用户名: 密码: 验证码:
祁连山区青海云杉林生态水文过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于我国西北干旱区的祁连山,地处青藏高原、黄土高原和蒙新荒漠的交会地带,其生态环境不仅受区域条件的限制,而且对全球变化响应敏感。长期以来,祁连山区人口为了维持自身的生存,对该区生态系统产生了各种干扰,不仅导致草场退化、土壤侵蚀加剧而且对森林造成了严重破坏。祁连山森林生态系统与整个山区生态过程和水文过程的相互作用和耦合关系十分密切,它一方面通过调控物质循环和能量流捍卫着冰源水库(冰川和积雪)的安全,另一方面通过对山区水文路径的调节担当着涵养水源、净化水质、保持水土资源和维护生物多样性的重任。但是,森林和水的相互作用受多种因素影响,使得森林植被生态过程和水文过程的作用机理尚不明确。因此,本研究以祁连山区青海云杉林为研究对象,通过对该植被系统生态过程、水文过程及其相互作用过程的研究,定量的揭示青海云杉林植被系统的水文循环机理及其对山区水文路径的调节机制,深入理解祁连山区各种水文现象的发生规律及其内在联系,为建立合理的区域水资源管理模式提供科学依据。本研究取得的主要结论如下:
     (1)试验区日均气温和日最高气温具有明显的季节变化;林内空气相对湿度基本维持在60%左右;林内风速总体上小于0.5 m·s-1;林内太阳辐射强度最高仅为86.6 W·m-2。试验区降水具有明显的季节分布特征,2008年整个生长季(5-9月)的降雨量占年降水量的78.7%,且主要以低降雨量和低降雨强度的降雨事件为主。林内土壤温度和土壤体积含水量的垂直分布在不同月份呈现不同的变化特征,且不同深度土壤的温度和体积含水量的年内变化总体上呈先增大后减小趋势。
     (2)实验观测期间内(2008年6月12日至2008年10月8日),青海云杉林的穿透雨量、截留量和干流量分别为212.6mm、64.5mm和3.4mm,分别占大气降雨量的75.8%、23.0%和1.2%。林内穿透雨随大气降雨量的增大而增大,且在空间分配上具有异质性;在没有前日降雨的情况下,当降雨量达到5.6mm时青海云杉林才开始产生树干茎流,且干流量随降雨量的增大而增大,34场降雨的平均干流率为0.58%;林冠截留率随降雨量的增大先急剧减小后逐渐趋于稳定,实验观测期间的平均截留率为33.9%。
     (3)采用改进的Penman-Monteith修正式估算的青海云杉林2008年整个生长季的蒸腾耗水量为160.8 mm,平均日蒸腾量为1.05 mm,且日蒸腾量从5月开始逐渐增大,在7月中上旬达最大值,随后其值逐渐减小。单变量敏感性分析法对模拟蒸腾量的分析表明,林冠层接收的净辐射和林地叶面积指数对模拟结果的影响最大,其次是气温和风速,而空气相对湿度的影响最小;当模型输入参数在±10%变动时,模拟蒸腾量的变化幅度均<10%,说明该模型的模拟结果比较稳定,有很大的可信性。
     (4)采用改进的Penman-Monteith修正式估算的青海云杉林2008年整个生长季的林地土壤蒸发量为51.9mm,平均日土壤蒸发量为0.34mm,且模拟的日土壤蒸发量没有明显的季节变化。利用自制小型桶式蒸渗仪观测的青海云杉林非雨天的林地土壤蒸发平均为1.25 mm·d-1,最大可达2.82 mm·d-1。在试验观测期间内的38个非雨天,蒸渗仪实测的土壤蒸发量明显高于Penman-Monteith修正式的估算值,但两者的变化趋势基本一致。
     (5)基于改进的Penman-Monteith修正式估算的青海云杉林2008年整个生长季的蒸散量为313.6 mm。其中,林冠截留蒸发量、冠层蒸腾量和林地土壤蒸发量依次为100.9 mm、160.8mm和51.9mm,分别占总蒸散量的32.2%、51.3%和16.5%。采用Penman-Monteith修正式估算的青海云杉林的蒸散量与涡动相关系统实测的蒸散量相差不大,尤其是在连续晴天期间,两者吻合得很好,且月蒸散量变化呈先增大后减小趋势。
     (6)研究区大部分降雨以林内雨的形式进入林下并贮存于土壤中,同时季节性冻土随气温的升高逐渐融化,也使得土壤含水量剧增,最终导致土壤储水量在2008年整个生长季内可增加191.5mm。未考虑冻土的存在和考虑其存在,根据水量平衡方程推算的青海云杉林2008年整个生长季的总蒸散量分别为187.5mm和306.7mm,分别比基于改进的Penman-Monteith修正式估算的蒸散量低126.1mm和6.9mm。
The Qilian Mountains is located at the intersection of the Tibetan Plateau, the Loess Plateau and the Mongolia-Xinjiang Desert, northwestern China. Its ecological environment is not only restricted by regional conditions but also sensitive to global change. In order to address the subsistence needs, local residents have exerted all kinds of serious interferences to regional ecosystem of the Qilian Mountains for a long time, which lead to grassland degradation, soil erosion intensification, and severe forest destruction. There are close interactions and coupling relationships between forest ecosystem and the ecological and hydrological processes in the whole Qilian Mountains. On the one hand, forest ecosystem defends the safety of permanent snow and glaciers by controlling the energy balance and the water cycle; on the other hand, it plays the role of water conservation, purifying water, protecting soil and water resources, and maintaining biological diversity by regulating hydrological paths (e.g., intercepting and regulating the mountainous precipitation and melt-water). However, the mechanism of the ecological and hydrological processes in the forest ecosystem has not been well understood due to the complex influences on the interaction between forest and water resouces. Therefore, this study aims to investigate the ecological and hydrological processes of Qinghai spruce (Picea crassifolia) forests. Based on the analysis of ecological processes and hydrological processes and their interactions, the mechanism of hydrological cycle in the Qinghai spruce forests and its regulation on the whole mountainous hydrological processes could be quantitatively revealed. Furthermore, the occurrence rules and internal relationships of various hydrological phenomena in the Qilian Mountains can be thoroughly understood, which can provide scientific basis for establishing a rational management pattern on water resources. The main results are as follows:
     (1) The daily maximum and average air temperature in the study area have obvious seasonal variations. In the Qinghai spruce forest, the relative humidity is basically around 60%, wind speed is less than 0.5 m-s-1, and the highest understory solar radiation intensity is only 86.6 W-m-2. Precipitation in the study area also has a significant seasonal distribution. Rainfall during the growing season (from May to September) of 2008 accounts for 78.7% of annual precipitation, and the rainfall events mainly occur as low rainfall amount and intensity. The vertical distribution of soil temperature and soil moisture in different months show different variation trends, while soil temperature and volume water content of different soil depths during the whole year increase firstly and then decrease.
