用户名: 密码: 验证码:
钢筋混凝土电化学除氯及除氯后性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯盐侵蚀引起钢筋腐蚀,从而导致钢筋混凝土的劣化是一个世界性难题。为了延长被氯盐侵蚀的混凝土结构的使用寿命,国内外学者在阴极防护的基础上提出一种无损修复方法——电化学除氯盐(ECE)技术。该技术是在混凝土表面安装一个临时阳极,在临时阳极与混凝土内的钢筋(阴极)之间通以直流电,将氯离子驱离钢筋,排出混凝土外。本文通过试验,对电化学除氯效果及其可能产生的副作用,进行了研究,包括以下几方面的内容:
     1.研究了初始氯含量、电流密度及电量对除氯效率的影响。结果表明:电化学除氯可以有效除去混凝土内有害的自由氯离子。初始氯离子含量越低,除氯效率越高。但是相同条件下,初始氯离子含量越高,除去的氯离子绝对量越高。除氯效率主要受电量的影响,电流密度的影响不大。电量越大除氯效率越高,但电量超过1500A·h/m2时,随着电量的增加,除氯效率的提高幅度减小。采用半电池电位法测定了除氯前后钢筋的电位,发现除氯后钢筋电位向正向偏移,说明钢筋腐蚀可能性降低。X射线衍射物相分析表明,除氯后钢筋周围混凝土中Ca(OH)2含量增加,有利于钢筋钝化恢复.
     2.对电化学处理后的混凝土试件进行了抗压强度和抗渗性能试验,结果表明,电化学除氯对混凝土的抗压强度无明显影响,除氯后混凝土抗渗性能有所提高。
     3.采用梁式试件,对经过不同电流密度和电量处理的钢筋混凝土粘结性能进行了试验研究。结果表明:电化学除氯处理会导致钢筋与混凝土之间粘结退化。所采用的电流密度和电量越大,除氯后钢筋—混凝土界面粘结退化越严重。初始氯化物含量对粘结性的影响很小。给出了粘结强度与电流密度和电量的关系。
     4.对冻融钢筋混凝土电化学除氯后的氯离子含量进行了测定,发现混凝土的冻融次数对除氯效果影响很小。电流密度和电量对冻融混凝土和未冻融混凝土除氯效果的影响是一致的。
     5.对冻融钢筋混凝土电化学除氯后的粘结性能进行了试验研究,结果表明:冻融与电化学除氯共同作用引起钢筋与混凝土之间粘结强度退化,退化程度不是二者作用效果的简单叠加。电化学处理时采用的电流密度和电量越大,混凝土经历的冻融循环次数越多,钢筋与混凝土之间的粘结退化越严重。电化学除氯本身对未冻融混凝土与钢筋间粘结性能的影响大于对冻融混凝土与钢筋间粘结性能的影响。
     6.电化学除氯过程中,由于钢筋与混凝土之间的粘结强度受到了一定的损伤,可能会导致试件抗震性能的退化。对7根经过不同程度电化学处理的钢筋混凝土柱进行了低周反复试验,研究了电化学除氯对其抗震性能的影响。试验表明:除氯会导致柱的抗震性能退化,但退化程度要小于相同除氯参数下梁式试件粘结强度的退化程度。随着除氯电流和电量的增大,试件的承载力略有降低,峰值荷载后刚度退化速率增加,延性系数和耗能能力降低。提出了计算电化学除氯后钢筋混凝土柱骨架曲线的方法。
Corrosion of steel bar in concrete due to chloride ions attacking is one of the major reason leading to the degradation of reinforced concrete structures (RC) throughout the world. In order to extend the service life of existing RC structures contaminated by chloride ions, a non-destructive repair technique electrochemical chloride extraction (ECE) of reinforced concrete was developed, which involving mounting a temporary anode on the surface of the concrete and applying a direct current between this anode and the embedded steel bar to drive chloride ions away from steel bar and out of the concrete. Based on experiment of ECE, the efficiency of electrochemical chloride extraction and the side-effect may occurred in the process of electrochemical chloride extraction were studied. The details as follows:
     1. The effect of initial content of chloride, current density and electric quantity on efficiency of ECE was studied by determining the content of chloride ion in concrete. It is indicated that free chloride ion could be extracted from concrete by electrochemical chloride extraction.The less the initial content of chloride ion is, the higher the efficiency of electrochemical chloride extraction is. But for the same conditions of current density and electric quantity, the absolute amount of chloride ion extracted from concrete increased with the increasing of initial content of chloride ion. Current density adopted in ECE treatment has a little effect on the efficiency of ECE. Electric quantity adopted in ECE has an important effect on the efficiency, the more the electric quantity is, the higher the efficiency of electrochemical chloride extraction is. However, the increment of the efficiency is not clear when the electric quantity exceed 1500A·h/m2. The potential of steel bar was measured before and after ECE. It was found that the potential increased to more positive after ECE, which means the corrosion probability of steel bar decreased. And XRD results shows the content of Ca (OH)2 increased after ECE which contributes to the repassivation of steel bar.
