用户名: 密码: 验证码:
硫化物纳米材料(ZnS,CdS,KCu_(7-x)S_4)的制备及其相关性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
II–VI族半导体因为其独特的物理和化学性质而在数十年来受到人们的广泛关注。ZnS和CdS是重要的两种II–VI族半导体材料,广泛用于光电器件、纳米发电机、气敏、生物荧光材料以及光降解催化剂等。另外,新型的硫族铜化合物纳米材料也作为构建下一代器件的优良的功能材料而受到研究人员的广泛关注,因为这种材料往往表现出很独特的性质。基于这些材料的卓越性能,本论文做了以下一些研究工作:
     (1)使用改良复合盐媒介法合成了由2–6纳米的超细颗粒自组装而成的纳米颗粒。研究了ZnS纳米颗粒的紫外-可见反射光谱和光致发光谱,发现该ZnS纳米颗粒的带隙比相应的块体材料要窄。带隙变窄来源于超细颗粒在组装时某些晶界面的不匹配而形成的富含缺陷的独特的准单晶结构。将ZnS纳米颗粒作为催化剂,催化降解甲基橙,在模拟太阳光下表现出比商业ZnS粉末更好的催化性质。
     使用复合盐媒介法合成了单晶CdS纳米颗粒。系统研究了温度、生长时间、盐量对颗粒形貌的影响。发现较低的温度、较短的时间和较多的盐量有利于得到较小的CdS纳米颗粒。将CdS纳米颗粒作为催化剂,在模拟太阳光下催化降解罗丹明B和亚甲基蓝,并与商业TiO2颗粒做了对比。
     使用加入不同水量的改良复合碱媒介法合成了立方相的CdS线状样品和六方相的纳米棒。发现在复合碱中加入较多的水量很容易得到纯净的六方相的纳米短棒。将CdS纳米短棒作为催化剂,在模拟太阳光下催化降解罗丹明B,表现出比CdS纳米颗粒更好的催化效果。六方相纳米棒的催化优势在于晶体端点处(0001)极性面所具有的超强的催化能力。
     (2)通过改良复合碱媒介法,在金属Cd片上直接生长出了六方相的三维CdS纳米墙和立方相的CdS纳米颗粒。 CdS纳米晶体的结构相变可以通过调节反应媒介中加入的水量来实现。六方相纳米墙电极比立方相纳米颗粒电极表现出明显的更佳的光电化学性质。表面形貌在光电化学中起到了很重要的作用,三维纳米墙的高比表面积、良好的传输性能保障了其良好的光电化学性质。
     使用水热法合成了三维的CdS纳米墙。构建了在CdS纳米墙阵列上沉积CdSe层的光电化学传感器。纳米墙的紧密度和厚度可以通过调节反应原料的浓度实现。通过连续离子吸附反应法在CdS纳米墙上沉积了一层均匀的CdSe纳米颗粒,并且通过调节吸附反应的周次可以调节沉积层的厚度。紫外-可见吸收光谱显示CdS/CdSe核壳结构的纳米墙阵列对光的吸收有效展宽到几乎整个可见光范围。纳米墙电极在模拟太阳光下的光电流从沉积前的3.78mA/cm2增加到沉积了CdSe后的8.3mA/cm2。光电化学效应的增强机理在文中有详细讨论。
     (3)使用改良复合碱媒介法合成了新型KCu7-xS4纳米线。调控了合成时加入的水量、反应时间和碱的种类,得到了理想形貌的样品。通过X射线衍射和旋转透射电子显微镜下不同角度的衍射谱的分析,得出KCu7-xS4纳米线是体心立方结构,其晶格参数为a=b=10.163、c=3.838。该KCu7-xS4纳米线吸收光谱范围包括了整个可见-近红外光谱。KCu7-xS4纳米线制得的膜在室温下的电阻率低至5×10-5·cm,电阻率随温度的变化曲线显示其具有金属性。
     获得低的热导率是制备高效热电材料的有效途径。然而要想在降低材料热导率的同时不破坏其电导率就是一项颇具挑战性的工作,这需要材料具有“声子玻璃-电子晶格”的特性。人们发现笼形晶格结构的材料可以实现声子玻璃-电子导体以及超离子导电性。实验发现KCu7-xS4纳米线比传统的Cu7S4纳米结构呈现出更加优良的热电性质。在这里,K离子的引入可以使实验合成出的KCu7-xS4晶体成为笼形结构,该晶体呈现超离子导电性,使得材料成为声子玻璃-电子晶体。并且纳米线结构也对热电效应的提高有一定的帮助。用该KCu7-xS4纳米线压制的块体材料具有很低的热导率和高的塞贝克系数。导电率在420K以下保持较高的水平。另外,材料具有大量晶界面,Cu空位缺陷和纳米线的有序排列都有利于热电性质的进一步提高。结果表明,我们可以通过在硫族铜化合物中引入K原子而得到声子玻璃-电子晶体的高效热电材料。
Due to their unique physical and chemical properties, II–VI semiconductormaterials have attracted great interest in the last decade. ZnS and CdS are importantII–VI semiconductor, which are considered as the most useful functional materials inthe electroluminescent devices, nano-generator, gas sensors, biological fluorescencematerials as well as photo-degradation catalysts. And novel copper chalcogenidesnanostructrures have attracted much attention as fundamental building blocks for thedevelopment of next generation devices, which have high performance and novelfunctionalities. Based on the excellent properties, the detail studies are described asfollows:
     (1) ZnS nanoparticles self-assembled from ultrafine particles (2–6nm) have beensynthesized for the first time by the modified composite molten salt method. UV–visreflectance spectrum and photoluminescence of the ZnS nanoparticles were investigated.The narrowed band gap of the ZnS nanoparticles was found owing to novel crystalstructure formed from a lattice-matched ‘coherent interface’ of the agglomeratedultrafine particles. Photocatalytic degradation of methyl orange by the nanoparticlesshows much better photocatalysis than that by the commercial ZnS powder undersimulated sunlight irradiation.
     Single-crystalline CdS nanoparticles were synthesized for the first time by thecomposite molten salt method. The influence of temperature, growth time and amountof salts on the morphology of CdS nanoparticles was systematically investigated. Itshows that a smaller size of CdS nanoparticles can be obtained under lower temperature,less growth time and more composite salts. Photocatalytic degradation of rhodamine Band methylene blue in presence of the CdS nanoparticles was compared with that inpresence of the commercial TiO2nanoparticles under the simulated sunlight.
     Single-crystalline cubic CdS wires and hexagonal nanorods have been synthesizedby the composite hydroxide mediated approach by tuning the different amout of water.It shows that the more water in the composite-hydroxide can easily get the purehexagonal phase structure and shorter nanorods. Photocatalytic degradation ofrhodamine B under simulated sunlight irradiation is carried out, it shows that thehexagonal phase structure nanorods have much better photocatalysis than that of thecubic CdS nanoparticles owing to the exposure of (0001) polar facet on the ends of CdS nanorods.
     (2) Three-dimensional hexagonal CdS nanowalls and cubic nanoparticles werefabricated directly on Cd foils via a modified composite hydroxide mediated approach.The phase transition of CdS nanocrystals from cubic to hexagonal phase can becontrolled by varying the water content in the hydroxide melts. The obviously enhancedphotoelectrochemical performances of the hexagonal nanowalls were found under theillumination of the simulated sunlight in comparison with that of the cubic CdSnanoparticles. The surface morphology plays a vital role in its photoelectrochemicalbehaviors due to the different specific surface area and charge transport, indicating suchthree-dimensional hexagonal CdS nanostructure has prominent advantages inphotoelectrochemical applications.
     Strategies employed to fabricate high sensitive photoelectrochemical sensor withCdSe deposited on CdS nanowall arrays were investigated. The three-dimensional CdSnanowall arrays were prepared via hydrothermal method. The density and height of theCdS nanowall arrays could be controlled through varying the solution concentration. Auniform CdSe layer was deposited on the CdS nanowall arrays by a successive ioniclayer adsorption and reaction method, and the thickness of CdSe layer could beeffectively controlled by changing deposition cycles. UV–vis absorption spectrademonstrate that the light absorption range of the CdS/CdSe core–shell nanowall arrayscan be almost extended to the whole visible range. The obviously enhancedphotoelectrochemical current of8.3mA/cm2for the heterojunction nanowalls werefound under illumination of the simulated sunlight compared with that of the3.78mA/cm2for bare CdS nanowalls. The enhanced photoelectrochemical performance andformation mechanism of CdS/CdSe core–shell nanowall arrays were discussed in detail.
     (3) A novel single-crystalline KCu7-xS4nanowires were synthesized by a modifiedcomposite hydroxide mediated approach. The synthesis conditions including watercontent, reaction time and hydroxide type were systematically studied to get an optimalmorphology. Crystal structure of the nanowires was determined by X-ray diffractionand series surveys of diffraction spot configurations in the reciprocal space via TEM,which reveal that the synthesized sample is the body center tetragonal KCu7-xS4with thecell parameter a=b=10.163, and c=3.838. A broad absorption in visible-infraredregion was found. The resistivity of the film made from the KCu7-xS4nanowires is lessthan5×10-5·cm at room temperature and displays a metallicity according totemperature dependent resistance measurement.
     A low thermal conductivity is a prerequisite for obtaining high efficiencythermoelectric materials. It is a challenge to have low thermal conductivity withoutsimultaneously destroying electric conductivity, which is proposed as ‘phononglass/liquid–electron crystal’. To realize the phonon glass–electron crystal, host–guestcage crystal system is considered, while to realize the phonon liquid–electron crystal,superionic conductivity is needed. The KCu7-xS4nanowire exhibits enhancedthermoelectric properties with respect to the traditional chalcogenide Cu7S4nanostructure. The presence of K ions not only form a clathrate and superionic fluidstructure, which provides phonon glass&liquid–electron crystal, but also adjust theproduct to have a nanowire-like morphology. A low thermal conductivity and largeSeebeck coefficient are achieved when the nanowires are pressed into a bulk material.Higher electrical conductivity is also obtained below420K. In addition, the numerousgrain boundaries, Cu deficiency and the orientated nanowires would further increase thethermoelectric properties. The results indicate a new strategy to obtain high-efficiencythermoelectric materials by introducing kalium in copper chalcogenides to form a newcrystal structure with ‘phonon glass&liquid–electron crystal’ properties.
引文
[1]搜狐网,我国纳米科技步入产业化[EB/OL]. http://news.sohu.Com/85/79/news144417985.shtml,2001-3-26.
    [2]国家纳米科学中心网,纳米马达置入人体细胞可诊断治病[EB/OL]. http://www. nanoctr.cn/xwdt/yndt/201402/t20140227_4041505.html.
    [3]中国科学院网,迈向绿色新能源的高效能摩擦纳米发电机问世[EB/OL]. http://www.cas.cn/ky/kyjz/201403/t20140306_4046554.shtml,2014-3-18.
    [4]纳米科技网,诺贝尔奖量级的发现出在中国实验室[EB/OL]. http://www.chinanano.cn/news/NewsShow.aspx?newsid=2319,2013-4-17.
    [5] M. Matsumura, S.Furukawa, Y. Saho, H. TsubOmura, Cadmium Sulfide PhotocatalyzedHydrogen Productlon from Aqueous Solutions of Sulfite: Effect of Crystal Structure andPreparation Method of the Catalyst [J]. J. Phys. Chem.,1985,(89):1327–1329.
    [6]张青红,高濂,郭景坤.二氧化钛纳米晶的光催化活性研究[J].无机材料学报,2000,(15):556-566.
    [7] N.Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, Synthesis of tetrahexahedral platinumnanocrystals with high-index facets and high electro-oxidation activity [J]. Science,2007,(316):732–735.
    [8] O. Bikondoa, C.L. Pang, R. Ithnin, C.A. Muryn, H.Onishi, G.Thornton, Direct visualization ofdefect-mediated dissociation of water on TiO2(110)[J]. Nature Mater.,2006,(5):189-192.
    [9] O. Dulub, Electron-induced oxygen desorption from the TiO2(011)-231surface leads toself-organized vacancies [J]. Science,2007,(317):1052-1056.
    [10] X.Q. Gong, A. Selloni, M. Batzill, U. Diebold, Steps on anatase TiO2(101)[J]. Nature Mater.2006,(5):665–670.
    [11] U. Diebold, The surface science of titanium dioxide [J]. Surf. Sci. Rep.,2003,(48):53-229.
    [12] A.G. Thomas, W.R. Flavell, A.R. Kumarasinghe, A.K. Mallick, D. Tsoutsou, G.C. Smith, R.Stockbauer, S. Patel, M. Gratzel, R. Hengerer, Resonant photoemission of anatase TiO2(101)and (001) single crystals [J]. Phys. Rev. B,2003,(67):035110.
    [13] L. Kavan, M. Gr tzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, Electrochemical andphotoelectrochemical investigation of single-crystal anatase [J]. J. Am. Chem. Soc.1996,(118):6716-6723.
    [14] G.S. Herman, M.R. Sievers, Y. Gao, Structure determination of the two-domain (134) anataseTiO2(001) surface [J]. Phys. Rev. Lett.,2000,(84):3354-3357.
    [15] M. Lazzeri, A. Vittadini, A. Selloni, Structure and energetics of stoichiometric TiO2anatasesurfaces [J]. Phys. Rev. B,2001,(63):155409.
    [16] A. Vittadini, A. Selloni, F.P. Rotzinger, M. Gr tzel, Structure and energetics of wateradsorbed at TiO2anatase (101) and (001) surfaces [J]. Phys. Rev. Lett.,1998,(81):2954-2957.
    [17] A. Vittadini, M. Casarin, A. Selloni, Chemistry of and on TiO2-anatase surfaces by DFTcalculations: a partial review [J]. Theor. Chem. Acc.,2007,(117):663-671.
    [18] M. Lazzeri, A. Selloni, Stress-driven reconstruction of an oxide surface: the anatase TiO2(001)-(134) surface [J]. Phys. Rev. Lett.,2001,(87):266105.
    [19] X.Q. Gong, A. Selloni, Reactivity of Anatase TiO2Nanoparticles: The Role of the Minority(001) Surface [J]. J. Phys. Chem. B,2005,(109):19560-19562.
    [20] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,(238):37-38.
    [21] B. O’Regan, M. Gr tzel, A low-cost, high-efficiency solar cell based on dyesensitizedcolloidal TiO2films [J]. Nature,1991(353):737-740.
    [22] M. Gr tzel, Photoelectrochemical cells [J]. Nature,2001,(414):338-344.
    [23] C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gr tzel,Nanocrystalline titanium oxide electrodes for photovoltaic applications [J]. J. Am. Chem. Soc.,1997(80):3157-3171.
    [24] H.G. Yan, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H. M. Cheng, G.Q. Lu, AnataseTiO2single crystals with a large percentage of reactive facets [J]. Nature,2008,(453):638-642.
    [25] J.H. Zeng, B.B. Jin, Y.F, Wang; Facet enhanced photocatalytic effect with uniformsingle-crystalline zinc oxide nanodisks [J]. Chem. Phys. Lett.,2009,(472):90-95.
    [26]王庆有著.光电传感器应用技术[M].北京:机械工业出版社,2007.
    [27] S.Y. Niu, K. Peng, J. Kou, Introduction to the photoelectric materials of nanostructure [J]. JLiaoning Normal. Univ.(Nat Sci Ed),2003,(26):63-67.
    [28] F. Li, J.M. Xu, D. Zhang, Progress in study of organic solar cell [J]. Energ. Environ.,2007,(4):52-54.
    [29] X.L.Yu, S.M. Wang, Z.X. Xu, J.B. Li, Progress on the study of photoelectrical functionalorganic dyes and their application [J]. Dyestuffs Color,2004,(4):63-80.
    [30] H.G. Choi, J. Min, W.H. Lee, J.W. Choi. Adsorption behavior and photoelectric responsecharacteristics of bacteriorhodopsin thin films fabricated by self-assembly technique [J].Colloid Surface B,2002,(23):327-337.
    [31] Y.P. Zou, L.J. Huo, Y.F. Li. Research progress on conjugated polymer luminescent andphotovoltaic materials (in Chinese)[J]. Chin. Polym. Bull.,2008,(8):146-173.
    [32] M. Lahav, V.H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y.Z. Hu, S.H. Bossmann,Photoelectrochemistry with integrated photosensitizer-electron acceptor and Au-nanoparticlearrays [J]. J. Am. Chem. Soc.,2000,122(46):11480-11487.
    [33] H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist,L.N. Wang, M. Muhammed, High light-to-energy conversion efficiencies for solar cells basedon nanostructured ZnO electrodes [J]. J. Phys. Chem. B,1997,(101):2598-2601.
    [34] S. Chappel, A. Zaban, Nanoporous SnO2electrodes for dye-sensitized solar cells: improvedcell performance by the synthesis of18nm SnO2colloids [J]. Sol. Energy Mat. Sol. C,2002,(71):141-152.
    [35] F. Lenzman, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ruhle, D. Cahen,Surface photovoltage spectroscopy of dye-Sensitized solar cells with TiO2, Nb2O5, and SrTiO3nanocrystalline photoanodes: Indication for electron injection from higher excited dye states[J]. J. Phys. Chem. B,2001,(105):6347-6352.
    [36] E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Control of chargerecombination dynamics in dye sensitized solar cells by the use of conformally depositedmetal oxide blocking layers [J]. J. Am. Chem. Soc.,2003,(125):475-482.
    [37] A. Biebersdorf, R. Dietmuller, A.S. Susha, A.L. Rogach, S.K. Poznyak, D.V. Talapin, H.Weller, T.A. Klar, J. Feldmann, Semiconductor nanocrystals photosensitize C60crystals [J].Nano. Lett.,2006,(6):1559-1563.
    [38] W. Lee, J. Lee, S. Lee, W. Yi, S.H. Han, B.W. Cho, Enhanced charge collection and reducedrecombination of CdS/TiO2quantum-dots sensitized solar cells in the presence ofsingle-walled carbon nanotubes [J]. Appl. Phys. Lett.,2008,(92):153510.
    [39] S. Banerjee, S.S. Wong, Formation of CdSe nanocrystals onto oxidized, ozonizedsingle-walled carbon nanotube surfaces [J]. Chem. Commun.,2004,(16):1866-1867.
    [40] T. Hasobe, H. Imahori, P.V. Kamat, T.K. Ahn, S.K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S.Fukuzumi, Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes withgold nanoparticles [J]. J. Am. Chem. Soc.,2005,(127):1216-1228.
    [41] H.I.L. Sheeney, S. Pogorelova, Y. Gofer, I. Willner, Enhanced photoelectrochemistry inCdS/Au nanoparticle bilayers [J]. Adv. Funct. Mater.,2004,(14):416-424.
    [42] M.A. Fox, T. Tien, Photoelectrochemical detector for high-pressure liquid chromatography [J].Anal. Chem.,1988,(60):2278-2282.
    [43] G.N. Brown, J.W. Birks, C.A. Koval, Development and characterization of a titaniumdioxide-based semiconductor photoelectrochemical detector [J]. Anal. Chem.,1992,(64):427-434.
    [44] M.S. Liu, M.Z. Yang, S.M. Cai, The basic property of semiconductor nanoparticles and theirphotoelectric property (in Chinese)[J]. Chemistry Online,1997,(1):20-24.
    [45] L. Shu, S.H. Yu, Y.T. Qian, Synthesis of metal sulfide semiconductor nanoparticles (inChinese)[J]. Chin. J. Inorg. Chem.,199915(1):1-7.
    [46] J.Q. Li, L. Zheng, L.P. Li, G.Y. Shi, Y.Z. Xian, LT. Jin, Ti/TiO2electrode preparation usinglaser anneal and itsapplication to determination of chemical oxygen demand [J]. Electroanal.,2006,(18):1014-1018.
    [47] G.L. Wang, J.J. Xu, H.Y. Chen. Dopamine sensitized nanoporous TiO2film on electrodes:Photoelectrochemical sensing of NADH under visible irradiation. Biosens Bioelectron [J].2009,(24):2494-2498.
    [48] E. Katz, M. Zayats, I. Willner, F. Lisdat, Controlling the direction of photocurrents by meansof CdS nanoparticles and cytochrome c-mediated biocatalytic cascades [J]. Chem. Commun.,2006,(13):1395-1397.
    [49] C. Stoll, S. Kudera, W.J. Parak, F. Lisdat, Quantum dots on gold: electrodes forphotoswitchable cytochromec electrochemistry [J]. Small,2006,(2):741-743.
    [50] C. Stoll, C. Gehringa, K. Schubert, M. Zanella, W.J. Parak, F. Lisdat, Photoelectrochemicalsignal chain based on quantum dots on gold Sensitive to superoxide radicals in solution [J].Biosens. Bioelectron.,2008,(24):260-265.
    [51] M.L. Curri, A. Agostianob, G. Leo, A. Mallardi, P. Cosma, M. Della, Development of a novelenzyme/semiconductor nanoparticlessystem for biosensor application [J]. Mater. Sci. Eng. C,2002,(22):449-452.
    [52] L.H. Tang, Y.H. Zhu, X.L. Yang, J.J. Sun, C.Z. Li, Self-assembled CNTs/CdS/dehydrogenase hybrid-based amperometric biosensor triggered by photovoltaic effect [J].Biosens Bioelectron,2008,(24):319-323.
    [53] V. Pardo-Yissar, E. Katz, J. Wasserman, I. Willner, Acetylcholine esterase-labeled CdSnanoparticles on electrodes: photoelectrochemical sensing of the enzyme inhibitors [J]. J. Am.Chem. Soc,2003,(125):622-623.
    [54] S. Bouchtalla, L. Auret, J.M. Janot, A. Deronzier, J.C. Moutet, P. Seta, Fullerene immobilizedin a thin functionalized polypyrrole film. Basic principles for the elaboration of an oxygensensor [J]. Mater. Sci. Eng. C,2002,(21):125-129.
    [55] P. Pichanusakorn, P. Bandaru, Nanostructured thermoelectric [J]. Matr. Sci. Eng. A,2010,(67):19-63.
    [56] C. Wood, Materials for thermoelectric energy-conversion [J]. Rep. Prog. Phys.,1988,(51):459-539.
    [57] C. Herring, Theory of the thermoelectric power of semiconductors [J]. Phys. Rev.,1954,(96):1163-1187.
    [58] A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard III, J.R. Heath, Siliconnanowires as efficient thermoelectric materials [J]. Nature,2008,(451):168-171.
    [59] A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling,[M]. Infosearch Ltd.,London,1957.
    [60] G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics-Basic Principles and New MaterialsDevelopment,[M]. Springer, New York,2001.
    [61] L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Use of quzntum-wall superlattices to obtain ahigh figure of merit from nonconventional thermoelectric-materials [J]. Appl. Phys. Lett.,1993,(63):3230-3232.
    [62]额尔敦朝鲁,李树深,肖景林,晶格热振动对准二维强耦合极化子有效质量的影响[J].物理学报,2005,(54):4285-4293.
    [63]朱文,杨君友,崔嵬,张同俊,纳米超晶格热电材料的研究进展[J].材料导报,2002,(12):16-19.
    [64] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar,P. Yang, Enhanced thermoelectric performance of rough silicon nanowires [J]. Nature,2008,(451):163-167.
    [65] T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. La Forge, Quantum Dot SuperlatticeThermoelectric Materials and Devices [J]. Science,2002,(297):2229-2232.
    [66] J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M.Paraskevopoulos, M.G. Kanatzidis, Spinodal Decomposition and Nucleation and Growth as aMeans to Bulk Nanostructured Thermoelectrics: Enhanced Performance in Pb1-xSnxTe PbS[J]. J Am. Chem. Soc.,2007,(129):9780-9788.
    [67] Y.Z. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, G.J. Snyder, High ThermoelectricPerformance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping [J]. Adv.Funct. Mater.2011,(21):241-249.
    [68] J.H. Lee, G.A. Galli, J.C. Grossman, Nanoporous Si as an Efficient Thermoelectric Material,[J]. Nano Lett.,2008,(8):3750-3754.
    [69] J. H. Lee, J.C. Grossman, J. Reed, G. Galli, Lattice thermal conductivity of nanoporous Si:Molecular dynamics study [J]. Appl. Phys. Lett.2007,(91):223110.
    [70] A. Yamamoto, H. Takazawa, T. Ohta,[J]. Thermoelectric transport properties of PorousSilicon Nanostructures, Proc. Int. Conf. Thermoelectr.1999,428-431.
    [71] Y.F. Sun, H. Cheng, S. Gao, Q.H. Liu, Z.H. Sun, C. Xiao, C.Z. Wu, S.Q. Wei, Y. Xie,Atomically Thick Bismuth Selenide Freestanding Single Layers Achieving EnhancedThermoelectric Energy Harvesting [J]. J. Am. Chem. Soc.2012,(134):20294-20297.
    [72] K. Kadel, L. Kumari, W.Z. Li, J.Y. Huang, P.P. Provencio, Synthesis and ThermoelectricProperties of Bi2Se3Nanostructures [J]. Nanoscale Res. Lett.,2011,(6):57.
    [73] K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo colorants: influence of solubilityand bioavailability [J]. Toxicol. Lett.2004,(151):203-210.
    [74] G.A. Umbuzeiro, H.S. Freeman, S.H. Warren, D.P. Oliveira, Y. Terao, T. Watanabe, L.D.Claxton, The contribution of azo dyes to the mutagenic activity of the Cristais River [J].Chemosphere,2005,(60):55-64.
    [75] F.M.D. Chequer, T.M. Lizier, R. de Felício, M.V.B. Zanoni, H. M. Debonsi, N.P. Lopes, R.Marcos, D.P. de Oliveira, Analyses of the genotoxic and mutagenic potential of the productsformed after the biotransformation of the azo dye Disperse Red1[J]. Toxic. in Vitro,2011,(25):2054-2063.
    [76] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: acritical review on current treatment technologies with a proposed alternative [J]. Bioresour.Technol.,2001,(77):247-255.
    [77] Y.M. Slokar, A.M.L. Marechal, Methods of decolorization of textile wastewaters [J]. DyesPigm.,1998,(37):335-356.
    [78] X. Feng, X. Wang, X. Chen, Y. Yue, Thermophysical properties of thin films composed ofanatase TiO2nanofibers [J]. Acta. Mater.,2011,(59):1934-1944.
    [79]廖振华,陈建军,姚可夫,赵方辉,李荣先,纳米TiO2光催化剂负载化的研究进展[J].无机材料学报,2004,(19):17-24.
    [80] D. Wang, Y. Wang, X. Li, Q. Luo, J. An, Sunlight photocatalytic activityof polypyrrole-TiO2nanocomposites prepared by‘in situ’method [J]. Catal. Commun.,2008,(9):1162-1166.
    [81] Singla, Gourav, Singh, K, Effect of TiO2on the photocatalytic properties of bismuth oxide,[J].Environ. Sci. Technol.,2014,(35):1520-1524.
    [82]赵琳,高晗,韦冰心,王亭杰,金涌,颜料二氧化钛光催化特性评价[J].化工学报,2013,(64):2453-2461.
    [83] Z.Y. Li, Y.L. Fang, S. Xu, Squaraine dye sensitized TiO2nanocomposites with enhancedvisible-light photocatalytic activity [J]. Mater. Lett.,2013,(93):345-348.
    [84] K. Umar, M.M. Haque, M. Muneer, T. Harada, M. Matsumura, Mo, Mn and La doped TiO2:Synthesis, characterization and photocatalytic activity for the decolourization of threedifferent chromophoric dyes [J]. J. Alloys Comp.,2013(578):431-438.
    [85] M.S. Zhu, P.L. Chen, W.H. Ma, B. Lei, M.H. Liu, Template-Free Synthesis of Cube-likeAg/AgCl Nanostructures via a Direct-Precipitation Protocol: Highly Efficient Sunlight-DrivenPlasmonic Photocatalysts [J]. ACS Appl. Mater. Interfaces,2012,(4):6386-6392.
    [86] J.W. Tang, Z.G. Zou, J.H. Ye, Efficient Photocatalytic Decomposition of OrganicContaminants over CaBi2O4under Visible-Light Irradiation [J]. Angew. Chem. Int. Ed.,2004,(43):4463-4466.
    [87] B. Zhou, X. Zhao, H. Liu, J. Qu, C.P. Huang, Visible-light sensitive cobalt-dopedBiVO4(Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye indilute aqueous solutions [J]. Appl. Catal. B,2010,(99):214-221.
    [88] Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S. Ouyang, H. Williams, H. Yang, J. Cao, W.J. Luo,Z.S Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with photooxidation propertiesunder visible-light irradiation [J]. Nat. Mater.,2010,(9):559-564.
    [89] R. Yang, Y. Qin, L.M. Dai, Z.L. Wang, Power generation with laterally packagedpiezoelectric fine wires [J]. Nat. Nanotechnol.,2009,(4):34-39.
    [90] N. Taghavinia, A. Iraji-zad, S.M. Mahdavi, M. Reza-esmaili, Photo-induced CdSnanoparticles growth [J]. Physica E,2005,(30):114-119.
    [91] C.G. Hu, W. Yan, B.Y. Wan, K.Y. Zhang, Y. Zhang, Y.S. Tian, Water-induced structurephase transition of CdSe nanocrystals in composite hydroxide melts [J]. Physica E,2010,(43):1790-1794.
    [92] T. Trindade, P. O’Brien, N.L. Pickett, Nanocrystalline Semiconductors: Synthesis, Properties,and Perspectives [J]. Chem. Mater.,2001,(13):3843-3858.
    [93] D.C. Koutsogeorgis, W.M. Cranton, R.M. Ranson, C.B. Thomas, Study of obliquely depositedthin cobalt films [J]. J. Alloys Compd.,2009,(483):526-529.
    [94] M.Y. Lu, J.H. Song, M.P. Lu, C.Y. Lee, L.J. Chen, Z.L. Wang, ZnO ZnS Heterojunction andZnS Nanowire Arrays for Electricity Generation [J]. ACS Nano2009,(3):357-362.
    [95] L. Luo, H. Chen, L.C. Zhang, K.L. Xu, Y. Lv, A cataluminescence gas sensor for carbontetrachloride based on nanosized ZnS [J]. Anal. Chim. Acta2009,(635):183-187.
    [96] C. R cker, M. P tzl, F. Zhang, W.J. Parak, G.U. Nienhaus, A quantitative fluorescence studyof protein monolayer formation on colloidal nanoparticles [J]. Nat. Nanotechnol.,2009(4):577-580.
    [97] F. Qian, Y. Li, S. Grade ak, H.G. Park, Y.J. Dong, Y. Ding, Z.L. Wang, C.M. Lieber,Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers [J]. Nat.Mater.,2008,(7):701-706.
    [98] Y. Park, E.K. Kim, S. Lee, J. Lee, Growth and Characterization of CdS Thin Films onPolymer Substrates for Photovoltaic Applications, J Nanosci. Nanotechnol.,2014,(14):3880-3883
    [99] X.F. Duan, C.M. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman,High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].Nature,2003,(425):274-278.
    [100] R.M. Ma, L. Dai, H.B. Huo, W.Q. Yang, G.G. Qin, P.H. Tan, C.H. Huang, J. Zheng, Synthesisof high quality n-type CdS nanobelts and their applications in nanodevices [J]. Appl. Phys.Lett.,2006,(89):203120-203123.
    [101] S.H. Shen, L.J. Guo, Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41as avisible light photocatalyst [J]. Mater. Res. Bull.,2008,(43):437-446.
    [102]李占双,闰慧君,尤佳,张顺孝,王君,水热法合成纳米CeO2及其光催化性质研究[J].化学试剂,2008,(30):262-264.
    [103] G. Tan, L. Zhang, H. Ren, S. Wei, J. Huang, A. Xia, Effects of pH on the HierarchicalStructures and Photocatalytic Performance of BiVO4Powders Prepared via the MicrowaveHydrothermal Method [J]. ACS Appl. Mater. Interfaces,2013,(5):5186.
    [104] Y. Zhang, C.G. Hu, B. Feng, X. Wang, B.Y. Wan, Synthesis and photocatalytic property ofZnSe flowerlike hierarchical structure [J]. Appl. Surf. Sci.,2011,(257):10679-10685.
    [105]周英智,刘峥,袁帅,金属硫化物纳米材料制备方法研究进展[J].化工新型材料,2012,(40):35-38.
    [106] C.H. Zheng, C.G Hu, X.Y. Chen, H. liu, Y.F. Xiong, J. Xu, B.Y. Wan, L.Y. Huang, RaspitePbWO4nanobelts: synthesis and properties [J]. Cryst. Eng. Comm.,2010,(12):3277-3282.
    [107] X. Wang, C.G. Hu, H. Liu, G.J Du, X.S He, Y. Xi, Synthesis of CuO nanostructures and theirapplication for nonenzymatic glucose sensing [J]. Sensor. Actuat. B,2010,(144):220-225.
    [108] X. Wang, C.G Hu, Y.Y. Xiong, X.S. He, Y. Xi, C.H. Xia, Synthesis of functional carbonnanospheres and amperometric sensing of hydrogen peroxide [J]. J Nanosci. Nanotechno.,2013,(13):933-936.
    [109] C.G. Hu, Z.W. Zhang, H. Liu, P.X. Gao, Z.L. Wang, Direct synthesis and structurecharacterization of ultrafine CeO2nanoparticles [J]. Nanotechnology,2006,(17):5983.
    [110] Z.L. Wang, X.D. Feng, Polyhedral Shapes of CeO2Nanoparticles [J]. J. Phys. Chem. B,2003,(107):13563.
    [111] M.K. Gunde; J.K. Logar; Z.C. Orel; B. Orel; Application of the Kubelka-Munk Theory toThickness-Depenent Diffuse-Reflection of Black Paints in the Mid-IR [J]. Appl. Spectrosc.1995,(49):623-629.
    [112] W.G. Becher, A.G. Bard, Photoluminescence and photoinduced oxygen adsorption of colloidalzinc sulfide dispersions [J]. J. Phys. Chem.,1983,(87):4888-4893.
    [113] X.Z. Liu, J.H. Cui, L.P. Zhang, W.C. Yu, F. Guo, Y. Qian, A solvothermal route tosemiconductor ZnS micrometer hollow spheres with strong photoluminescence properties [J].Mater. Lett.,2006,(60):2465-2469.
    [114] R.M. Ma, L. Dai, H.B. Huo, H.B. Huo, W.J. Xu, G.G. Qin, High-Performance Logic CircuitsConstructed on Single CdS Nanowires [J]. Nano Lett.,2007,(7):3300-3304..
    [115] P. Lei, C. Chen, M. Wanhong, J. Zhao, L. Zang, Degradation of dye pollutants byimmobilized polyoxometalate with H2O2under visible-light irradiation [J]. Environ. Sci.Technol.,2005,(39):8466-8474.
    [116] H.D. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. HerrmannPhotocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, MethylRed, Congo Red, Methylene Blue) in water by UV-irradiated titania [J]. Appl. Catal. B,2002,(39):75-90.
    [117] C.J. Lin, Y.H. Yu, Y.H. Liou, Free-standing TiO2nanotube array films sensitized with CdS ashighly active solar light driven photocatalysts [J]. Appl. Catal. B,2009,(93):119-125.
    [118] H.R. Pouretedal, A. Norozi, M.H. Keshavarz, Nanoparticles of Zinc Sulfide Doped withManganese, Nickel and copper As Nanophotocatalyst in the Degradation of Organic Dyes [J].J. Hazard. Mater.,2009,(162):674-68.
    [119] M. Warrier, M.K.F. Lo, H. Monbouquette, M. A. Garcia-Garibay, Photocatalytic reduction ofaromatic azides to amines using CdS and CdSe nanoparticles [J]. Photochem. Photobiol. Sci.3(2004)859-863.
    [120] C.G. Hu, Y. Xi, H. Liu, Z.L. Wang; Composite-hydroxide-mediated approach as a generalmethodology for synthesizing nanostructures [J]. J. Mater. Chem.,2009,(19):858-868.
    [121] Y. Zhang, C.G. Hu, C.H. Zheng, Y. Xi, B.Y. Wan, Synthesis and Thermoelectric Property ofCu2-xSe Nanowires [J]. J. Phys. Chem. C,2010,(114):14849-14853.
    [122] C.G. Hu, W. Yan, B.Y. Wan, K.Y. Zhang, Y. Zhang, Y.S. Tian; Water-induced structure phasetransition of CdSe nanocrystals in composite hydroxide melts [J]. Physica E,2010,(42):1790-1794.
    [123] H.W. Otto, R.P. Seward, Phase Equilibria in the Potassium Hydroxide-Sodium HydroxideSystem [J]. J. Chem. Eng. Data,1964,(9):507-508.
    [124] J. Kokaj, A.E. Rakhshani, Photocurrent spectroscopy of solution-grown CdS films annealedin CdCl2vapour [J]. J. Phys. D: Appl. Phys.,2004,(37):1970-1975.
    [125] M. Hashim, C.G. Hu, X. Wang, X.Y. Li, D.L. Guo, Synthesis and photocatalytic property oflead molybdate dendrites with exposed (001) facet [J]. Appl. Surf. Sci.,2012,(258):5858-5862.
    [126] E.S. Jang, J.H. Won, S.J. Hwang, J.H. Choy, Fine Tuning of the Face Orientation of ZnOCrystals to Optimize Their Photocatalytic Activity [J]. Adv. Mater.,2006,(18):3309-3312.
    [127] G.L. Wang, J.J. Xu, H.Y. Chen, Selective detection of trace amount of Cu2+usingsemiconductor nanoparticles in photoelectrochemical analysis [J]. Nanoscale,2010,(2):1112-1114.
    [128] W.W. Tu, Y. T. Dong, J. P. Lei and H. X. Ju,[J]. Anal. Chem.,2010,(82):8711-8716.
    [129] N. Haddour, J. Chauvin, C. Gondran and S. Cosnier,[J]. J. Am. Chem. Soc.,2006,(128):9693-9698.
    [130] K.T. Lee, K.K. Manippady, W.A. Wen, G. Han, Transparent, Well-Aligned TiO2NanotubeArrays with Controllable Dimensions on Glass Substrates for Photocatalytic Applications[J]. ACS appl. Mater. Inter.,2010,(2):98-50.
    [131] Y. Tak, S.J. Hong, J.S. Lee, K.J. Yong, Fabrication of ZnO/CdS core/shell nanowire arrays forefficient solar energy conversion [J]. J. Mater. Chem.,2009,(19):5945-5951.
    [132] C.Y. Kuo, C. Gau, B.T. Dai, Photovoltaic characteristics of silicon nanowire arrayssynthesized by vapor–liquid–solid process [J]. Sol. Energ. Mat. Sol. C,2011,(95):154-157.
    [133] X.S. He, C.G. Hu, Yi Xi, B.Y. Wan, C.H. Xia, Electroless deposition of BaTiO3nanocubes forelectrochemical sensing [J]. Sensor. Actuat. B,2009,(137):62-66.
    [134] R.M. Ma, L. Dai, H.B. Huo, W.Q. Yang, G.G. Qin, P.H. Tan, C.H. Huang, J. Zheng, Synthesisof high quality n-type CdS nanobelts and their applicationsin nanodevices [J]. Appl. Phys.Lett.,2006,(89):203120.
    [135] J.H. Zeng, B.B Jin, Y.F. Wang, Facet enhanced photocatalytic effect with uniformsingle-crystalline zinc oxide nanodisks [J]. Chem. Phys. Lett.,2009,(472):90-95.
    [136] Z.Y. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho,T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Three-dimensionalnanopillar-array photovoltaics on low-cost and flexible substrates [J]. Nat. Mater.,2009,(8):648-653.
    [137] Y.S. Xia, Z.Y. Tang, Monodisperse hollow supraparticles via selective oxidation, Adv. Funct.Mater.,2012,(22):2585-2593.
    [138] Y.S. