用户名: 密码: 验证码:
山东泰安黄前水库流域主要植被类型的水文特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用水量平衡原理和森林拦蓄降雨极限容量原理,针对山东泰安黄前水库流域主要植被类型的林冠层、林下灌木和草本植物、地表的枯落物层以及土壤层对降雨的截留、吸附和储存等进行了观测研究,为今后库区流域的植被恢复和改造以及经营管理提供了依据。研究结果表明:
     (1)林冠截留量针叶林大于阔叶林、硬阔叶林大于软阔叶林、混交林高于纯林。估算林冠的最大截留量为油松林15 mm,板栗林13 tmm,刺槐林11 mm,柿树林1lmm。同龄林随林分密度的增大,其林冠截留量增大、林内降雨量减少、树干茎流量增大。研究区林冠截留量(Y)和冠层水容量(X)之间的相关关系紧密:Y=-0.6893X+19.329(r=0.9309),林冠截留量明显大于冠层水容量。在46.5 mm/6.6 h的降雨条件下,估算林冠层的蒸散量为4.5~6 mm,占总降雨量的9.68%~12.90%。
     经济林中樱桃林的林冠截留量最大(18.6 mm),杏树、枣树、柿树和板栗林差异不明显(13.5~14.9mm)。
     (2)林下灌木和草本植物可截持自身重量50%~70%的降水,而地表的枯落物可截持本身重量1.1~3.9倍的降水。林下植被和枯落物的截持量随降雨量和降雨持续时间的增加而增加。地表枯落物的截持率表现出阔叶林大于针叶林。地表枯落物最大持水量(Y)与枯落物载量(X)之间的相关关系为:Y=0.0675X+0.6721(r=0.8683)。
     枯落物与土壤侵蚀量的关系密切,枯落物层厚度越大,土壤侵蚀量就越小。去掉地表未分解枯落物层将导致土壤侵蚀量增大339~861 t/km2·a。
     (3)林地土壤土壤容重越小,总孔隙度和非毛管孔隙度就越大。土壤层次越深,其容重越大、总孔隙度和非毛管孔隙度越小。林地土壤最大持水量可达1500 t/hm2,一般的降雨量土壤都可以完全吸收,不形成地表径流。降雨后土壤水分变化趋势表现为:刺槐林土壤含水量变化幅度最大,柿树林、板栗林和油松林居中,黄荆灌丛较小。经济林的土壤物理性状和持水状况介于森林和灌丛之间。
     (4)地表径流量和土壤侵蚀量均以刺槐林最小(46.5 mm/6.6 h降雨条件下,仅为0.15 mm和0.33 t/km2),柿树林、板栗林和油松林居中,黄荆灌丛最大(46.5 mm/6.6 h降雨条件下,达10.58 mm和83.56 t/km2)。反映其涵养水源保持水土作用为:刺槐林>柿树林>板栗林>油松林>黄荆灌丛。在相同降雨量情况下的地下径流量表现为:阳坡刺槐林(46.5 mm/6.6 h降雨条件下,为0.6685 mm)>阳坡油松林>阴坡油松林(0.2870 mm)。刺槐林的地表径流水在径流的过程中被土壤再吸收的比率较大。降雨量越大,地下径流出现的时间越早,高峰期出现的时间越晚,而地下径流持续时间差异不明显(40~50 h)。
     总体来看,不同植被类型对降雨的分配存在一定的差异。刺槐林、油松林等水源涵养林各个部分均对降雨有较大的分配比例。经济林(樱桃和杏树林)对降雨的分配上林冠层所占比重较大,其林下植被和枯落物层的降雨分配比重较小。灌丛草地等植
    被类型由于无林冠的降雨分配,其涵养水源保持水土作用明显低于森林植被。
In this paper, by virtue of the principles of water balance and maximum capacity of forest interception storage, the hydrological characteristics such as rainfall interception, absorption, and conservation by forest crown, shrubbery, vegetation, litter, and its soil of the main vegetations in Huangqian Reservoir, Tai'an, Shandong China were examined as to provide the base for the restoration and management of reservoir. The results were as follows.
    Different forest appeared the varied rainfall canopy interception storage. The highest rainfall interception ability was coniferous forest, followed by broad-leaved forest and then soft deciduous broadleaved forest. For example, the canopy interception maximum adsorption of Pinus tabulaeformis, Castanea mollissima, Robinia pseudoacacia and Diospyros kaki was 15mm, 13mm, 11mm and 11mm, respectively. With the increase of forest intensity, both the forest canopy interception and stemflow were enhanced, while its throughfall was decreased. In addition, the canopy interception ability of mixed-leaved forest was higher than that of pure forests. And among the forests, the canopy interception ability of Pinus tabulaeformis and Castanea mollissima mixed forest was highest. Also, the forest volume of canopy interception was higher than that of its water conservation, and the relation expressions between of them was Y=-0.6893X +19.329 (r=0.9309) . The evaporation capacity of canopy was 4.5~6mm or so, which was 9.68%~12.90% of total rainfall, on the condition of 46.5 mm one-off rainfall and the rainfall duration of 6.6 hours.