     2. Compressive strength and permeability of specimens experienced ECE with different current density were measured. It is concluded that electrochemical chloride extraction has a little effect on the macro-compress strength of concrete, and improves the impermeability of concrete.
     3. The bond behaviour between steel bar and concrete after ECE treatment was studies using beam specimens. It is indicated that the bond behaviour between steel bar and concrete was deteriorated after electrochemical chloride extraction, the more the current and the electric quantity of ECE are, the more the loss of bond strength is. The effect of initial content of chloride ion on the bond strength can be neglected.
     4. By determining the content of chloride ion in freeze-thawed concrete after ECE treatment, it is shown that for the freeze-thawed reinforced concrete contaminated by chloride, the number of freeze-thaw cycle has a little effect on the efficiency of electrochemical chloride extraction, and the effect of current density and electric quantity on the efficiency is similar with that of unfreeze-thawed reinforced concrete.
     5. The bond behaviour between steel bar and freeze-thawed concrete after ECE treatment was studies using beam specimens. It can be concluded that the combined action of freeze-thaw cycles and electrochemical chloride extraction treatment results in the degradation of bond between steel bar and concrete, and the degree of bond degradation is not a simple superposition of the two action effect. With the increase of current density, electric quantity of electrochemical chloride extraction and the increase of freeze-thaw cycles, the bond strength obviously decreases. The effect of electrochemical chloride extraction on the bond strength of unfreeze-thawed specimens is greater than that of freeze-thawed specimens.
     6. Based on the test results of 7 ECE treated reinforced concrete columns under low reversed cyclic loading, the effects of ECE on seismic behavior of reinforced concrete column is analyzed. Owing to the degradation of bond between steel bar and concrete induced in the process of electrochemical chloride extraction treatment, the seismic behavior of reinforced concrete circular column contaminated by chloride was deteriorated, but the degree of deterioration is lower than that of bond strength of beam specimens which experienced electrochemical chloride extraction treatment with the same current density and electric quantity. With the increasing of current density and electric quantity, the bearing capacity, ductility and energy dissipation capacity of column decreased and the deterioration rate of stiffness increased.
引文
[1]张誉,蒋利学,张伟平等.混凝土结构耐久性概论[M].上海:上海科学技术出版社,2003.
    [2]黄兴隶.工程结构可靠性设计[M].北京:人民交通出版社,1989.
    [3]邸小坛,高小旺,徐有邻.我国混凝土建筑结构的耐久性与安全问题[C].见:陈肇元.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社,2003:3-6.
    [4]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007.
    [5]蒋林华.混凝土氯离子渗透扩散性研究[J].中国腐蚀与防护学报,2002,26(2):343-348.
    [6]Mraition-Perez B, Zibara H, Hooton R D, et al. A study of the effect of chloride binding on service life predictions [J]. Cement and Concrete Research,2003, (30):1215-1223
    [7]Broomfield J P. Corrosion of steel in concrete [M]. London:E&FN SPON,1997.
    [8]洪乃丰.我国氯盐盐腐蚀环境与混凝土结构耐久性[C].见:邢锋,明海燕.沿海地区混凝土结构耐久性及其设计方法.北京:人民交通出版社,2004:50-55.
    [9]洪乃丰.氯盐融雪剂是把“双刃剑”[J].城市与减灾.2005,4,13-15.
