were clear. The main reason for N2O production during denitrifying phosphorus removal process was that denitrifying phosphorous accumulating organisms DPAOs used poly-β-hydroxyalkanoates (PHA) as carbon source for denitrification, and the limited electrons provided by PHA could not satisfy the requirement of denitrifying enzymes, and this resulted high nitrite accumulation. Accordingly, the reduction of N2O production was successfully achieved via two control measures:the use of continuous nitrate addition and the use of propionate as the carbon source.
     (4) The mechanisms of carbon sources affected N2O production during denitrifying phosphorous removal process were studied, and the causes of low N2O production when using propionate as carbon source was clear. Carbon sources significantly affected N2O production during denitrifying phosphorous removal process. When using acetate as the sole carbon source, the N2O production amount was up to16.3%of the TN removal; whereas, when using the mixture of acetate and propionate or propionate as carbon source, the N2O production amount were1.92%and0.43%of the TN removal. The main reason for nearly no N2O production in propionate system was that:when using propionate as the sole carbon source, the electrons provided by PHA could satisfy the requirement of denitrifying enzymes, and the nitrite and N2O reductase activities were not inhibited, as a result, no nitrite was accumulated.
     (5) The two-sludge system and optimization strategies which could improve nitrogen and phosphorous removal ratio and decrease N2O production were established. When using propionate as the sole carbon source and the DO concentrations were controlled at2.5mg/L, not only low N2O production but also high nitrogen and phosphorous removal were achieved in two-sludge system. The TN and TP concentrations in effluent were only3.16and0.39mg/L, respectively. N2O production amount during one cycle was only0.75%of TN removal, which was much lower than the conventional wastewater treatment (1.72%) and other processes reported in the literatures.
引文
[1].周雹.城镇污水生物处理新工艺及其应用[J].中国给水排水.2003;19(12):36-39.
    [2].刘洪波.低浓度城市污水强化反硝化除磷[D]:同济大学;2007.
    [3].程丽巍,许海,陈铭达,刘兆普,陈巍,华静霞,霍珊珊.水体富营养化成因及其防治措施研究进展[J].环境保护科学.2007;33(01):18-21.
    [4].王晓莲,彭永臻,王淑莹,马勇.城市可持续污水生物处理技术[J].水处理技术.2004;30(02):106-109.
    [5].王荣斌,李军,张宁,宋玮华,何恒海.污水生物除磷技术研究进展[J].环境工程.2007;25(01):84-88.
    [6].刘秀红,杨庆,吴昌永,彭永臻,周利,尚会来.不同污水生物脱氮工艺中N20释放量及影响因素[J].环境科学学报.2006;26(12):1940-1947.
    [7].耿军军,王亚宜,张兆祥,任中佳,何维涛.污水生物脱氮革新工艺中强温室气体N20的产生及微观机理[J].环境科学学报.2010;30(09):1729-1738.
    [8].王赛,王淑莹,巩有奎,彭永臻,张静蓉.新型生物脱氮工艺中N20产生及释放研究进展[J].水处理技术.2010;36(03):5-9.
    [9]. Forster P, editor. Changes in Atmospheric Constituents and in Radiative Forcing. Cambridge, United Kingdom:Cambridge University Press; 2007.
    [10].王少彬.大气中氮氧化物的汇、源和环境效应[J].环境保护.1994;22(4):23-27.
    [11]. Ravishankara AR, Daniel JS, Portmann RW. Nitrous Oxide (N2O):The Dominant Ozone-Depleting Substance Emitted in the 21st Century [J]. Science. 2009; 326(5949):123-125.
    [12]. Khalil MAK, Rasmussen RA. The global sources of nitrous oxide [J]. Journal of Geophysical Research.1992; 97(D13):14651-14660.
    [13]. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MSM, van Loosdrecht MCM. Nitrous oxide emission during wastewater treatment [J]. Water Research. 2009; 43(17):4093-4103.
    [14].娄金生,谢水波,何少华d.生物脱氮除磷原理与应用.湖南长沙:国防 科技大学出版社;2002.
    [15]. Staley JT, Bryant MP, Pfenning N, JG H. Bergey's manual of systematic bacteriology. Williams & Wilkins; 1989. p.1807-1835.
    [16].胡振.缺氧—好氧生物脱氮系统中N2O的释放机理与减量化控制研究[D]:山东大学:2011.
    [17].王晓姗,刘杰,于建生.海洋氮循环细菌研究进展[J].科学技术与工程.2009;9(17):5057-5064.