    18.6 mm of the cherry forest interception was highest among the economic forest, the apricot forest. And the interceptions of diospyroskaki forest, jujube forest, Chinese chestnut forest ranged from 13.5 mm to 14.9 mm and displayed a tiny distinct.
    The adsorption proportion of forest undergrowth was 50-70% of its own weigh, and that of its litter was 1.1~3.9 times of its own weigh. The adsorption volume of forest undergrowth and litter was evaluated with the increase of rainfall duration. The adsorption ability of broad-leaved forest was higher than that of coniferous forest, and that of soft deciduous broadleaved forest was higher than that of hard deciduous broadleaved forest. The relation expression between the undergrowth loading and its maximum water conservation was Y=0.0675X+0.6721 (r=0.8683) , which Y is its maximum water conservation and x is undergrowth loading.
    What is more, the relationship between undergrowth and the soil erosion was closed, and the degree of soil erosion would be increased to 339~861t/km2 a without the cover of litter.
    Total porosity and capillary porosity were negative to soil bulk density. With the depth, soil bulk density was higher. Total porosity and non-capillary porosity, however, were degraded. Soil maximum water holding capacity was 1500t/hm~2 and the rain was absorbed totally by forest soil so that the surface runoff was unable to form. Among six kinds of vegetation, the soil penetration performance of acacia forest will be the best, then diospyroskaki forest and Chinese chestnut forest, then shady slope Chinese pine woodland and Viex negundo forest, while the worst will be Chinese chestnut forest.
    In terms of surface runoff and soil erosion, the least is acacia forest, then persimmon forest, Chinese chestnut forest and Chinese pine woodland. Water and soil conservation was acacia forest > persimmon forest > Chinese chestnut forest > Chinese pine forest > persimmon forest. Under the same precipitation, undergrowth runoff was followed by sunny slope acacia forest > shady slope Chinese pine > shady Chinese pine.
    Altogether, each part of forest vegetation, such as acacia forest and Chinese pine woodland, all has more distribution rate for rainfall. But for cherry forest and apricot forest, which is used for the purpose of economical output, canopy interception appeared more proportion for rainfall distribution. For undergrowth and its litter, basically they don't participate in this distribution, which the physical characteristics of soil is worse. In term of forest hydrological effect, that of forest undergrowth is far different compared to that of forest vegetation.
引文
1.白育英.大青山水源涵养林生态效益的研究[J].内蒙古林业科技,2000(4):16~19
    2.鲍文,包维楷,何丙辉,等.岷江上游油松人工林对降水的截留分配效应[J].北京林业大学学报,2004,26(5):10~12
    3.鲍文,包维楷,何丙辉,等.岷江上游23年生油松纯林下凋落物与土壤截留降水的效应[J].水土保持学报,2004,18(5):115~119