    [10]Bohn H.混凝土中钢筋腐蚀的几种检测方法[J].腐蚀与防护,1992,(2):18-20.
    [11]Rasheeduzzafar, Dakhil, Fahd. The deterioration of concrete structures in the environment of the Middle East [J]. ACI Journal, Proceedings.1984,81(1):13-20.
    [12]李家康,董攀.混凝土结构中钢筋腐蚀的分析[J],工业建筑,1998,(1):12-15.
    [13]王玲,田陪,姚燕,等.北京西直门旧桥混凝土破坏原因分析[C].见:王媛俐,姚燕.重点工程混凝土耐久性的研究与工程应用.北京:中国建筑工业出版社,2001.
    [14]张恺,包琦玮,刘庆仁,等.北京地区立交桥梁耐久性调查分析[C].见:陈肇元.土建结构工程的安全性与耐久性.北京:中国建筑工业出版社,2003.
    [15]郝挺宇,慧云玲.碱骨料反应对铁路预应力混凝土梁耐久性的危害[C].第六届全国建筑物鉴定与加固改造学术会议,2002.
    [16]金伟良,赵羽习.混凝土结构耐久性研究的回顾与展望[J].浙江大学学报(工学版),2003,36(4):371-380.
    [17]王显利.氯离子侵蚀钢筋混凝土结构锈蚀损伤[D].大连:大连理工大学,2008.
    [18]葛燕,朱锡昶,朱雅仙,等.混凝土中钢筋的腐蚀与阴极保护[M].北京:化学工业出版社,2007.
    [19]Jemberg P, Sjostrom C, Lacasse M A. Prediction of service life of building materials and componets-state of the art report [J]. Materials and Structures,1996(29):40-46.
    [20]Novokshchenov V. Deterioration of reinforced concrete in the marine industrial environment of the Arabian Gulf-A case study [J]. Materials and structures. 1995(28):392-400.
    [21]洪定海.混凝土中钢筋的腐蚀与保护[M].北京:中国铁道出版社,1998.
    [22]杜荣归,刘玉林,林昌健.氯离子对钢筋腐蚀机理的影响及其研究进展[J].材料保护,2006,39(6):42-46.
    [23]洪乃丰.混凝土中钢筋腐蚀与防护技术(3)—氯盐与钢筋锈蚀破坏[J].工业建筑,1999,29(10):60-63.
    [24]Gonzalez J A, Feliu S, Rodriguex P, et al. Some question on the corrosion of steel in concrete Part 1:when, how and how much steel corrode [J]. Materials and Structures, 1996(29):40-46.
    [25]杨医博,梁松,莫海鸿,等.抗氯盐高性能混凝土技术手册[M].北京:中国水利水电出版社,2006.
    [26]中国土木工程学会标准.混凝土结构耐久性设计与施工指南CCES01—2004(2005年修订版)[S].北京:中国建筑工业出版社,2005.
    [27]王宗昌,衡洪勇,王政.混凝土中氯离子的预防及处理.腐蚀与防护[J].2002,23(10):460-462.
    [28]海港工程混凝土结构防腐技术措施(TJ275-2000)[S].北京:人民交通出版社,2000.
    [29]张宝宏,丛文博,杨萍.金属电化学腐蚀与防护[M].北京:化学工业出版社,2005.
    [30]Lambert P. Cathodic protection of reinforced concrete [J]. Anti-Corrosion Methods and Materials,1995,30(1):8-9.
    [31]Hong D H, Fan W G, LUO D K, et al. Study and application of impressed current Cathodic protection technique for atmospherically exposed salt-contaminated reinforced structures [J]. ACI Materials Journal,1993,90(1):3-7.
    [32]杜荣归,黄若双,赵冰,等.混凝土结构中阴极保护技术的应用现状及研究进展[J].材料保护,2003,36(4):11-14.
    [33]葛燕,朱锡昶.氯化物环境钢筋混凝土的腐蚀和牺牲阳极保护[J].水利水电科技进展,2005,25(4):67-70.
    [34]周新刚,周长军,王振.混凝土中消除氯离子的原理与应用[J].工业建筑.2002,32(2):15-17.
    [35]NACE INTERNATIONAL. Electrochemical chloride extraction from steel reinforced concrete-A state-of-the-art report [R]:report of NACE international task group 054, 2001.