     (2) During the observation period (from June 12 to October 8 in 2008), the total throughfall, rainfall interception and stemflow of the Qinghai spruce forest were 212.6 mm,64.5 mm and 3.4 mm, and accounted for 75.8%,23.0% and 1.2% of the total precipitation, respectively. Throughfall increased with the increase of rainfall and had a great spatial variability. Under the conditions of no rainfall before a rain event, stemflow in the Qinghai spruce forest began to yield when rainfall amount reached 5.6 mm. The stemflow amount increased with the increase of rainfall and stemflow rate of 34 rain events averaged 0.58%. Canopy interception rate gradually decreased and finally stabilized with the increase of rainfall, and the averaged proportion of canopy interception was 33.9%.
     (3) This study simulated canopy transpiration of the Qinghai spruce forest during the growing season of 2008 using an improved Penman-Monteith equation and the univariate sensitivity analysis was performed to test the sensitivity of variables affecting the canopy transpiration. The total transpiration of the Qinghai spruce forest in the whole growing season of 2008 is 160.8 mm and the daily canopy transpiration rate averages 1.05 mm. The modeled daily canopy transpiration starts to increase at the beginning of May, reaches its maximum in the middle of July, and returns to its minimal value towards the end of the growing season. Our sensitivity test shows that among the factors affecting the canopy transpiration, the sequential order of the importance is as follows:net radiation received by canopy> leaf area index> daily air temperature> wind speed>relative humidity. We consider that less than±10% change in the estimated daily canopy transpiration resulted from about±10% change in any of the contributing factors is acceptable and thus the model-based estimation of the daily canopy transpiration is acceptable.
     (4) The total soil evaporation (estimated by using an improved Penman-Monteith equation) of the Qinghai spruce forest in the whole growing season of 2008 is 51.9 mm and the daily soil evaporation rate averages 0.34 mm. Meanwhile, the daily soil evaporation rates of non-rainy days, observed by small man-made lysimeters, average 1.25 mm and the daily maximum of soil evaporation is 2.82 mm. During the observation period, the measured soil evaporation by lysimeters on 38 non-rainy days was higher than that estimated by the improved Penman-Monteith, but the variation trends were consistent with each other.
     (5) Based on the improved Penman-Monteith equation, the estimated total evapotranspiration of the Qinghai spruce forest throughout the entire 2008 growing season was 313.6 mm. Canopy interception evaporation, canopy transpiration, and soil evaporation were 100.9 mm,160.8 mm and 51.9 mm, and accounted for 32.2%, 51.3% and 16.5% of the total evapotranspiration, respectively. The estimated evapotranspiration of the Qinghai spruce forest during the whole growing season was not obviously higher or lower than that observed by the eddy correlation system in the study area, and the differences between them were much smaller on sunny days. Specially, the modeled monthly evapotranspiration starts to increase at May, reaches its maximum in July, and decrease towards September.
     (6) In the study area, most of the rainfall reaches the Qinghai spruce forest floor via forest canopy and is stored in the soil. Meanwhile, seasonal frozen soil melts gradually with the increase of air temperature, which also results in sharply increase in soil moisture. Therefore, the storage of soil water during the whole growing season of 2008 increased 191.5 mm. Furthermore, the evapotranspiration deduced from water balance equation was 187.5 mm and 306.7 mm without and with the consideration of the seasonal frozen soil, respectively. They were lower than that estimated based on the improved Penman-Monteith equation as much as 126.1 mm and 6.9 mm, respectively.
引文
[1]Allen S J. Measurement and estimation of evaporation from soil under sparse barley crops in Northern Syria [J]. Agricultural and Forest Meteorology.1990,49(4):291-309.
    [2]Allen R G, Pereive L S, Raes D, Smith M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements [R]. Rome:FAO Irrigation and Drainage paper No. 56.1998.20-21.
    [3]Ansley R J, Dugas W A, Heuer M L, Trevino B A. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa) [J]. Journal of Experimental Botany.1994,45(275):847-856.
    [4]Arnold J. G, Srinivasan R, Muttiah R S, Williams J R. Large-area hydrologic modeling and assessment:Part I. Model development [J]. Journal of the American Water Resources Association.1998,34(1):73-89.
    [5]Arnold J G, Potter K N, King K W, Allen P M. Estimation of soil cracking and the effect on surface runoff in a Texas Blackland Prairie watershed [J]. Hydrological Processes. 2005,19(3):589-603.
    [6]Bahn M, Cernusca A. Effects of land-use changes on plants a functional approach relating plant and ecosystem processes [A].150-160. Cernusca A, Tappeiner U, Bayfield N. Land-use changes in European mountain ecosystems [C]. Berlin:Blackwell Wissenschaft. 1999.