    4.曹成有,郭荫槐,刘玉学,等.辽宁东部山区主要森林类型林冠截留降水的研究[J].林业科技通讯,1997,(4):19~20
    5.常志勇,包维楷,何丙辉.岷江上游油松与华山松人工混交林对降雨的截留分配效应[J].水土保持学报,2006,20(6):37~40
    6.车克钧,傅辉恩,贺红元.祁连山北坡森林涵养水源机理的研究[M].中国森林生态系统定位研究.东北林业大学出版社,1994:280~287
    7.车克钧,傅辉恩,贺红元.祁连山水源涵养林效益的研究[J].林业科学,2001,28(6):544~548
    8.陈东立,余新晓,廖邦洪.中国森林生态系统水源涵养功能分析[J].世界林业研究,2005,18(1):49~54
    9.陈引珍,何凡,张洪江,等.缙云山区影响林冠截留量因素的初步分析[J].中国水土保持科学~20053(3):69~72
    10.陈云明,侯喜禄,刘文兆.黄土丘陵半干旱区不同类型植被水保生态效益研究[J].水土保持学报,2000,14(3):57~61
    11.程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用[J].北京林业大学学报,2003,25(2):8~11
    12.程金花,张洪江,余新晓,等.贡嘎山冷杉纯林地被物及土壤持水特性[J].北京林业大学学报,2002,24(3):45~49
    13.程积民.子午岭森林植被控制水土流失的作用[J].中国水土保持,1987(5):8~10
    14.崔启武,边履刚,史继德,等.林冠对降水的截留作用[J].林业科学,1980,16(2):141~146
    15.党宏忠,周泽福,赵雨森,等.祁连山水源涵养林土壤水文特征研究[J].农业科学研究,2006,19(1):39~44
    16.杜娟,赵景波.西安临潼人工林土壤干化与恢复研究[J].干旱区资源与环境,2005,19(6):163~167
    17.段文标,刘少冲,陈立新.莲花湖库区水源涵养林水文效应的研究[J].水土保持学报,2005,19(5):26~30
    18.范世香,裴铁番,蒋德明,等.两种不同林分截留能力的比较研究[J].应用生态学报,2000,11(5):671~674
    19.方海东,纪中华,杨艳鲜,等,金沙江干热河谷新银合欢人工林物种多样性研究[J],水土保持研究,2005,12(1):135~137
    20.高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60~64
    21.高甲荣,尹婧,牛健植,等.长江上游亚高山暗针叶林林地水文作用初探[J].北京林业大学学报,2002,24(4):75~79
    22.巩合德,王开运,杨万勤,等.川西亚高山白桦林穿透雨和茎流特征观测研究[J].生态学杂志,2004,23(4):17~20
    23.何东宁,王占林,张洪勋.青海乐都地区森林涵养水源效能研究[J].植物生态学与地植物学学报,1991,15(1):71~78
    24.何常清,于澎涛,管伟,等.华北落叶松枯落物覆盖对地表径流的拦阻效应[J].林业科学研究,2006,19(5):595~599
    25.黄金玲,李晓明,王永安,等.湖南省主要植被类型涵养水源能力的研究[J].中南林业调查规划,1997(4):37~42
    26.黄礼隆.川西亚高山暗针叶森林涵养水源性能的初步研究[M].见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:400~412
    27.黄荣珍,罗绍华,岳永杰,等.杉木人工林水源涵养功能研究[J].南昌工程学院学报,2006,25(5):56~60
    28.姜文来.森林水源涵养价值核算研究[J].水土保持学报,2003,17(2):34~40
    29.姜文来.关于水资源价值的三个问题[J].水利发展研究,2001(1):13~14,44
    30.金博文,康尔泗,宋克超,等.黑河流域山区植被生态水文功能的研究[J].冰川冻土,2003,25(5):580~582
    31.金小麒.乌江流域主要林分类型的生态经济功能的研究[J].水土保持学报,2000,14(4):64~68
    32.雷瑞德,彭鸿.秦岭林区天然油松林结构研究初报[J].陕西林业科技,1994(4):4~7
    33.李德生,张萍,张水龙,等.黄前库区流域植被水源涵养功能及植被类型选择研究[J].水土保持学报,2003,17(4):128~131
    34.李德生,张萍,张水龙,等.黄前库区森林地表径流水移动规律的研究[J].水土保持学报,2004,18(1):78~81
    35.李德生,刘文斌,许慕农.石灰岩山地植被水土保持效益的研究[J].水土保持学报,1993,7(2):57~62
    36.李德生,张水龙,鲁法典,等.森林植被对库区水质净化作用问题的研究[J].水利水电技术,2003,34(9):53~55
    37.李德生,张萍,张水龙,等.黄前库区森林土壤蓄水能力研究[J].南京林业大学学报(自然科学版),2004,28(1):25~28
    38.李德生,张萍,张水龙,等.库区主要经济林水源涵养功能分析[J].水土保持通报,2003,23(4):46~49
    39.李德生,张萍,鲁法典,等.黄前库区流域主要经济林综合效益研究[J].山东农业大学学报(自然科学版),2004,35(3):413~417
    40.李德生,张萍,张水龙,等.黄前库区经济林土壤水文效益研究[J].水土保持研究,2004,11(1):141~143
    41.李华,谢纯义.泰山鹁鸽崖林区森林保持水土效益分析[J].中国水土保持,1991(9):22~23
    42.李景文主编.森林生态学[M],北京:中国林业出版社,1994
    43.李土生,姜志林.苏南丘陵主要森林类型保持水土效益的研究[J].长江流域资源与环境,1994,(3)1:55~59
    44.李孝广,毕华兴,寇许,等.径流泥沙影响因子及其尺度分析研究[J].林业调查规划,2005,6:102~105
    45.林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60~64
    46.刘畅,满秀玲,刘文勇,等.帽儿山地区主要林分类型土壤水分物理性质研究[J].哈尔滨师范大学自然科学学报,2007,23(1):86~89
    47.刘广全,倪文进,刘慧芳.秦岭南坡锐齿栎林的生态环境及其营养积累[J].应用生态学报,2002,13(5):513~518