    [18]. Gebremariam SY, Beutel MW, Christian D, Hess TF. Research Advances and Challenges in the Microbiology of Enhanced Biological Phosphorus Removal [J]. Water Environment Research.2011; 83(3):195-219.
    [19]. Oehmen A, Lemos PC, Carvalho G, Yuan ZG, Keller J, Blackall LL, Reis MAM. Advances in enhanced biological phosphorus removal:From micro to macro scale [J]. Water Research.2007; 41(11):2271-2300.
    [20].张立成.亚硝化反硝化除磷工艺及分子微生物学研究[D]:北京工业大学;2011.
    [21].吴昌永.A2/O工艺脱氮除磷及其优化控制的研究[D]:哈尔滨工业大学;2010.
    [22].王业宜.反硝化除磷脱氮机理及工艺研究[D]:哈尔滨工业大学;2004.
    [23].曹雪梅.A2/O工艺反硝化除磷的实现及性能的研究[D]:哈尔滨工业大学;2007.
    [24].姜欣欣.基于A/O/A运行模式的SBR工艺脱氮除磷效能及其微生物特性研究[D]:哈尔滨工业大学;2011.
    [25].李泽政.污水生物脱氮除磷工艺研究进展[J].广东化工.2010;37(12):90-92.
    [26].张杰,臧景红,杨宏,刘俊良.A2/O工艺的固有缺欠和对策研究[J].给水排水.2003;29(03):22-26.
    [27].张波,苏玉民.倒置A2/O工艺的氮磷脱除功能[J].环境工程.1999;17(02):7-10.
    [28].张波,高廷耀.倒置A2/O工艺的原理与特点研究[J].中国给水排水.2000;16(07):11-15.
    [29].毕学军,张波.倒置A2/O工艺生物脱氮除磷原理及其生产应用[J].环境工 程.2006;24(03):29-30.
    [30].王德欣,李永峰.改良型UCT工艺在合成废水中脱氮除磷的优化[J].哈尔滨商业大学学报(自然科学版).2012;28(06):661-667.
    [31].邹嘉乐,张胜海.改良型A2/O工艺处理城市污水的生物脱氮优化控制[J].中国给水排水.2009;25(24):86-90.
    [32].周斌.改良型A2/O工艺的除磷脱氮运行效果[J].中国给水排水.2001;17(07):46-48.
    [33].任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究[J].给水排水.2000;26(06):7-10.
    [34].高云,常爱玲,胡志光.氧化沟污水处理新技术[J].工业水处理.2002;22(09):16-18.
    [35].黄祖安.Carrousel氧化沟脱氮除磷工艺的运行控制[J].中国给水排水.2003;19(12):101-102.
    [36].吴昊,刘庆臣,李强利,杨传文.氧化沟工艺运行中常见问题与解决方法[J].给水排水.2002;28(05):26-28.
    [37].黄崟,肖兰.氧化沟的脱氮除磷工艺应用评述[J].水资源保护.2004;20(01):6-8.
    [38].周雹.SBR工艺的分类和特点[J].给水排水.2001;27(02):31-33.
    [39].王凯军,宋英豪.SBR工艺的发展类型及其应用特性[J].中国给水排水.2002;18(07):23-26.
    [40].冯生华,姚念民.生物除磷脱氮工艺的探讨[J].给水排水.1994;(02):18-21.
    [41].华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策[J].给水排水.2000;26(12):1-4.
    [42].杨勇光.碳源种类对反硝化除磷系统的影响及反硝化聚磷菌(DPB)的分离[D]:重庆大学;2010.
    [43].王俊安,李冬,陶晓晓,李占,张杰.城市污水生物除磷脱氮工艺探讨[J].给水排水.2009;35(S1):62-66.
    [44].杨国靖,李小明,曾光明,杨麒,谢珊,刘精今.一体化生物除磷脱氮技术——反硝化除磷[J].环境科学与技术.2005;28(02):107-109.
    [45].操家顺,杨雪冬,Loosdrecht MV. BCFS—生物除磷新工艺[J].中国给水排水.2002;18(03):23-26.
    [46].万金保,王建永.反硝化除磷理论及运用现状[J].水处理技术.2008;34(03):7-10.
    [47]. Kuba T, van Loosdrecht MCM, Heijnen JJ. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system [J]. Water Research.1996; 30(7): 1702-1710.
    [48].王亚宜,彭永臻,王淑莹,李勇智,潘绵立.反硝化除磷理论、工艺及影响因素[J].中国给水排水.2003;19(01):33-36.