    [7]Bahn M, Wohlfahrt G, Haubner E, Horak I, Michaeler W, Rottmar K, Tappeiner U, Cernusca A. Leaf photosynthesis, nitrogen contents and specific leaf area of 30 grassland species in differently managed mountain ecosystems in the Eastern Alps [A].247-255. Cernusca A, Tappeiner U, Bayfield N. Land-use changes in European mountain ecosystems [C]. Berlin:Blackwell Wissenschaft.1999.
    [8]Baird A J, Wilby R L. Ecohydrology. Plants and Water in Terrestrial and Aquatic Environments [M]. London:Routledge, UK.1999.
    [9]Barendregt A, Wassen M J. Het Hydro-ecologisch Model ICHORS (Versies 2.0 en 3.0); de Relatie tussen Water en Moerasplanten en Milieufactoren in Noord-Holland [R]. Rapport Interfacultaire Vakgroep Milieukunde, Rijks Universiteit Utrecht, Utrecht.1989.
    [10]Barendregt A, Bootsma M C. Het Hydro-ecologisch Model ICHORS (Versies 3.1 en 3.2); de Relatie tussen Water-en Moerasplanten en Milieufactoren in de Provincie Utrecht [R]. Rapport Interfacultaire Vakgroep Milieukunde, Rijks Universiteit Utrecht, Utrecht.1991.
    [II]Barendregt A, Wassen M J, De Smidt J T. Hydroecological modelling in a polder landscape:a tool for wetland management [A].79-99. Vos C C, Opdam P. Landscape Ecology of a Stressed Environment [C]. London:Chapman and Hall.1993.
    [12]Bigelow S. Evapotranspiration modelled from stands of three broad-leaved tropical trees in Costa Rica [J]. Hydrological Processes.2001,15(14):2779-2796.
    [13]Borner T, Johnson M G, Rygiewicz P T, Tingey D T, Jarrell G D. A two-probe method for measuring water content of thin forest floor litter layers using time domain reflectometry [J]. Soil Technology.1996,9(3):199-207.
    [14]Carlson T N, Capehart W J, Gillies R R. A new look at the simplified method for remote sensing of daily evaportranspiration [J]. International Journal of Remote Sensing.1995, 54(2):161-167.
    [15]Carlyle-Moses D E. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community [J]. Journal of Arid Environments. 2004,58(2):181-202.
    [16]Cernusca A, Bahn M, Chemini C, Graber W, Siegwolf R, Tappeiner U, Tenhunen J. ECOMONT:a combined approach of field measurements and process-based modelling for assessing effects of land-use changes in mountain landscapes [J]. Ecological Modelling.1998,113(1-3):167-178.
    [17]Chen J L, Reynolds J F. GePSi:A generic plant simulator based on object-oriented principles [J]. Ecological Modelling.1997,94(1):53-66.
    [18]Chen J M, Rich P M, Gower S T, Norman J M, Plummer S. Leaf area index of boreal forests:Theory, techniques, and measurements [J]. Journal of Geophysical Research. 1997,102(D24):29429-29443.
    [19]Costantini E, Castelli F, Raimondi S, Lorenzoni P. Assessing soil moisture regimes with traditional and new methods [J]. Soil Science Society of America Journal.2002,66(6): 1889-1896.
    [20]Coughenour M B. Dwarf shrub and graminoid responses to clipping, nitrogen and water: simplified simulations of biomass and nitrogen dynamics [J]. Ecological Modelling.1991, 54(1-2):81-110.
    [21]De Bruin H A R, Van den Hurk B J J M, Kohsiek W. The scintillation method tested over a dry vineyard area [J]. Boundary-Layer Meteorology.1995,76(1-2):25-40.
    [22]Ertsen A C D. ITORS:Een Hydro-ecologisch Model voor Terrestrische Ecosystemen in Noord-Holland [R]. Vakgroep Milieukunde, Universiteit Utrecht/Dienst Milieu en Water, Provincie Noord-Holland, Utrecht.1995.
    [23]Ertsen A C D, Frens J W, Nieuwenhuis J W, Wassen, M J. An approach to modelling the relationship between plant species and site conditions in terrestrial ecosystems [J]. Landscape Urban Planning.1995,31:143-151.
    [24]Flerchinger G N. The Simultaneous Heat and Water (SHAW) Model:Technical Documentation [R]. Boise:Northwest Watershed Research Center USDA Agricultural Research Service.2000.
    [25]Food and Agriculture Organization (FAO). State of the World's Forests [M]. Rome:FAO. 2005.
    [26]Gao Q, Yang X S. Yun R, Li C P. MAGE, a dynamic model of alkaline grassland ecosystems with variable soil characteristics [J]. Ecological Modelling.1996,93(1-3): 19-32.
    [27]Gao Q, Yu M, Li C P, Yun R. Effects of ground water and harvest intensity on alkaline grassland ecosystem dynamics—a simulation study [J]. Plant Ecology.1998,135(2): 165-176.
    [28]Garratt J R. Sensitivity of climate simulations to land-surface and atmospheric boundary -layer treatments—A review [J]. Journal of Climate.1993,6(3):419-449.
    [29]Gash J H C. An analytical model of rainfall interception by forests [J]. Quarterly Journal of the Royal Meteorological Society.1979,105(443):43-55.
    [30]Gash J H C, Lloyd C R, Lachaud G. Estimating sparse forest rainfall interception with an analytical model [J]. Journal of Hydrology.1995,170(1-4):79-86.
    [31]Gomez-Plaza A, Martinez-Mena M, Albaladejo J, Castillo V M. Factors regulating spatial distribution of soil water content in small semiarid catchments [J]. Journal of Hydrology. 2001,253(1-4):211-226.
    [32]Gonzalez A, Plamondon A P. Urea fertilization of natural forest:effects on water quality [J]. Forest Ecology and Management.1976-1977,1:213-221.
    [33]Granier A, Biron P, Breda N, Pontailler J Y, Saugier B. Transpiration of trees and forest stands:short and long-term monitoring using sap flow methods [J]. Global Change Biology.1996,2(3):265-274.
    [34]Grayson R B, Western A W, Chiew F H S, Bloschl G. Preferred states in spatial soil moisture pattern:local and nonlocal controls [J]. Water Resources Research.1997,33(12): 2897-2908.
    [35]Greenwood E A N, Beresford J D. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique:I. Comparative transpiration from juvenile Eucalyptus above saline groundwater seeps [J]. Journal of Hydrology.1979, 42(3-4):369-382.
    [36]Greenwood E A N, Beresford J D, Bartle J R, Barron R J W. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique:IV. Evaporation from a regenerating forest of Eucalyptus wandoo on land formerly cleared for agriculture [J]. Journal of Hydrology.1982,58(3-4):357-366.
    [37]Gremmen N J M. Natuurtechnisch model voor de beschrijving en voorspelling van effecten van veranderingen in waterregime, op de waarde van een gebied, vanuit natuurbehoudsstandpunt. I:uitgangspunten en modelconcept [R]. Studiecommissie Waterbebeer Natuur, Bosen Landschap (SWNBL), Rapport no. le, Utrecht,1987.
    [38]Gremmen N J M. Natuurtechnisch model voor de beschrijving en voorspelling van effecten van veranderingen in waterregime, op de waarde van een gebied, vanuit natuurbehoudsstandpunt. IV:Herziening en verificatie van het model [R]. SWNBL, Rapport no. lr, Utrecht,1990.
    [39]Hanchi A, Rapp M. Stemflow determination in forest stands [J]. Forest Ecology and Management.1997,97(3):231-235.
    [40]Hargreaves G H, Samani Z A. Reference crop evaportranspiration from temperature [J]. Applied Engineering in Agriculture.1985,1(2):96-99.
    [41]Hatton T J, Moore S J, Reece P H. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies [J]. Tree Physiology.1995,15(4):219-227.
    [42]Helvey J D, Patric J H. Canopy and litter interception of rainfall by hardwoods of eastern United States [J]. Water Resources Research.1965,1(2):193-206.
    [43]Herbst M, Rosier P T W, McNeil D D, Harding R J, Gowing D J. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest [J]. Agricultural and Forest Meteorology.2008,148(11):1655-1667.
    [44]Hormann G, Branding A, Clemen T, Herbst M, Hinrichs A, Thamm F. Calculation and simulation of wind controlled canopy interception of a beech forest in Northern Germany [J]. Agricultural and Forest Meteorology.1996,79(3):131-148.
    [45]Jackson N A. Measured and modeled rainfall interception loss from an agroforestry system in Kenya [J]. Agriculture and Forest Meteorology.2000,100(4):323-336.
    [46]Jackson T J, Chen D Y, Cosh M, Li F Q, Anderson M, Walthall C, Doriaswamy P, Hunt E R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans [J]. Remote Sensing of Environment.2004,92(4): 475-482.
    [47]Jansson P E, Cienciala E, Grelle A, Kellner E, Lindahl A, Lundblad M. Simulated evapotranspiration from the Norunda forest stand during the growing season of a dry year [J]. Agricultural and Forest Meteorology.1999,98-99:621-628.
    [48]Kelliher F M, Whitehead D, McAneney K J, Judd M J. Partitioning evapotranspiration into tree and understorey components in two young Pinus radiata D. DON stands [J]. Agriculture and Forest Meteorology.1990,50(3):211-227.
    [49]Kelliher F M, Hollinger D Y, Schulze E-D, Vygodskaya N N, Byers J N, Hunt J E, McSeveny T M, Milukova I, Sogatchev A, Varlargin A, Ziegler W, Arneth A, Bauer G. Evaporation from an eastern Siberian larch forest [J]. Agricultural and Forest Meteorology.1997,85:135-147.
    [50]Koren V, Schaake J, Mitchell K, Duan Q-Y, Chen F, Baker J M. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models [J]. Journal of Geophysical. Research.1999,104(D16):19569-19585.
    [51]Kosugi K, Mori K, Yasuda H. An inverse modeling approach for the characterization of unsaturated water flow in an organic forest floor [J]. Journal of Hydrology.2001, 246(1-4):96-108.
    [52]Kram P, Santore R C, Driscoll C T, Aber J D, Hruska J. Application of the forest-soil-water model (PnET-BGC/CHESS) to the Lysina catchment, Czech Republic [J]. Ecological Modelling.1999,120(1):9-30.
    [53]Latour J B, Reiling R. On the MOVE, Concept voor een Nationaal Effecten Model voor de Vegetatie [R]. Bilthoven:RIVM Rapport/711901003.1991.
    [54]Latour J B, Reiling R. A multiple stress model for vegetation ('move'):a tool for scenario studies and standard-setting [J]. Science of the Total Environment.1993,134(2):1513-1526.
    [55]Latour J B, Reiling R, Wiertz J. MOVE:a multiple stress model for vegetation [A]. Hooghart J C, Posthumus C W S. The Use of Hydro-ecological Models in The Netherlands, TNO Committee on Hydrological Research, Proceedings and Information [C].1993,47:53-66.
    [56]Leopoldo P R, Franken W K, Nova V N A. Real evapotranspiration and transpiration through a tropical rain forest in central Amazonia as estimated by the water balance method [J]. Forest Ecology and Management.1995,73(1-3):185-195.
    [57]Liang X, Wood E F, Lettenmaier D P. Surface soil moisture parameterization of the VIC-2L model:Evaluation and modification [J]. Global and Planetary Change.1996, 13(1-4):195-206.
    [58]Link T E, Unsworth M, Marks D. The dynamics of rainfall interception by a seasonal temperate rainforest [J]. Agricultural and Forest Meteorology.2004,124(3-4):171-191.
    [59]Lloyd C R, Marques A De O. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest [J]. Agricultural and Forest Meteorology.1988, 42(1):63-73.
    [60]Loague K, Gander G A. R-5 revisited 1. Spatial variability of infiltration on a small rangeland catchment [J]. Water Resources Research.1990,26(5):957-971.
    [61]Lohmann D, Raschke E. Regional scale hydrology:II. Application of the VIC-2L model to the Weser River, Germany [J]. Hydrological Sciences.1998,43(1):143-158.
    [62]Luo Y, Field C B, Mooneyc H A. Adapting GePSi (Generic Plant Simulator) for modeling studies in the Jasper Ridge CO2 project [J]. Ecological Modelling.1997,94(1):81-88.
    [63]Mahmood R, Hubbard K G. Effect of time of temperature observation and estimation of daily solar radiation for the Northern Great Plains, USA [J]. Agronomy Journal.2002, 94(4):723-733.
    [64]Marimon-Junior B H, Hay J D. A new instrument for measurement and collection of quantitative samples of the litter layer in forests [J]. Forest Ecology and Management. 2008,255(7):2244-2250.
    [65]Marin C T, Bouten I W, Dekker S. Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia [J]. Journal of Hydrology.2000,237(3-4): 169-183.
    [66]Mikhailova E A, Bryant R B, Schwager S J, Smith S D. Predicting rainfall erosivity in Honduras [J]. Soil Science Society of America Journal.1997,61(1):273-279.
    [67]Monsi M, Saeki T. Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion [J]. Japanese Journal of Botany.1953,14(1):22-52.
    [68]Monteith J L. Evaporation and environment [J]. Symposia of the Society for Experimental Biology.1965,19:205-234.
    [69]Morison J I L, Gifford R M. Stomatal sensitivity to carbon dioxide and humidity:a comparison of two C3 and two C4 grass species [J]. Plant Physiology.1983,71(4): 789-796.
    [70]Noest V. Simulated impact of sea lavel rise on phreatic level and vegetation of dune slacks in the Voorne dune area (The Netherlands) [J]. Landscape ecology.1991,6:89-97.
    [71]Noest V. A hydrology-vegetation interaction model for predicting the occurance of plant species in dune slacks [J]. Journal of envirionmental management.1994,40(2):119-128.
    [72]Notarnicola C, Angiulli M, Posa F. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas [J]. IEEE Transactions on Geoscience and Remote Sensing.2006,44(4):925-935.
    [73]Park A, Cameron J L. The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation [J]. Forest Ecology and Management. 2008,255(5-6):1915-1925.
    [74]Penman H L. Natural evaporation from open water, bare soil and grass [J]. Proceedings of the Royal Society of London Series B.1948,193(1032):120-145.
    [75]Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters [J]. Monthly Weather Review.1972,100(2):81-92.
    [76]Pypker T G, Bond B J, Link T E, Marks D, Unsworth M H. The importance of canopy structure in controlling the interception loss of rainfall:Examples from a young and an old-growth Douglas-fir forest [J]. Agricultural and Forest Meteorology.2005,130(1-2): 113-129.
    [77]Qiu Y, Fu B J, Wang J, Chen L D. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China [J]. Journal of Hydrology. 2001,240(3-4):243-263.
    [78]Rodriguez-Iturbe I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamics [J]. Water Resources Research.2000,36(1):3-9.
    [79]Rutter A J, Kershaw K A, Robins P C, Morton A J. A predictive model of rainfall interception in forests. Ⅰ. Derivation of the model from observations in a plantation of Corsican pine [J]. Agricultural Meteorology.1971-1972,9:367-384.
    [80]Santore R C. PnET-BGC:CHESS model. Version P3NC115 (September 25,1996). Microsoft BASIC file [R]. New York:Syracuse University.1996.
    [81]Santore R C. Modeling forest soil response to chemical treatment at three sites in the Adirondack Mountains, New York [PhD Dissertation]. New York:Syracuse University. 1999.
    [82]Sato Y, Kumagai T, Kume A, Otsuki K, Ogawa S. Experimental analysis of moisture dynamics of litter layers—the effects of rainfall conditions and leaf shapes [J]. Hydrological Processes.2004,18(6):3007-3018.
    [83]Schaap M G, Bouten W. Forest floor evaporation in a dense Douglas stand [J]. Journal of Hydrology.1997,193(1-4):97-113.
    [84]Schroth G, da Silva L F, Wolf M A, Teixeira W G, Zech W. Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil [J]. Hydrological Processes.1999,13(10):1423-1436.
    [85]Sequin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal I.R. data [J]. International Journal of Remote Sensing.1983,4(2): 371-383.
    [86]Sharma M L, Luxmoore R J, DeAngelis R, Ward R C, Yeh G T. Subsurface water flow simulated for hillslopes with spatially dependent soil hydraulic characteristics [J]. Water Resources Research.1987,23(8):1523-1530.
    [87]Sinun W, Meng W W, Douglas I, Spencer T. Throughfall, stemflow, overland flow and throughflow in the Ulu Segama rain forest, Sabah, Malaysia [J]. Philosophical Transactions:Biological Sciences.1992,335(1275):389-395.
    [88]Splittlehouse D L, Black T A. Evaluation of the Bowen ratio/energy balance method for determining forest evapotranspiration [J]. Atmosphere-Ocean.1980,18(2):98-116.
    [89]Teklehaimanot Z, Jarvis P G, Ledger D C. Rainfall interception and boundary layer conductance in relation to tree spacing [J]. Journal of Hydrology.1991,123(3-4): 261-278.
    [90]Thom A S, Oliver H R. On Penman's equation for estimating regional evaporation [J]. Quarterly Journal of the Royal Meteorological Society.1977,103(436):345-357.
    [91]Thornthwaite C W. The economic relationship of climate and agriculture [A]. Comit Permanenta dela Segunda Conferencia Interamericana de Agricultura [C]. Mexico:D. F. Publicaciones.1944.
    [92]Tian F X, Zhao C Y, Feng Z.-D. Simulating evapotranspiration of Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains, northwestern China [J]. Journal of Arid Environments.2011,75(7):648-655.
    [93]van Dijk A I J M, Bruijnzeel L A. Modeling rainfall interception by vegetation of variable density using an adapted analytical model. Part 1. Model description [J]. Journal of Hydrology.2001,247(3-4):230-238.
    [94]Venterink H O, Wassen M J. A comparison of six models predicting vegetation response to hydrological habitat change [J]. Ecological Modelling.1997,101(2-3):347-361.
    [95]Vertessy R A, Fred G R. Factors determining relations between stand age and catchment water balance in mountain ash forests [J], Forest Ecology and Management.2001, 143(1-3):13-26.
    [96]Viville D, Biron P, Granier A, Dambrine E, Probst A. Interception in a mountainous declining spruce stand in the Strengbach catchment (Vosges, France) [J]. Journal of Hydrology.1993,144(1-4):273-282.
    [97]Vrugt J A, Bouten W, Dekker S C, Musters P A D. Transpiration dynamics of an Austrian Pine stand and its forest floor:identifying controlling conditions using artificial neural networks [J]. Advances in Water Resources.2002,25:293-303.
    [98]Wiertz J, Van Dijk J, Latour J B. MOVE:Vegetatiemodule; de Kans op Voorkomen van ca.700 Plantensoortenals Functie van Vocht, pH, Nutrienten en Zout [R]. IBN-DLO/RIV-M, RIN, Rapport 92/24, RIVM Rapport 7119001006, Wageningen/Bilthoven.1992.
    [99]Witte J P M, Groen C L G, Nienhuis J G Het Ecohydrologische Voorspellingsmodel DEMNAT-2; Conceptuele Modelbeschrijving [R]. CML Rapport nr.89, RIVM Rapport 714305007, Leiden/Bilthoven.1992.
    [100]Witte J P M, Groen C L G, der Meijden V, Nienhuis J G. DEMNAT:a national model for the effects of water management on the vegetation [A]. Hooghart J C, Posthumus C W S. The Use of Hydro-ecological Models in The Netherlands, TNO Committee on Hydrological Research, Proceedings and Information [C].1993,47:31-51.
    [101]Yates S R, Warrick A W. Estimating soil water content using cokriging [J]. Soil Science Society of America Journal.1987,51:23-30.
    [102]Yepez E A, Williams D G, Scott R L, Lin G H. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor [J]. Agricultural and Forest Meteorology.2003,119(1-2):53-68.
    [103]Zalewski M, Janauer G A, Jolankai G. Ecohydrology:A new paradigm for the sustainable use of aquatic resources [M]. Paris:UNESCO.1997.
    [104]曹云,黄志刚,欧阳志云,郑华,王效科,苗鸿.湖南省张家界马尾松林冠生态水文效应及其影响因素分析[J].林业科学.2006,42(12):13-20.
    [105]常学向,赵爱芬,王金叶,常宗强,金博文.祁连山林区大气降水特征与森林对降水的截留作用[J].高原气象.2002,21(3):274-280.
    [106]常宗强,王金叶,常学向,王艺林,贾玉琴.祁连山水源涵养林枯枝落叶层水文生态功能[J].西北林学院学报,2001,16(增刊):8-13.
    [107]常宗强,王有科,席万鹏.祁连山水源涵养林土壤水分的蒸发性能[J].甘肃科学学报.2003,15(3):68-72.
    [108]车涛,白云洁,李建成,谭俊磊.黑河综合遥感联合试验:大野口关滩森林站超级样地降雨截留观测数据.中国科学院寒区旱区环境与工程研究所.2008.Doi:10.3972/water973.0052.db.
    [109]陈佳,史志华,李璐,罗璇.小流域土层厚度对土壤水分时空格局的影响[J].应用生态学报.2009,20(7):1565-1570.
    [110]陈丽华,余新晓,张东升,高甲荣.贡嘎山冷杉林区苔藓层截持降水过程研究[J].北京林业大学学报.2002,24(4):60-63.
    [111]陈仁升,康尔泗,吕世华,吉喜斌,阳勇,张济世.内陆河高寒山区流域分布式水热耦合模型(Ⅱ):地面资料驱动结果[J].地球科学进展.2006,21(8):819-829.
    [112]陈天林.延安刺槐林地生态需水量研究[硕士论文].杨陵:西北农林科技大学.2008.
    [113]程根伟,陈桂蓉.贡嘎山暗针叶林区森林蒸散发特征与模拟[J].水科学进展.2003,14(5):617-621.
    [114]程根伟,余新晓,赵玉涛.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社.2004.
    [115]党宏忠,周泽福,赵雨森.青海云杉林冠截留特征研究[J].水土保持学报.2005,19(4):60-64.
    [116]刁一伟,裴铁璠.森林流域生态水文过程动力学机制与模拟研究进展[J].应用生态学报.2004,15(12):2369-2376.
    [117]董世仁,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[J].北京林业大学学报.1987,9(1):58-68.
    [118]范世香,蒋德明,阿拉木萨,李雪华,刘志民.林内穿透雨量模型研究[J].生态学报.2003,23(7):1403-1407.
    [119]高艳红,程国栋,尚伦宇,刘伟.耦合冻土方案的大气模式对祁连山区春季土壤状况的模拟[J].冰川冻土.2007,29(1):82-90.
    [120]巩合德,王开运,杨万勤,王乾,张远彬.川西亚高山原始云杉林内降雨分配研究[J].林业科学.2005,41(1):198-201.
    [121]郭娇,石建省,石迎春,叶浩,王伟.黄河三角洲土壤水分遥感监测研究[J].土壤学报.2008,45(2):229-233.
    [122]郝帅,张毓涛,刘端,张洪亮,李翔.不同郁闭度天山云杉林林冠截留量及穿透雨量特征研究[J].干旱区地理.2009,32(6):917-923.
    [123]何常清,薛建辉,吴永波,张雷燕,刘冲,刘兴良.岷江上游亚高山川滇高山栎林的降雨再分配[J].应用生态学报.2008,19(9):1871-1876.
    [124]何常清,薛建辉,吴永波,张雷燕.应用修正的Gash解析模型对岷江上游亚高山川滇高山栎林林冠截留的模拟[J].生态学报.2010,30(5):1125-1132.
    [125]贺康宁,田阳,张光灿.刺槐日蒸腾过程的Penman-Monteith方程模拟[J].生态学报.2003,23(2):251-258.
    [126]何庆宾,顾宇书,沿丽红,李士,张志通.长白落叶松人工林地森林土壤水分规律的探讨[J].内蒙古林业调查设计.2010,33(1):60-62.
    [127]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展[J].生态学报.2003,23(3):580-587.
    [128]黄志刚.南方红壤丘陵区典型流域森林生态系统水文过程、调节功能及机制研究[博士论文].兰州:中国科学院寒区旱区环境与工程研究所.2010.
    [129]霍应强.森林水文学知识(Ⅰ)森林水量平衡[J].广东林业科技.1985,5:51-53.
    [130]金博文,王金叶,常宗强,葛双兰.祁连山青海云杉林冠层水文功能研究[J].西北林学院学报.2001,16(增刊):39-42.
    [131]康绍忠,刘晓明,熊运章.土壤-植被-大气连续体水分传输理论及其应用[M].北京:水利电力出版社.1994.
    [132]康文星,田大伦,文仕知,谌小勇,盛利元.杉木人工林蒸散规律的研究及乱流扩散法应用的探讨[J].植物生态学与地植物学学报.1992,16(4):336-345.
    [133]李志飞,赵雨森,辛颖,孔祥飞,武春彦.阿什河上游小流域不同森林类型土壤水分时空分布[J].中国水土保持科学.2010,8(4):86-89.
    [134]刘敏,贺康宁,于洋.青海云杉树干液流研究[J].水土保持应用技术.2009,(1):1-3,6.
    [135]刘旻霞.青海云杉林林冠截留与大气降水的关系[J].甘肃农业大学学报.2004,39(3):341-344.
    [136]刘旻霞,车克钧.祁连山青海云杉林枯落物层水文效应分析[J].甘肃农业大学学报.2004,39(4):434-438.
    [137]刘世海,余新晓.北京密云水库库区水源涵养林冠层水文特征研究[J].林业科学.2005,41(1):194-197.
    [138]刘世荣,王兵,温远光,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社.1996.
    [139]刘西川,高太长,秦健,刘磊.降雨对微波传输特性的影响分析[J].物理学报.2010,59(3):2156-2162.
    [140]刘贤德,杨全生.祁连山生物多样性研究[M].北京:中国科学技术出版社.2006.
    [141]陆光明,孟平,马秀玲,宋兆民,张劲松,李春友,马明川.林-果-农复合系统中植物蒸腾及系统蒸散的研究[J].中国农业大学学报.1996,1(5):103-109.
    [142]马雪华.森林水文学[M].北京:中国林业出版社.1993.
    [143]马柱国,魏和林,符淙斌.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报.2000,58(3):278-287.
    [144]牛赟,刘贤德,张虎,苗毓鑫.祁连山水源涵养林土壤渗透功能的分析与评价[J].西北林学院学报.2001,16(增刊):35-38.
    [145]牛赞,刘贤德,张宏斌,葛双兰.基于空间数据结构的祁连山青海云杉林水量平衡[J].遥感技术与应用.2006,21(4):344-348.
    [146]彭焕华.祁连山北坡青海云杉林冠截留过程研究[硕士论文].兰州:兰州大学.2010.
    [147]齐善忠,王涛,罗芳,罗万银,郭坚.黑河流域环境退化特征分析及防治研究[J].地理科学进展.2004,23(1):30-37.
    [148]任引,薛建辉.武夷山甜槠常绿阔叶林林分降水分量特征[J].林业科学.2008,44(2):23-27.
    [149]时忠杰,王彦辉,徐丽宏,熊伟,于澎涛,郭浩,张雷燕.六盘山主要森林类型枯落物的水文功能[J].北京林业大学学报.2009,31(1):91-99.
    [150]宋克超,康尔泗,金博文,张智慧.两种小型蒸渗仪在黑河流域山区植被带的应用研究[J].冰川冻土.2004,26(5):617-623.
    [151]孙长忠,黄宝龙,陈海滨,刘增文,温仲明.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报.1998,20(3):7-14.
    [152]孙鹏森,马履一,蔡永茂.京北山区水源保护林的现状与发展策略[J].北京林业大学学报.1999,21(6):58-64.
    [153]谭俊磊,车涛,白云洁,李建成,等.黑河联合遥感试验:关滩超级样地内土壤蒸发数据集.数据发布单位:中科院寒区旱区环境与工程研究所.数据观测日期:2008年6月12日至2008年8月30日.
    [154]谭俊磊,马明国,车涛,白云洁.基于不同郁闭度的青海云杉冠层截留特征研究[J].地球科学进展.2009,24(7):825-833.
    [155]田风霞,赵传燕,王瑶.祁连山东段土壤水分时空分布特征及其与环境因子的关系[J].干旱地区农业研究.2010,28(6):23-29.
    [156]万师强,陈灵芝.暖温带落叶阔叶林冠层对降水的分配作用[J].植物生态学报.1999,23(6):557-561.
    [157]王安志,裴铁璠.森林蒸散测算方法研究进展与展望[J].应用生态学报.2001,12(6):933-937.
    [158]王安志,裴铁璠.长白山阔叶红松林蒸散量的测算[J].应用生态学报.2002,13(12):1547-1550.
    [159]王斌瑞,王百田.黄土高原径流林业[M].北京:中国林业出版社.1996.
    [160]王桂玲,高亮之.冬小麦田间土壤水分平衡动态模拟模型的研究[J].江苏农业学报.1998,14(1):36-41.
    [161]王进鑫,黄宝龙.世界旱区径流林业的研究进展[J].南京林业大学学报.2000,24(3):5-10.
    [162]王金叶,刘贤德,金博文,王艺林,刘志娟.祁连山青海云杉林调节林内水分变化研究[J].西北林学院学报.2001,16(增刊):43-45.
    [163]王金叶,于澎涛,王彦辉,等.森林生态水文过程研究—以甘肃祁连山水源涵养林为例[M].北京:科学出版社.2008.
    [164]王让会,张慧芝,黄青.山地-绿洲-荒漠系统耦合关系研究的新进展[J].中国科学基金.2005,6:339-342.
    [165]王顺利,王金叶,张学龙,敬文茂.祁连山青海云杉林苔藓枯落物分布与水文特性[J].水土保持研究.2006,13(5):156-158.
    [166]王西平,姚树然.VSMB多层次土壤水分平衡动态模型及其初步应用[J].中国农业气象.1998,19(6):27-31.
    [167]王馨,张一平,刘文杰.Gash模型在热带季节雨林林冠截留研究中的应用[J].生态学报.2006,26(3):722-729.
    [168]王彦辉.陇东黄土地刺槐林水土保持效益的定量研究[J].北京林业大学学报.1986,8(1):1-5.
    [169]王彦辉,于澎涛.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业人学学报.1998,20(6):25-30.
    [170]王彦辉,于澎涛,郭浩.北京官厅库区森林植被生态用水及其恢复[M].北京:中国林业出版社.2009.
    [171]吴钦孝,赵鸿雁,刘向东,韩冰.森林枯枝落叶层涵养水源保持水土的作用评价[J].土壤侵蚀与水土保持学报.1998,4(2):23-28.
    [172]吴永波,郝奇林,薛建辉,刘兴良.岷江上游主要森林群落枯落物量及其持水特性[J].中国水土保持科学.2009,7(3):67-72.
    [173]熊伟,王彦辉,于澎涛,时忠杰,沈振西,郭明春.六盘山辽东栎、少脉椴天然次生林夏季蒸散研究[J].应用生态学报.2005,16(9):1628-1632.
    [174]徐树建.我国西北地区生态恢复研究[J].地理学与国土研究.2002,18(2):80-84.
    [175]徐文铎,邹春静,等.中国沙地森林生态系统[M].北京:中国林业出版社.1998.
    [176]闫文德,王金叶,王彦辉,田大伦,王顺利.祁连山排露沟流域土壤水分时空分布[J].西北林学院学报.2006,21(3):21-25.
    [177]杨国靖,肖笃宁,周立华.祁连山区森林景观格局对水文生态效应的影响[J].水科学进展.2004,15(4):489-494.
    [178]杨海军,孙立达,余新晓.晋西黄土区水土保持林水量平衡的研究[J].北京林业大学学报.1993,15(3):42-50.
    [179]阳坤,王介民.一种基于土壤温湿资料计算地表土壤热通量的温度预报校正法[J].中国科学(D辑).2008,38(2):243-250.
    [180]杨立文,石清峰.太行山主要植被枯枝落叶层的森林水文作用[J].林业科学研究,1998,10(3):283-288.
    [181]杨茂瑞.亚热带杉木、马尾松人工林的林内降雨、林冠截留和树干茎流[J].林业科学研究.1992,5(2):158-162.
    [182]余新晓,程根伟,赵玉涛,周杨明,牛健植.长江上游暗针叶林生态系统蒸散计算[J].水土保持学报.2002,16(5):14-16.
    [183]余新晓,甘敬,等.水源涵养林研究与示范[M].北京:中国林业科学出版社.2007.
    [184]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究.2001,14(2):23-28.
    [185]张胜利,雷瑞德,吕瑜良,马玉花.秦岭火地塘林区森林生态系统水量平衡研究[J].水土保持通报,2000,20(6):18-22.
    [186]张学龙,成彩霞,敬文茂,苗毓鑫,罗龙发.祁连山森林土壤的水文生态效应[J].甘肃林业科技,2007,32(2):5-9.
    [187]张岩,许廷武,杨培岭,任树梅.基于Penman-Monteith模型的杨树日蒸腾模拟[J].中国农村水利水电.2006,9:18-20,24.
    [188]张友静,王军战,鲍艳松.多源遥感数据反演土壤水分方法[J].水科学进展.2010,21(2):222-226.
    [189]张治国,赵红茹.黄丘区不同地类的降雨入渗试验[J].山西水土保侍科技.1999,2:7-9.
    [190]张志强,余新晓,赵玉涛,秦永胜.森林对水文过程影响研究进展[J].应用生态学报.2003,14(1):113-116.
    [191]赵传燕,冯兆东,刘勇.祁连山区森林生态系统生态服务功能分析—以张掖地区为例[J].干旱区资源与环境.2002,16(1):65-69.
    [192]赵传燕,沈卫华,彭焕华.祁连山区青海云杉林冠层叶面积指数的反演方法[J].植物 生态学报.2009,33(5):860-869.
    [193]赵传燕,别强,彭焕华.祁连山北坡青海云杉林生境特征分析[J].地理学报.2010,65(1):113-121.
    [194]赵鸿雁,吴钦孝,从怀军.黄土高原人工油松林枯枝落叶截留动态研究[J].自然资源学报.2001,16(4):381-385.
    [195]赵玉涛,余新晓,张志强,程根伟.长江上游亚高山峨眉冷杉林枯落物层界面水分传输规律研究[J].水土保持学报.2002,16(3):118-121.
    [196]周国逸.生态系统水热原理及其应用[M].北京:气象出版社.1997.
    [197]周择福,李昌哲.北京九龙山不同立地土壤蓄水量及水分有效性的研究[J].林业科学研究.1995,8(2):182-187.
    [198]朱劲伟,史继德.小兴安岭红松阔叶林的水文效应[J].东北林学院学报.1982,4:37-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700