    [36]Elsener B, Angst U, Mechanism of electrochemical chloride removal [J]. Corrosion Scinence,2007,49(12):4504-4522.
    [37]Cobo A, Otero E, Gonzalaz M N, et al. Electrochemical chloride removal from reinforced concrete structures and its ability to repassivate prerusted steel surfaces [J]. Materials and corrosion,2001,52:581-589.
    [38]Weichung Ye, Jiang Jhy Chang, Chi Che Hung. Selecting an adequate procedure for the electrochemical chloride removal [J]. Cement and Concrete Research.2006,36:562-570.
    [39]Rovira J L, Santa Olaya, Pardo Trafach P. A contribution to the rehabilitation of reinforced concrete structures by non-destructive electrochemical methods [C]. High performance structures and materials III. UK:WITpress,2006.
    [40]Electrochemical chloride extraction from concrete bridge components[R]. Technical Brief #2,.Canadian Strategic Highway Research Program, Transportation Association of Canda,1995.
    [41]Bennett J, Thomas J S. Chloride removal implementation guide (SHRP S-347) [R]. Washiongton:National Academy of Sciences,1993.
    [42]Bennett J, Thomas J S. Evaluation of NORCURE process for Elctrochemical chloride removal from steel-reinvorced concrete bridge components (SHRP C-620) [R]. Washiongton:National Academy of Sciences,1993.
    [43]Bennett J, Thomas J S. electrochemical chloride removal and protection of concrete bridge components:Laboratory studies (SHRP C-657) [R]. Washiongton:National Academy of Sciences,1993.
    [44]Bennett J, Thomas J S. electrochemical chloride removal and protection of concrete bridge components:Field Trial (SHRP C-669) [R]. Washiongton:National Academy of Sciences,1993.
    [45]李建勇,杨红玲.国外混凝土钢筋锈蚀破坏的修复和保护技术[J].建筑技术,2002,33(7):491-493.
    [46]Electrochemical re-alkalisation and chloride extraction treatments for reinforced concrete-Part 1:Re-alkalisation.http://www.Bsi.org.uk
    [47]Electrochemical re-alkalisation and chloride extraction treatments for reinforced concrete-Part 2:Chloride extraction. http://www.Bsi.org.uk
    [48]Standard specification for electrochemical chloride extraction. AASHTO Designation.
    [49]http://www.nocure.com
    [50]朱雅仙,洪定海.盐污染混凝土的除氯防腐[J].水运工程.1996,(9):1-5.
    [51]吴畏,范卫国.海港码头钢筋混凝土结构腐蚀破坏与维护方案浅析[J].水运程.2000,(7):7-11
    [52]耿欧,李果,袁迎曙.电化学检测技术在混凝土内钢筋腐蚀研究中的应用现状与展望[J].混凝土.2005,(2):20-23.
    [53]http://www.bzw.com.cn/article/show.asp?id=32117
    [54]Arya C, Sa'id-Shawqi Q. Factors influencing electrochemical removal of chloride from concrete [J]. Cement and Concrete Research.1996,26(6):851-860.
    [55]Nzeribe M, Ihekwaba, Brian B. Hope and Carolyn M. Hansson, structural shape effect on rehabilitation of vertical concrete structures by ECE technique [J], Cement and Concrete Research.1996,26(1):165-175.
    [56]Rob B, Polder. Electrochemical chloride removal from concrete prisms containing chloride penetrated from sea water. Construction and Building Materials [J].1996, 10(1):83-88.
    [57]Ihekwaba N M, Hope B B and Hansson C M. Carbonation and electrochemical chloride extraction from concrete. Cement and Concrete Research [J].1996,26(7):1095-1107.
    [58]Schneck U. Investigations on the chloride transformation during the electrochemical chloride extraction process, Materials and Corrosion [J].2000,51:91-96.
    [59]Paulo J M M, Paulo H, Idalina A, et al. Influence of water-cement Ratio and Cover Thickness on Chloride extraction of reinforced concrete [J]. ACI Materials Journal.2005,102(1):789-796.
    [60]Fajardo G, Escadeillas B, Arliguie G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by "artificial" sea-water [J]. Corrosion Science.2006,48:110-125.