    [49].卢峰,杨殿海.反硝化除磷工艺的研究开发进展[J].中国给水排水.2003;19(09):32-34.
    [50]. Van Loosdrecht MCM, Brandse FA, de Vries AC. Upgrading of waste water treatment processes for integrated nutrient removal-The BCFS (R) process [J]. Water Science and Technology.1998; 37(9):209-217.
    [51]. Hao XD, van Loosdrecht MCM. Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS (R)) [J]. Water Science and Technology.2006; 53(3):191-198.
    [52]. Bortone G, Saltarelli R, Alonso V, Sorm R, Wanner J, Tilche A. Biological anoxic phosphorus removal. The DEPHANOX process [J]. Water Science and Technology.1996; 34(1-2):119-128.
    [53]. Bortone G, Libelli SM, Tilche A, Wanner J. Anoxic phosphate uptake in the DEPHANOX process [J]. Water Science and Technology.1999; 40(4-5): 177-185.
    [54].王亚宜,杜红,彭永臻,尾崎益雄,泷川哲夫.A2N反硝化除磷脱氮工艺及其影响因素[J].中国给水排水.2003;19(09):8-11.
    [55].罗固源,罗宁,吉芳英,许晓毅.新型双泥生物反硝化除磷脱氮工艺[J].中国给水排水.2002;18(09):4-7.
    [56].罗宁.双泥生物反硝化吸磷脱氮系统工艺的试验研究[D]:重庆大学;2003.
    [57]. Papen H, Renneberg H. Microbial processes involved in emissions of radioactively important trace gases. Transactions 14 th International Congress of Soil Science. Kyoto (Japan) 1990.
    [58]. Wrage N, Velthof GL, van Beusichem ML, Oenema O. Role of nitrifier denitrification in the production of nitrous oxide [J]. Soil Biology and Biochemistry.2001; 33(12-13):1723-1732.
    [59]. Kim JK, Park KJ, Cho KS, Nam SW, Park TJ, Bajpai R. Aerobic nitrification-denitrification by heterotrophic Bacillus strains [J]. Bioresource Technology.2005; 96(17):1897-1906.
    [60].肖晶晶,郭萍,霍炜洁,于江,朱昌雄.反硝化微生物在污水脱氮中的研究及应用进展[J].环境科学与技术.2009;32(12):97-101.
    [61]. Hu Z, Zhang J, Li S, Xie H, Wang J, Zhang T, Li Y, Zhang H. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs) [J]. Journal of Bioscience and Bioengineering.2010; 109(5):487-491.
    [62]. Zeng RJ, Lemaire R, Yuan Z, Keller J. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor [J]. Biotechnology and Bioengineering.2003; 84(2):170-178.
    [63].张可方,杜馨,张朝升,方茜.C/N对同步硝化反硝化影响的试验研究[J].环境科学与技术.2007;30(06):3-5.
    [64]. Schalk-Otte S, Seviour RJ, Kuenen JG, Jetten MSM. Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes [J]. Water Research.2000; 34(7):2080-2088.
    [65]. Kishida N, Kim JH, Kimochi Y, Nishimura O, Sasaki H, Sudo R. Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process [J]. Water Science and Technology.2004; 49(5-6):359-365.
    [66]. Wu J, Zhang J, Jia W, Xie H, Gu RR, Li C, Gao B. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater [J]. Bioresource Technol.2009; 100(12): 2910-2917.
    [67]. Van Rijn J, Tal Y, Barak Y. Influence of Volatile Fatty Acids on Nitrite Accumulation by a Pseudomonas stutzeri Strain Isolated from a Denitrifying Fluidized Bed Reactor [J]. Applied and Environmental Microbiology.1996; 62(7):2615-2620.
    [68]. Adouani N, Lendormi T, Limousy L, Sire O. Effect of the carbon source on N2O emissions during biological denitrification [J]. Resources, Conservation and Recycling.2010; 54(5):299-302.
    [69]. Tsuneda; S, Mikamia; M, Kimochib; Y, Hirataa; A. Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater [J]. Journal of Hazardous Materials.2005; B119:93-98.
    [70]. Schonharting B, Rehner R, Metzger JW, Krauth K, Rizzi M. Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S-containing wastewater:Quantification and application of a new mathematical model [J]. Water Science and Technology.1998; 38(1):237-246.
    [71]. Garrido JM, Moreno J, Mendez-Pampin R, Lema JM. Nitrous oxide production under toxic conditions in a denitrifying anoxic filter [J]. Water Research.1998; 32(8):2550-2552.
    [72]. Jia W, Zhang J, Xie H, Yan Y, Wang J, Zhao Y, Xu X. Effect of PHB and oxygen uptake rate on nitrous oxide emission during simultaneous nitrification denitrification process [J]. Bioresource Technology.2012; 113(0):232-238.
    [73].吕锡武,稻森悠平,水落元之.同步硝化反硝化脱氮及处理过程中N2O的控制研究[J].东南大学学报(自然科学版).2001;31(01):95-99.
    [74]. Park KY, Inamori Y, Mizuochi M, Ahn KH. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration [J]. Journal of Bioscience and Bioengineering.2000; 90(3):247-252.
    [75]. Tallec G, Garnier J, Billen G, Gousailles M. Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants:Effect of oxygenation level [J]. Water Research.2006; 40(15): 2972-2980.
    [76]. Schulthess Rv, Wild D, Gujer W. Nitric and nitrous oxides from denitrifying activated sludge at low oxygen concentration [J]. Water Science and Technology 1994; 30(6):123-132.
    [77].李亚静,孙力平,郑淑平.碳源浓度和污泥龄对反硝化聚磷脱氮影响研究[J].环境科学与技术.2008;31(05):112-115.
    [78]. Zheng H, Hanaki K, Matsuo T. Production of nitrous oxide gas during nitrification of wastewater [J]. Water Science and Technology.1994; 30(6): 133-141.
    [79]. Hanaki K, Hong Z, Matsuo T. Production of nitrous oxide gas during denitrification of wastewater. [J]. Water Science and Technology.1992; 26(5-6): 1027-1036.
    [80]. Gejlsbjerg B, Frette L, Westermann P. Dynamics of N2O production from activated sludge [J]. Water Research.1998; 32(7):2113-2121.
    [81]. Thorn M, Soensson F. Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal [J]. Water Research. 1996; 30(6):1543-1547.
    [82]. Law Y, Lant P, Yuan Z. The effect of pH on N2O production under aerobic conditions in a partial nitritation system [J]. Water Research.2011; 45(18): 5934.5944.
    [83]. Pan Y, Ye L, Ni B-J, Yuan Z. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers [J]. Water Research. 2012; 46(15):4832-4840.
    [84]. Kim JS, Kim SJ, Lee BH. Effect of Alcaligenes faecalis on Nitrous Oxide Emission and Nitrogen Removal in Three Phase Fluidized Bed Process [J]. Journal of Environmental Science and Health, Part A.2004; 39(7):1791-1804.
    [85]. Noda N, Kaneko N, Milkami M, Kimochi Y, Tsuneda S, Hirata AMM, Inamori Y. Effects of SRT and DO on N2O reductase activity in an anoxic-oxic activated sludge system [J]. Water Science and Technology.2003; 48(No.11-12): 363-370.
    [86]. Chen P, Li J, Li QX, Wang Y, Li S, Ren T, Wang L. Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp CPZ24 [J]. Bioresource Technology.2012; 116:266-270.
    [87]. Hu Z, Zhang J, Xie H, Li S, Zhang T, Wang J. Identifying sources of nitrous oxide emission in anoxic/aerobic sequencing batch reactors (A/O SBRs) acclimated in different aeration rates [J]. Enzyme and Microbial Technology. 2011; 49(2):237-245.
    [88]. Hu Z, Zhang J, Xie H, Li S, Wang J, Zhang T. Effect of anoxic/aerobic phase fraction on N2O emission in a sequencing batch reactor under low temperature [J]. Bioresource Technology.2011; 102(9):5486-5491.
    [89]. Rassamee V, Sattayatewa C, Pagilla K, Chandran K. Effect of Oxic and Anoxic Conditions on Nitrous Oxide Emissions from Nitrification and Denitrification Processes [J]. Biotechnology and Bioengineering.2011; 108(9):2036-2045.
    [90]. Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. N2O Emissions from Activated Sludge Processes,2008-2009:Results of a National Monitoring Survey in the United States [J]. Environmental Science & Technology.2010; 44(12):4505-4511.
    [91].彭永臻,尚会来,张静蓉,王淑莹,刘秀红.SBR和HBR两种反应器中N2O产生量的研究[J].北京工业大学学报.2008;34(12):1339-1344.
    [92].刘秀红,彭轶,马涛,刘春慧,彭永臻.DO浓度对生活污水硝化过程中N20产生量的影响[J].环境科学.2008;29(03):660-664.