    48.刘广全,王浩,秦大庸,等.黄河流域秦岭主要林分凋落物的水文生态功能[J].自然资源学报,2002,17(1):55~62
    49.刘广全,土小宁,赵士洞,等.秦岭松栎林带生物量及其营养元素分布特征[J].林业科学,2001,37(1):28~36
    50.刘世荣,温远光,王兵,等著.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996
    51.刘世荣,孙鹏森,温远光.中国主要森林生态系统水文功能的比较研究[J].植物生态学报,2003,27(1):16~22
    52.刘世荣,孙鹏森,王金锡,等.长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):451~456
    53.刘世海,余新晓,胡春宏,等.密云水库人工水源保护林降水再分配特征研究[J].北京水利 2003(1):14~16,44
    54.刘少冲,段文标,赵雨森.莲花湖库区集中主要林型枯落物层的持水性能[J].中国水土保持科学,2005,3(2):81~86
    55.刘文杰,李鹏菊,李红梅,等.西双版纳热带季节雨林林下土壤蒸发的稳定性同位素分析[J].生态学报,2006,26(5):1303~1311
    56.刘向东,吴钦孝,苏宁虎.六盘山林区森林树冠截留、枯枝落叶层和土壤水稳性质的研究[J].林业科学,1989,25(3):220~227
    57.刘向东,吴钦孝.黄土高原油松人工林枯枝落叶层水文生态功能研究[J].水土保持学报,1991,6(1):54~57
    58.刘向东,吴钦孝,赵鸿雁,等.黄土丘陵区油松人工林和山杨林林冠对降水的再分配及其对土壤水分的影响[J].西北水土保持研究所集刊,1991,(14):9~20
    59.刘煊章,田大伦,周志华.杉木林生态系统净化水质功能的研究[J].林业科学,1995,31(3):193~199
    60.鲁绍伟,毛富玲,靳芳,等.中国森林生态系统水源涵养功能[J].水土保持研究,2005,12(4):223~226
    61.罗雷,何丙辉.森林凋落物的水文生态效应浅议[J].水土保持科技情报,2005(5):12~16
    62.马玉美.泰山生态[M].北京:中国林业出版社,1996
    63.孟广涛,郎南军,方向京,等.滇中华山松人工林的水文特征及水量平衡[J].林业科学研 究,2001,14(1):78~84
    64.欧阳惠.森林林冠截留效益计量的研究[J].科技通报,2001,17(4):25~31
    65.欧阳学军,周国逸,黄忠良,等.鼎湖山森林地表水质状况分析[J].生态学报,2002,22(9):1373-1379
    66.欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):607~613
    67.潘成忠,上官周平.黄土区次降雨条件下林地径流和侵蚀产沙形成机制[J].应用生态学报,2005,16(9):1597~1602
    68.潘紫文,刘强,佟得海.黑龙江东部山区主要森林类型土壤水分入渗速率[J].东北林业大学学报.2002,30(5):24~26
    69.阮成江,李代琼.半干旱黄土丘陵区沙棘林地土壤水分及其对沙棘生长影响研究[J].水土保持通报,1999,19(5):27~30
    70.阮成江,李代琼,黄土丘陵区沙棘群落特性及林地水分、养分分析[J].应用生态学报,2002,13(9):1061~1064
    71.石培礼,吴波,程根伟,等.长江上游地区主要植被类型蓄水能力的初步研究[J].自然资源学报,2004,19(3):351~360
    72.史玉虎,朱仕豹,熊峰,等.三峡库区端坊溪小流域的森林水文效益[J].中国水土保持科学,2004,2(3):17~19
    73.宋西德,罗维祥,侯琳.沙棘、侧柏混交林效益的研究[J].水土保持学报,1995,9(4):113~117
    74.宋轩,李树人,姜凤岐.长江中游栓皮栎林水文生态效益研究[J].水土保持学报,2001,15(2):76~79
    75.宋轩,杜丽平,李树人,等.生态系统健康的概念、影响因素及其评价的研究进展[J].河南农业大学学报,2003,37(4):375~378,391
    76.孙继华,郎奎建.广义森林生态效益似乎不相关模型的总体估计[J].北京林业大学学报,2004,26(3):20~23
    77.孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科技出版社,1995
    78.孙艳红,张洪江,程金花,等.缙云山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(2):106~109
    79.覃文更,黄承标,韦国富,等.木论林区枯枝落叶层的水文作用及其养分含量的研究[J].森林工程,2004,20(4):7~9
    80.万师强,陈灵芝.暖温带落叶阔叶林冠层对降水的分配作用[J].植物生态学报,1999,23(6):557~561
    81.王安志,刁一伟,金昌杰,等.拉格朗日逆分析在森林蒸散模拟中的应用[J].应用生态学报,2005,16(5):843~848
    82.王安志,刘建梅,裴铁,等.云杉截留降雨实验与模型[J].北京林业大学学报,2005,27(2):38~42
    83.王德连,雷瑞德,韩创举.国内外森林水文研究现状和进展[J].西北林学院学报,2004,19(2):156~160
    84.王礼先,谢曙明.山地防护林水土保持水文生态效益及其信息系统[M].北京:中国林业出版 社,1997
    85.王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报,2001,16(5):439~444
    86.王玲玲,何丙辉,龚清朝,等.三峡库区砾石坡耕地农林复合经营效益研究[J].水土保持学报,2002,16(2):84~86
    87.王鸣远,王礼先.三峡库区马尾松林分对降雨截留效应的研究[J].北京林业大学学报,1995,17(4):74~81
    88.王勤,张宗应,徐小牛.安徽大别山库区不同林分类型的土壤特性及其水源涵养功能[J].水土保持学报,2003,17(3):59~62
    89.王青春,邓红兵,王庆礼.三峡库区柏木林降雨的再分配及养分循环研究[J].长江流域资源与环境,2000,9(4):451~457.