    [61]Orellan Hrrera J C, Escadeillas G, Arliguie G. Electro-chemical chloride extraction: Influence of C3A of the cement on treatment efficiency [J]. Cement and Concrete Research. 2006,36(10):1939-1946.
    [62]Garces P, Sanchez de Rojas M J, Climent M A. Effect of the reinforcement bar arrangement on the efficiency of electrochemical chloride removal technique applied to reinforced concrete structrres [J]. Corrosion Science.2006,48:531-545.
    [63]李森林,范卫国,蔡伟成等.电化学除氯防腐技术的室内研究[J].水利水运工程学报.2001,(9):35-40.
    [64]成立,王小萍,黄绪泉等.正交试验法研究影响电化学除氯效率的因素[J].工业建筑.2007年,37(6):73-50.
    [65]成立,邓春林,余其俊等.盐污染混凝土电化学除氯研究[J].腐蚀与防护.2007,28(8):387-391.
    [66]姜怀定,杨树立,高小建.水灰比对混凝土电化学除氯效果的影响[J].山西建筑.2008,34(28):180-181.
    [67]孙文博,高小建,杨英姿等.不同配合比混凝土电化学除氯效果研究[J].腐蚀科学与防护技术.2009,21(3):308-311.
    [68]丁铸,邢锋,李伟华.钢筋混凝土电化学除氯影响因素的研究[J].武汉理工大学学报.2009,31(7):19-21.
    [69]Nzeribe M, Ihekwaba & Brian B. Hope. Mechanical properties of anodic and cathodic regions of ECE treated concrete [J]. Cement and Concrete Research.1996,26(5): 771-780.
    [70]Swamy R N, Stephen McHugh. Effectiveness and structural implications of electrochemical chloride extraction from reinforced concrete beams [J]. Cement and Concrete Composites.2006,28:722-733.
    [71]陈年和,王军强.电化学除氯对钢筋力学性能的影响[J].徐州建筑职业技术学院学报.2001,1(1):35-37.
    [72]朱雅仙,朱锡昶,罗得宽等.电化学除氯对钢筋混凝土性能的影响[J].水运工程.2002,340(5):8-12
    [73]Green W K, Lyon S B, Scantlebury J D. Electrochemical changes in chloride-contaminated reinforced concrete following cathodic polarization [J]. Corros. Sci.1993, 35:1627-1631.
    [74]Marcotte T D, Hansson C, Hope B B, the effect of the electrochemical chloride extraction treatment on steel-reinforced mortar Part I:Electrochemical measurements [J]. Cement and Concrete Research.1999, (29):1555-1560.
    [75]李森林,朱雅仙,朱秀娟.除氯处理对钢筋—砂浆的电化学特征影响[J].水利水运工程学报.2002,(2):57-60.
    [76]邓春林,余其俊,韦江雄等.电学化除氯后钢筋混凝土电化学性能的变化[J].混凝土.2007,(1):14-18.
    [77]孙文博,高小建,巴恒静.电化学除氯对混凝土电阻的影响[J].低温建筑技术.2009,(6):3-5.
    [78]孙文博,巴恒静,高小建.电化学除氯对钢筋混凝土自然电位的影响[J].低温建筑技术.2009,(5):1-2.
    [79]Ewing S P. Effects of cathodic current on bond strength between concrete and reinforcing steel[R]. Report NO. WC-IR-60. Jersey Research Company,1960,
    [80]Locke C E, Dehghanian C. Related studies to cathodic protection of reinforced concrete structures [R]. Report No. FHWA/OK83(06). The University of Oklahoma,1984.
    [81]Stoen P T, Innvirkning av elektrokjemisk f jerning av klorider frabetong pa heftfasthet for armering [R]. Thesis, Norwegian Institute of Technology, University of Trondheim, 1990.
    [82]Law D W, Green W K. NCT chloride extraction, chloride remigration, bond strength and hydrogen embrittlement tests[R]. Report No.1303/91/5390. Taywood engineering ltd research laboratories, London,1991.
    [83]Vrable J B. Cathodic protection for reinforcing steel in concrete[R]. In chloride corrosion of steel in concrete, ASTM STP 629. Amercian society for testing materials, 1977:124-149.
    [84]Locke C E, Dehghanian C, Gibbs L. Effect of impressed current on bond strength between steel rebar and concrete [R]. Paper No.178:1-16. Corrosion 82, Aaheim California, 1983,
    [85]Miller J B, Nustad G E, Effect of electrochemical treatment on steel-to-concrete bond strength. Engineering solutions to industrial corrosion problems[R]. NACE, Sandefjord, June 1993, Paper No.49.
    [86]Vennesland 0, Nustad E P, Gautefall 0, et al. Electrochemical removal of chloride from concrete-effect on bond strength and removal efficiency. Incorrosion of reinforcement in concrete construction[J]. Royal Society of Chemistry,1996:448-455.
    [87]Rasheeduzzafar, Mohammad Goam Ali, Ghazi J. Al-Sulaimani. Degradation of bond between reinforcing steel and concrete due to cathodic protection current [J]. ACI Materials Journal,1993,90(1):8-15.
    [88]Ihekwaba N M, Hope B B, Hansson C M, Pull-out and bond degradation of steel rebars in ECE concrete[J]. Cement and Concrete Research.1996,26(2):267-282.
    [89]Buenfeld N R, Broomfield J P. Influence of electrochemical chloride extraction on the bond between steel and concrete [J]. Magazine of concrete of research.2000,52(2): 79-91.
    [90]Chang J J. Bond degradation due to the desalination process [J].Construction and building materials.2003, (17):281-287.
    [91]周新刚,张瑞丰,韦昌芹.混凝土结构工程除氯的研究与应用[J].工程力学增刊,2005,22:83-89.
    [92]邓春林,陈龙,熊建波等.电化学除氯对钢筋混凝土粘结力的影响研究[J].华南港工,2008,(2):34-38.
    [93]韦江雄,王新祥,郑靓等.电除氯中析氢反应对钢筋-混凝土粘结力的影响[J].武汉理工大学学报,2009,31(12):30-34.
    [94]郑靓,韦江雄,余其俊等.电化学除氯过程中钢筋表面发生的电极反应[J].硅酸盐学报,2009,37(7):1190-1195.
    [95]李全尧,刘斌,张金峰.电化学除氯对钢筋-混凝土界面粘结力的影响[J].山西建筑,2003,34(12):178-179.
    [96]Orellan J C, Escadeillas G, Arliguie G, Electrochemical chloride extraction: efficiency and side effects [J]. Cement and Concrete Research,2004, (34):227-234
    [97]Torrii K, Kawamura M, Matsumoto K, et al. Influence of cathodic protection on cracing and expansion of the beams due to alkali-silica reaction[R]. Pro 10th Int Conf on Alkali-Aggregate Reaction in Concrete, Melbourne,1996:653-660.
    [98]Mohammad G A, Rasheeduzzafar. Cathodic protection current accelerates alkali-silica Reaction [J]. MCI Materials Journal,1993,90(3):247-252.
    [99]Siegwart M, Lyness J F, McFarland B J, et al. The effect of electrochemical chloride extraction on pre-stressed concrete [J]. Construction and Building Materials 2005, (19):585-594.
    [100]Michael Siegwart, Eng C. Influence of electrochemical chloride extraction on the performance of pressed concrete under dynamic loading conditions [J]. Journal of materials in civil engineering,2006,18(6):800-812.
    [101]Marcotte T D, Hansson C M, Hope BB. The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar Part II:Microstructural characterization [J]. Cement and Concrete Research,1999, (29):1561-1568.
    [102]Michael S, Johe F L, Brian J M. Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions [J]. Cement and Concrete Research 2003, (33):1211-1221.
    [103]李森林,朱雅仙,朱秀娟.除氯处理对钢样-砂浆界面微观结构的影响[J].海洋工程.2004,22(2):75-78.
    [104]李森林,朱雅仙,朱秀娟.除氯处理对砂浆内钢样表面微观结构的影响[J].水利水电科技进展.2005,25(5):40-43
    [105]成立,黄绪泉,王小萍.电化学除氯对混凝土微观结构的影响[J].重庆建筑大学学报.2008,30(3):138-142.
    [106]Andrade C, Diez J M, Alaman A, et al. Mathematical modeling of electrochemical chloride extraction from concrete [J]. Cement and Concrete Research,1995,25(4):727-740.
    [107]Andrade C. Calculation of chloride diffusion coefficients on concrete from ionic migration measurements [J]. Cement and Concrete Research,1993, (23):724-742.
    [108]Andrade C, Sanjuan M A. Experimental procedure for the calculation of chloride diffusion coefficients in concrete from migration tests [J]. Advances in Cement Research (accepted for Publition).
    [109]Andrade C., Sanjuan M. A., Recuero A. et al. Calculation of chloride diffusivity in concrete from migration experiments in non-steady state conditions [J]. Cement and Concrete Research,1994,24(7):1214-1228.
    [110]Pourbaix M. Lectures on electrochemical corrosion [C]. New York:Cebelcor-Plenum press.1973.
    [111]Smith G. D. Numerical solution of partial differential equations:finite difference methods. 1-74and 207-296. Oxford Applied Mathematics and Computing Science Series [M]. UK:Clarendon Press.1978.
    [112]Sa'id-Shawqi Q, Arya C, and P R, Vassie. Numerical modeling of electrochemical chloride removal from concrete [J]. Cement and Concrete Research.1998,28(3):391-400.
    [113]Collepardi M. Penetration of chloride ions into cement pastes and concrete [C]. Americal Ceramic Society.1972:55.
    [114]Li L Y, Page C L. Modeling of electrochemical chloride extraction from concrete: influence of ionic activity coefficients [J]. Computational Materials Science,1998, (9):303-308.
    [115]Braunstein J. Statistical thermodynamics of molten salts and concentrated aqueous electrolytes [C]. IN:S. Petrucci (Ed.), Ionic Interactions. New York:Academic press, 1971:180-261.
    [116]Pitzer K S. Thermodynam ics of electrolytes I:Theoretical basis and general equations [J]. J. Phys. Chem.,1973, (77):268-277.
    [117]Pitzer K S. Thermodynamics of electrolytes Ⅱ:Activity and osmotic coefficients for strong electrolytes with one or both ions univalent [J]. J. Phys. Chem.,1973, (77):2300-2309.
    [118]Clegg S L, Pitzer K S. Thermodynamics of multicomponent, miscible, ionic solutions: Generalized equations for symmetric electrolytes [J]. J. Phys. Chem.,1992, (93):3513-3520.
    [119]Falkenhagen H, Ebeling W. Equilibrium properties of ionized dilute electrolytes [C] In:S.Petrucci (Ed.), Ionic Interactions. New York:Academic press,1971,1:2-61.
    [120]Li LY, Page C L. Finite element modeling of chloride removal from concrete by an electrochemical method [J]. Corrosion Science,2000, (42):2145-2165.
    [121]Castellote M, Andrade C, Alonso C. Electrochemical chloride extraction:influence of testing conditions and mathematical modelling [J], Advances in Cement Research, 1999,11(2):63-80.
    [122]Castellote M, Andrade C, Alonso C. Electrochemical removal of chlorides modelling of the extraction, resultion profiles and determination of the efficient time of treatment[J]. Cement and Concrete Research,2000, (30):615-621.
    [123]Wang Y, Li L Y, Page CL. A two-dimensional model of electrochemical chloride removal from concrete [J]. Computational Materials Science, 2001, (20):196-212.
    [124]Toumi A, Francois R, Alvarado 0. Experimental and numerical study of electrochemical chloride removal from brick and concrete specimens [J]. Cement and concrete Research, 2007,37(1):54-62.
    [125]Ouyang W Z, Cao X, wang N. A Mathematical model for electrochemical chloride removal from marine cast iron artifacts [J]. Acta Metall. Sin. (Engl. Lett.),2009,22(2): 91-99.
    [126]Abdul R A. Adam Z. Application of thermomechanics eautions in describing chloride extraction from concrete[J]. Transp Porous Med,2008, (72):139-156.
    [127]刘小佳,路新瀛.混凝土电除氯技术可行性的计算机模拟研究[J].混凝土与水泥制品,2001,(7):17-19.
    [128]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [129]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [130]赵国藩.高等钢筋混凝土结构学[M].北京:中国电力出版社,1999.
    [131]Polder R B, Walder R J and Page C L.Electrochemical desalination of cores from a reinforced concrete coastal structure[J]. Magazine of Concrete Reaearch,1995, 173(49):321-327.
    [132]中华人民共和国交通部标准.水运工程混凝土试验规程(JTJ270—89)[S].北京:人民交通出版社,1998.
    [133]Jame. The optical principles of the diffraction of X-rays [M].UK:Ox Bow Press,1982.
    [134]Hussian S.Factors affecting threshold chloride for reinforcement corrosion in concrete [J]. Cement and concrete Research,1995,25(7):1543-1555.
    [135]Glass G K, Hassanein N M, Buenfeld N R. Neural network modeling of chloride binding [J].Mag. Concrete Research,1997, (49):323-335.
    [136]Glass G K, Hassanein N M, Buenfeld N R. The presentation of the chloride level for corrosion of steel in concrete [J]. Corrosion Science,1997,.39(5):1001-1013.
    [137]Olivier Poupard, Abdelkarim Ait-Mokhtar, Paul Dumargue. Corrosion by chlorides in reinforced concrete:Determination of chloride concentration threshold by Impedance Spectroscopy [J]. Cement and Concrete Research,2004,34:991-1000.
    [138]李岩,朱雅仙,方璟.混凝土中钢筋腐蚀时氯离子临界浓度的试验研究[J].水利水运工程学报,2004,(1):24-28.
    [139]Nisson L 0, HETEK. A system for estimation of chloride ingress into concrete [R]. Report No.83. Theoretical background. The Danish Road Directorate, Copenhagen, Demark, 1983.
    [140]袁润章.胶凝材料学[M].武汉:武汉工业大学出版社,1996.
    [141]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1998.
    [142]何世钦.氯离子环境下钢筋混凝土结构耐久性能试验研究[D].大连:大连理工大学,2004.
    [143]Mangat P S, Elgarf M S. Bond characteristics of corroding reinforcement in concrete beams [J]. Materials and Structures,1999,32:89-97.
    [144]牟晓光.高强钢筋粘结性能试验研究及数值模拟[D].大连:大连理工大学,2005.
    [145]Miranda J M, Cobo A, Otero E, Gonadlez. Limitations and advantages of electrochemical chloride removal in corroded reinforced concrete structures [J]. Cement and Concrete Research,2007,37(4):596-603.
    [146]Koleva D A, Van Breugel K, Dewitj H W, et al. Correlation of microstructure, electrical properties and electrochemical phenomena in reinforced nortar. Breakdown to multi-phase interface structures.Part I:Microstructural observations and electrical properties [J].Materials characterization,2008,59(3):290-300.
    [147]Bikulchus. Chloride removal from reinforced concrete and relevant loss of strength [J], Protection of Metals.2005,41(5):484-486.
    [148]Hosseini A, Khaloo Ali R. Study of electrochemical chloride extraction as a non-destructive repair method:part Ⅰ.discrete test samples [J]. Asian journal of civil engineering building and housing,2005,6 (4):167-182.
    [149]Hosseini A, Khaloo Ali R. Study of electrochemical chloride extraction as a non-destructive repair method:part Ⅱ. Structural element test sample [J]. Asian journal of civil engineering (building and housing),2005,6 (4):247-255.
    [150]Ji X D, Song Y P, Liu Y. Effect of Freeze-thaw cycle on bond strength between steel bars and concrete [J]. Journal of Wuhan University of Technology—Mater. Sci. Ed. 2008,23(4):584-588.
    [151]Racgek H D, Brian J D. Assessing the durability of concrete in freezing and thawing [J]. ACI Mater. J.,1989,86 (1):29-34.
    [152]魏春明.现浇钢筋混凝土框架结构施工缝抗震性能[D].大连:大连理工大学,2006.
    [153]混凝土结构设计规范(GB50010—2002)[S],北京:中国建筑工业出版社,2002.
    [154]李金波.锈蚀钢筋混凝土柱抗震加固研究[D].大连:大连理工大学,2009.
    [155]贡金鑫,李金波,赵国藩.受锈蚀钢筋混凝土构件的恢复力模型.土木工程学报,2005,38(11):38-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700