    [93].尚会来,彭永臻,张静蓉,王淑莹.SRT对于污水脱氮过程中N2O产生的影响[J].环境科学学报.2009;29(04):754-758.
    [94].胡振,张建,谢慧君,李善评,张婷婷,李一冉.污水生物脱氮过程中N2O的产生与控制研究进展[J].环境科学与技术.2011;34(12):95-100.
    [95]. Fukumoto Y, Suzuki K, Osada T, Kuroda K, Hanajima D, Yasuda T, Haga K. Reduction of nitrous oxide emission from pig manure composting by addition of nitrite-oxidizing bacteria [J]. Environmental Science & Technology.2006; 40(21):6787-6791.
    [96].张婷婷.污水生物脱氮中进水碳氮比对N20释放的影响及其减量化控制[D]:山东大学;2012.
    [97]. Zhu X, Chen Y. Reduction of N2O and NO Generation in Anaerobic-Aerobic (Low Dissolved Oxygen) Biological Wastewater Treatment Process by Using Sludge Alkaline Fermentation Liquid [J]. Environmental Science& Technology. 2011; 45(6):2137-2143.
    [98]. Lu HJ, Chandran K. Factors Promoting Emissions of Nitrous Oxide and Nitric Oxide From Denitrifying Sequencing Batch Reactors Operated With Methanol and Ethanol as Electron Donors [J]. Biotechnology and Bioengineering.2010; 106(3):390-398.
    [99]. Felgate H, Giannopoulos G, Sullivan MJ, Gates AJ, Clarke TA, Baggs E, Rowley G, Richardson DJ. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways [J]. Environmental Microbiology.2012; 14(7): 1788-1800.
    [100]. Zhu X, Chen Y, Chen H, Li X, Peng Y, Wang S. Minimizing nitrous oxide in biological nutrient removal from municipal wastewater by controlling copper ion concentrations [J]. Applied Microbiology and Biotechnology.2012; 97(3): 1325-1334.
    [101]. Chen Y, Wang D, Zhu X, Zheng X, Feng L. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process [J]. Environmental Science & Technology. 2012; 46(22):12452-12458.
    [102]. Wang YY, Geng JJ, Guo G, Wang C, Liu SH. N2O production in anaerobic/anoxic denitrifying phosphorus removal process:The effects of carbon sources shock [J]. Chemical Engineering Journal.2011; 172(2-3): 999-1007.
    [103]. Wang YY, Geng JJ, Ren ZJ, He WT, Xing MY, Wu M, Chen SW. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production [J]. Bioresource Technology.2011; 102(10):5674-5684.
    [104]. Zhou Y, Pijuan M, Yuan ZQ. Development of a 2-sludge,3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms [J]. Water Research.2008; 42(12):3207-3217.
    [105]. Zeng RJ, Yuan ZG, Keller J. Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system [J]. Biotechnology and Bioengineering.2003; 81(4):397-404.
    [106]. Ekama GA, Wentzel MC. Difficulties and developments in biological nutrient removal technology and modelling [J]. Water Science and Technology.1999; 39(6):1-11.
    [107].姜鸣,张静慧,宫飞蓬,周军,甘一萍,李军.生物反硝化除磷技术研究进展[J].净水技术.2011;30(06):11-15.
    [108].刘洪波,李卓,缪强强,肖苏林,夏四清.传统生物除磷脱氮工艺和反硝化除磷工艺对比[J].工业用水与废水.2006;37(06):4-7.
    [109].李秀娟.反硝化除磷脱氮工艺中N20的产生及减量化控制[D]:山东大学;2012.
    [110].国家环保局《水和废水监测分析方法》编委会,editor.水和废水监测分析方法.4 ed.北京:中国环境科学出版社;2002.
    [111]. Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan ZG, Keller E. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems [J]. Journal of Chromatography A. 2005; 1070(1-2):131-136.
    [112].葛利云.催化铁法与生物法耦合中胞内外聚合物的研究[D]:同济大学; 2007.
    [113].令云芳,王淑莹,王亚宜,王伟,彭永臻.A2N反硝化除磷脱氮工艺的影响因素分析[J].工业用水与废水.2006;37(02):7-11.
    [114].刘燕,陈银广,周琪,行智强.强化生物除磷系统中生化机理研究进展[J].水处理技术.2006;32(05):1-4.
    [115].吴昌永,彭永臻,万春黎,李晓玲,袁志国.碳源对EBPR代谢过程及微生物特性的影响[J].环境科学.2009;30(07):1990-1994.
    [116].张超,陈银广.增强生物除磷系统中微生物及其代谢机制研究进展[J].环境科学与技术.2010;33(10):81-85.
    [117].黄树辉,吕军.区分土壤中硝化与反硝化对N20产生贡献的方法[J].农业工程学报.2005;21(S1):48-51.
    [118]. Beline F, Martinez J, Marol C, Guiraud G. Application of the 15N technique to determine the contributions of nitrification and denitrification to the flux of nitrous oxide from aerated pig slurry [J]. Water Research.2001; 35(11): 2774-2778.
    [119]. Tallec G, Gamier J, Billen G, Gousailles M. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation [J]. Bioresource Technology.2008; 99(7): 2200-2209.
    [120]. LEFFELAAR PA. Dynamics of Partial Anaerobiosis, Denitrification, and Water in A Soil Aggregate:Simulation [J]. Soil Science.1988; 146(6): 427-444.
    [121].罗奇祥,陈德利,Chalk. PM, J. R. Freney.稻田土壤中硝化速率的测定[J].江西农业学报.1995;7(02):125-131.
    [122]. S. Haider, K. Svardal, P. A. Vanrolleghem, Kroiss H. The effect of low sludge age on wastewater fractionation (SS, SI) [J]. Water Science and Technology. 2003; 47(11):203-209.
    [123]. Sang-Wan Kim, Morio Miyahara, Shinya Fushinobu, Wakagi T, Shoun H. Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria [J]. Bioresource Technology. 2010; 101(11):3958-3963.
    [124]. Rusmana I, Nedwell DB. Use of chlorate as a selective inhibitor to distinguish membrane-bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap) of dissimilative nitrate reducing bacteria in sediment [J]. Ferns Microbiology Ecology.2004; 48(3):379-386.
    [125]. Lemaire R, Meyer R, Taske A, Crocetti GR, Keller J, Yuan ZG. Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal [J]. Journal of Biotechnology.2006; 122(1):62-72.
    [126]. Zhou Y, Pijuan M, Zeng RJ, Yuan Z. Free Nitrous Acid Inhibition on Nitrous Oxide Reduction by a Denitrifying-Enhanced Biological Phosphorus Removal Sludge [J]. Environmental Science & Technology.2008; 42(22):8260-8265.
    [127]. Zhou Y, Oehmen A, Lim M, Vadivelu V, Ng WJ. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants [J]. Water Research.2011; 45(15):4672-4682.
    [128]. Zhou Y, Lim M, Harjono S, Ng WJ. Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source [J]. Journal of Environmental Sciences-China.2012; 24(9):1616-1623.
    [129]. Carvalho G, Lemos PC, Oehmen A, Reis MAM. Denitrifying phosphorus removal:Linking the process performance with the microbial community structure [J]. Water Research.2007; 41(19):4383-4396.
    [130].张超,陈银广,刘燕.不同丙酸/乙酸长期驯化的活性污泥对EBPR的影响[J].环境科学.2008;29(09):2548-2552.
    [131]. Zhou Y, Ganda L, Lim M, Yuan ZG, Kjelleberg S, Ng WJ. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs) [J]. Applied Microbiology and Biotechnology.2010; 88(1):359-369.
    [132]. Zhou Y, Pijuan M, Yuan ZG. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms [J]. Biotechnology and Bioengineering.2007; 98(4):903-912.
    [133]. Ji Z, Chen Y. Using Sludge Fermentation Liquid To Improve Wastewater Short-Cut Nitrification-Denitrification and Denitrifying Phosphorus Removal via Nitrite [J]. Environmental Science & Technology.2010; 44(23): 8957-8963.
    [134]. Shi YJ, Wang XH, Yu HB, Xie HJ, Teng SX, Sun XF, Tian BH, Wang SG. Aerobic granulation for nitrogen removal via nitrite in a sequencing batch reactor and the emission of nitrous oxide [J]. Bioresource Technology.2011; 102(3):2536-2541.
    [135]. Okabe S, Oshiki M, Takahashi Y, Satoh H. N2O emission from a partial nitrification-anammox process and identification of a key biological process of N2O emission from anammox granules [J]. Water Research.2011; 45(19): 6461-6470.
    [136]. Yang Q, Liu X, Peng C, Wang S, Sun H, Peng Y. N2O Production during Nitrogen Removal via Nitrite from Domestic Wastewater:Main Sources and Control Method [J]. Environmental Science & Technology.2009; 43(24): 9400-9406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700