    90.王新平,康尔泗,张景光,等.荒漠地区主要固沙灌木的降水截留特征[J].冰川冻土,2004,26(1):90~94
    91.王馨,张一平,刘文杰.Gash模型在热带季节雨林林冠截留研究中的应用[J].生态学报,2006,26(3):722~729
    92.王彦辉.刺槐对降雨的截持作用.生态学报,1986,7(1):43~49
    93.王彦辉,刘永敏.毛竹人工林水文作用的研究[M].见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:354~363
    94.王彦辉,金曼,于澎涛.我国与森林植被和水资源有关的环境问题及研究趋势[J].林业科学研究,2003,16(6):739-747
    95.王佑民.我国林冠降水再分配研究综述[J].西北林学院学报,2000,15(3):1~7
    96.王佑民.中国林地枯落物保持水土作用研究概况[J].水土保持学报,2000,14(4):108~112
    97.王佑民,刘秉正.黄土高原防护林生态特征[M[.北京,中国林业出版社,1994:228~233
    98.王云琦,王玉杰.缙云山典型林分森林土壤持水与入渗特性[J].北京林业大学学报,2006,28(3):102~108
    99.王震洪,段昌群,侯永平,等.植物多样性与生态系统土壤保持功能关系及其生态学意义[J].植物生态学报,2006,30(3):392~403
    100.王治国主编.林业生态工程学——林草植被建设的理论与实践[M].北京:中国林业出版社,2000
    101.魏翔,李占斌.土壤侵蚀对生态系统的影响[J].水土保持研究,2006,13(1):245~247
    102.温远光,刘世荣.我国主要森林生态系统类型降水截留规律的数量分析[J].林业科学,1995,31(4):289~298.
    103.文仕知,潘维俦,高耀明.杉木人工林生态系统水量平衡及动态特征研究[M].见周晓峰主编.中国森林生态系统定位研究,哈尔滨:东北林业大学出版社,1994:376~383
    104.吴建平,袁正科,袁通志.湘西南沟谷森林土壤水文——物理特性与涵养水源功能研究[J].水土保持研究,2004,11(1):74~76
    105.吴钦孝,赵鸿雁,刘向东,等.森林枯枝落叶层涵养水源保持水土作用的评价[J].水土保持学 报,1998,4(2):23~28
    106.吴钦孝,韩冰,李秧秧.黄土丘陵区小流域土壤水分入渗特征研究[J].中国水土保持科学,2004,2(2):1~5
    107.吴钦孝,赵鸿雁.黄土高原森林水文生态效应和林草适宜覆盖指标[J].水土保持通报,2000,20(5):32~34
    108.吴钦孝,赵鸿雁.汪有科.黄土高原油松林地产流产沙及其过程研究[J].生态学报,1998,18(2):151~157
    109.吴钦孝.山杨次生林枯枝落叶层蓄积量及其水文作用[J].水土保持学报,1992,6(1):71~76
    110.吴钦孝,李秧秧.黄龙山区不同类型小流域的产流过程及其特征[J].中国水土保持科学,2005,3(3):10~15
    111.吴钦孝,赵鸿雁.植被保持水土的基本规律和总结[J].水土保持学报,2001,15(4):13~19
    112.吴伟光,顾蕾,沈月琴.森林生态效益补偿若干问题的思考[J].浙江林学院学报,2002,19(3):296~300
    113.吴伟光,沈月琴,顾蕾,等.制度创新与森林生态旅游价值的实现[J].浙江林学院学报,2001,18(3):310~314
    114.谢春华,关文彬,吴建安,等.贡嘎山暗针叶林生态系统林冠截留特征研究[J].北京林业大学学报,2002,24(4):68~71
    115.严昌荣,居辉,彭世琪,等.中国北方旱农地区农田水分动态变化特征[J].农业工程学报,2002,18(3):11~14
    116.严昌荣,韩兴国,陈灵芝.北京山区落叶阔叶林优势种叶片特点及其生理生态特性[J].生态学报,2000,20(1):53~60
    117.杨澄,党坤良,刘建军.麻栎人工林水源涵养效能研究[J].西北林学院报,1997,12(2):15~19
    118.杨澄,刘建军.桥山油松天然林水文效应的研究.西北林学院学报,1997,12(1):29~33
    119.杨澄,刘建军,杨武.桥山森林土壤水分物理性质的分析[J].陕西林业科技,1998(1):24~27
    120.杨吉华,张永涛,高祥伟,等.封山育林提高森林蓄水保土效益的研究[J].水土保持研究,2001,8(3):2~5
    121.杨玉盛,陈光水,谢锦升.论森林水源涵养功能[J].福建水土保持,1999(3):3~7
    122.饶良懿,朱金兆,毕华兴.重庆四面山森林枯落物和土壤水文效应[J].北京林业大学学报,2005,27(1):33~37
    123.殷有,周永斌,崔建国,等.林冠截留模型[J].辽宁林业科技,2001(5):10~12
    124.余新晓,赵玉涛,程根伟.贡嘎山东坡峨眉冷杉林地被物分布及其水文效应初步研究[J].北京林业大学学报,2002,24(5/6):14~18
    125.余新晓,于志民,王礼先,等.水源保护林培育经营管理评价[M].北京:中国林业出版社,2001
    126.袁春明,郎南军,孟广涛,等.长江上游云南松林水土保持生态效益的研究[J].水土保持学报,2002,16(2):87~90
    127.曾庆波.海南岛尖峰岭热带林生态系统的水分循环研究[J].见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社.1994:413~429
    128.张保华,何毓蓉,周红艺,等.长江上游典型区亚高山不同林型土壤的结构性与水分效应[J].水土保持学报,2002,16(4):127~129
    129.张光灿,刘霞,赵玫.树冠截流降雨模型研究进展及其评述[J].南京林业大学学报,2000,24(1):64~68
    130.张光灿,刘霞,赵玫.泰山几种林分枯落物和土壤水分效应研究[J].林业科技通讯,1999(6):28~29
    131.张洪江,程金花,史玉虎,等.三峡库区3种林下枯落物储量及其持水特性[J].水土保持学报,2003,17(3):55~58
    132.张金学,李进军.祁连山水源涵养林保护与恢复的科技发展战略探讨[J].西北林学院学报,2004,19(1):152~155
    133.张金池等.苏北海堤防护林冠层截留降水特性研究南京林业大学学报[J].1992,20(1):20~21
    134.张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究.2001,14(2):23~28
    135.张劲松,孟平,尹昌君,等.果粮复合系统中单株苹果蒸腾需水量的计算[J].林业科学研究,2001,14(4):383~387
    136.张理宏,李昌哲,杨立文.北京九龙山不同植被水源涵养作用的研究[J].西北林学院学报,1994,9(1):18~21
    137.张一平,何云玲,杨根灿.滇南热带季节雨林和橡胶林对降雨侵蚀力的减缓效应[J].生态学杂志,2006,25(7):731~737
    138.张一平,窦军霞,于贵瑞,等.西双版纳热带季节雨林太阳辐射特征研究,北京林业大学学报,2005,27(5):17~25
    139.张一平,王馨,刘文杰.热带森林林冠对降水再分配作用的研究综述[J].福建林学院学报,2004,24(3):274~282
    140.张永涛.黄前流域不同配置经济林防护林水源涵养功能与价值评估.中国优秀博硕士学位论文,2005
    141.张志永,张卓文,陈玉生,等.5种主要森林类型涵养水源能力比较研究[J].福建林学院学报2005,25(2):171~175
    142.张卓文,杨志海,张志永,等.三峡库区莲峡河小流域马尾松林冠降雨截留模拟研究[J].华中农业大学学报,2006,25(3):318~322
    143.张远东,刘世荣,马姜明,等.川西亚高山桦木林的林地水文效应[J].生态学报,2005,25(11):2939~2946
    144.张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139~143
    145.赵鸿雁,吴钦孝,陈云明.黄土高原不同处理人工油松林地水土流失研究[J].西北农林科技大学学报,2002,30(6):171~173
    146.赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林枯枝落叶层的水土保持功能研究[J].林业科学,2003,39(1):168~172
    147.赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381~385
    148.赵鸿雁,吴钦孝.黄土高原人工油松林林冠截留动态过程研究[J].生态学杂志,2002,21(6):20~23
    149.赵鸿雁,吴钦孝,刘国彬.黄土高原人工油松林水文生态效应[J].生态学报,2003,23(2):376~379
    150.赵玉涛,张志强,余新晓.森林流域界面水分传输规律研究述评[J].水土保持学报,2002,16(1):92~95
    151.郑粉莉,白红英,安韶山.草被地上和地下部分拦蓄径流和减少泥沙的效益分析[J].水土保持研究,2005,12(5):86~87
    152.中野秀章(日).森林水文学[M].北京:中国林业出版社,1983
    153.周光益,曾庆波,黄全,等.热带山地雨林林冠对降雨的影响分析[J].植物生态学报,1995,19(3):201~207
    154.周国逸.几种常用造林树种冠层对降水动能分配及其生态效应分析[J].植物生态学报,1997,21(3):250~259
    155.周晓峰,赵惠勋,孙慧珍.正确评价森林水文效应[J].自然资源学报,2001,16(5):420~416
    156.周择福,林富荣,宋吉红.不同经营模式的水源涵养林生态防护功能研究[J].林业科学研究,2003,16(2):189~195
    157.周择福,张光灿,刘霞,等.树干茎流研究方法及其述评[J].水土保持学报,2004,18(3):137~139
    158.朱金兆,刘建军,朱清科,等.森林凋落物层水文生态功能研究[J].北京林业大学学报,2002,24(5/6):30~34
    159.朱金兆,松冈广雄主编.中国黄土高原治山技术研究[M].北京:中国林业出版社,2001
    160. Aboal R, Morales D, Hernandez M, et al. 1999. The measurement and modeling of the variation of stemflow in a laurel forest in Teneeerife, Canary Islands [J ]. J. Hydrol., 221: 161~175
    161. Bao Wen, Bao Weikai, He Binghui, et al. Redistribution effects of tree canopy of the artificial Pinus tabulaeformis forest on precipitation in the upper stream of Minjiang River. Beijing Linye Daxue Xuebao, Journal of Beijing Forestry University, 2004, 26(5): 10~16
    162. Bosveld, Fred C.; Bouten, Willem. Evaluating a model of evaporation and transpiration with observations in a partially wet Douglas-fir forest. Boundary-Layer Meteorology, 2003, 108(3): 365~396
    163. Calder I. Water use of Eucalypts-a review[A]. Growth and water use of forest plantation[C]. England, Chichester: John Wiley and Sons, 1992: 167~179
    164. Carreiras Joao M. B.; Pereira Jose M. C.; Pereira Joao S. Estimation of tree canopy cover in evergreen oak woodlands using remote sensing. Forest Ecology and Management, 2006, 223(1-3): 45~53
    165.Dao M T,Liem T T,Thomas W G,et al.Transpiration in a small tropical forest patches[J].Agriculture and Forest Meteorology,2003,117: 1-22
    166.Dietz Johannes, Holscher Dirk; Leuschner Christoph; et al. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management, 2006,237(1-3): 170-178
    167.Dunkerley D. Measuring interception loss and canopy storage in dryland vegetation: a brief review and evaluation of available research strategies. Hydrological Processes, 2000,14: 669-678
    168.Fleischbein Katrin, Wilcke Wolfgang, Goller Rainer, et al. Rainfall interception in a lower montane forest in Ecuador: Effects of canopy properties. Hydrological Processes, 2005,19(7): 1355-1371
    169.Flerchinger G N,Cooley K R.A ten-year water balance of a mountainous semi-arid watershed[J].Joumal of Hydrology,2001,237: 86-99
    170.Gash,J.H.C,Wright,I.R.and Lloyd,C.R.Comparative estimates of interception loss from three coniferous forests in Great Britain.J.Hydrol,1980,48: 89-105
    171.Hamada Shuko; Ohta Takeshi; Hiyama Tetsuya; et al. Hydrometeorological behaviour of pine and larch forests in eastern Siberia. Hydrological Processes, 2004,18(1): 23-39
    172.Holwerda, Friso; Burkard, R.; Eugster, W.; et al. Estimating fog deposition at a Puerto Rican elfin cloud forest site: Comparison of the water budget and eddy covariance methods. Hydrological Processes, 2006,20(13): 2669-2692
    173.Huang, Y.S. ;Chen, S.S.; Lin,T.P. Continuous monitoring of water loading of trees and canopy rainfall interception using the strain gauge method , Journal of Hydrology, 2005, 311 (1-4): 1 -7
    174.Jost, G; Heuvelink, GB.M.; Papritz, A. Analysing the space-time distribution of soil water storage of a forest ecosystem using spatio-temporal kriging. Geoderma, 2005,128(3-4): 258-273
    175.Keim R.F., Tromp-van Meerveld, H.J.; McDonnell, J.J. A virtual experiment on the effects of evaporation and intensity smoothing by canopy interception on subsurface stormflow generation. Journal of Hydrology, 2006, 327(3-4): 352-364
    176.Kuraji K,Yuri T,N.Nobuaki T,et al.Generation of stemflow volume and chemistry in a mature Japanese cypress forest[J].Hydrological Processes,2001,15: 1967-1978
    177.Levia D F J,Frost E F.A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems[J].Journal of Hydrology,2003,274: 1-29
    178.Lewis D,Singel M J,Dahlgren R A,et al.Hydrology in a California oak woodland watershed:a 17-year study[J].Journal of Hydrology,2000,240: 106-117
    179.Liu, Lijuan; Zan Guosheng; Ge Jianping. Vegetation hydrological effect model of typical watershed in the upstream of Minjiang Valley. Beijing Linye Daxue Xuebao/Journal of Beijing Forestry University, 2004,26(6): 19-24
    180.Mahendrappa,M.K.Partitioning of rainwater and chemicals into throughfalland stemflowin differentforest stands.ForEcol Magmt, 1990,30: 65-72
    181.Meiresonne, L. ; Sampson, D.A.; Kowalski, A.S.; et al. Water flux estimates from a Belgian Scots pine stand: A comparison of different approaches. Journal of Hydrology, 2003, 270(3-4): 230-252
    182.Morris, Dave M., Gordon, Alan G; Andrew M. Patterns of canopy interception and throughfall along a topographic sequence for black spruce dominated forest ecosystems in northwestern Ontario. Canadian Journal of Forest Research, 2003, 33(6): 1046-1060
    183.Munishi, P.K.T., Shear, T.H. Rainfall interception and partitioning in afromontane rain forests of the Eastern Arc Mountains, Tanzania: Implications for water conservation. Journal of Tropical Forest Science, 2005,17(3): 355-365
    184.Murakami, Shigeki. A proposal for a new forest canopy interception mechanism: Splash droplet evaporation. Journal of Hydrology, 2006, 319(1-4): 72-82
    185.Owens M. Keith; Lyons Robert K.; Alejandro Chris L. Rainfall partitioning within semiarid juniper communities: Effects of event size and canopy cover. Hydrological Processes, 2006, 20(15): 3179-3189
    186.Puigdefabregas Juan. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms, 2005, 30(2): 133-147
    187.Pypker, Thomas G, Unsworth, Michael H.; Bond, Barbara J. The role of epiphytes in rainfall interception by forests in the Pacific Northwest. I. Laboratory measurements of water storage. Canadian Journal of Forest Research, 2006, 36(4): 809-818
    188.Raich J W and Schlesinger W H.The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tellus.1983: 81-99
    189.Raich J W.1983.Throughfall and stemflow in mature and young wet tropical forest.Trop Ecol,24: 234-243
    190.Rutter,A.J.et al.A predictive model of rainfall interception in forests,Derivation of the Model from observation in a plantation of Corsican pine.Agric,Meterorol, 1971,9: 367-384
    191.Samonil, P.; Viewegh, J. Fakulta lesnicka a environmentalni, Ceska zemedelska univerzita v Praze, Praha, Ceska republika (Forest site classification of forest ecosystems in Bohemian Karst (Czech Republic). Journal of Forest Science, 2005, 51(11): 508-518
    192.Sato Yoshinobu; Kumagai Tomo'omi; Kume, Atsushi; et al. Experimental analysis of moisture dynamics of litter layers - The effects of rainfall conditions and leaf shapes. Hydrological Processes, 2004,18(16): 3007-3018
    193.Shimizu, A.; Shimizu, T.; Miyabuchi, Y.; et al. Evapotranspiration and runoff in a forest watershed, western Japan. Hydrological Processes, 2003,17(15): 3125-3139
    194.Tani, Makoto; Nik Abdul Rahim; Yasuda, Yukio; et al.Long-term estimation of evapotranspiration from a tropical rain forest in Peninsular Malaysia. IAHS-AISH Publication, 2003, 280 (Water resource syatems - water availability and global change): 267-274
    195.Tsutsumi Atsushi, Jinno Kenji, Berndtsson Ronny. Surface and subsurface water balance estimation by the groundwater recharge model and a 3-D two-phase flow model. Hydrological Sciences Journal, 2004,49(2): 205-226
    196.Valente, F.; David, J.S.; Gash, J.H.C. Modelling interception loss for two sparse eucalypt and pine forests in central Portugal using reformulated Rutter and Gash analytical models.Journal of Hydrology, 1997,190(1): 141-162
    197.Vertessy R A,Watson F G R,O'Sullivan S K.Factors determining relations between stand age and catchment water yield in mountain ash forests[J] .Forest Ecology and Management,2000,143:13-26
    198.Viville,D.et al.Interception in a mountainous declining Spruce stand in Strengbach Catchment(Vosges,France).Journal of Hydrology:(Amsterdam);ISSN 0022-1694;Coden JHYDA7;NLD;DA.1993,144(l-4): 273-282
    199.Vrugt, Jasper A.; Dekker, Stefan C; Bouten, Willem. Identification of rainfall interception model parameters from measurements of throughfall and forest canopy storage. Water Resources Research, 2003,39(9): SWC91-SWC910
    200.Wilson KB,Hanson PJ,Mulholland PJ,et al.2001.A comparison of methods for determining forest evapotranspiration and its components:Sap-flow,soil water budget,eddy covariance and catchment water balance.Agricultural and Forest Meteorology, 106: 153-168
    201.Xiao Q,Mcpherson E G,Ustin S L,et al.Winter rainfall interception by two mature opengrown trees in Davis,California[J].Hydrological Processes,2000,14: 763-784
    202.Zinke,P.J.Forest interception studies in the United States.In Sopper,W E,and Lull,H.W.(Eds.).Forest Hydrology.Pergamon Press,Oxford,England,1967: 137-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700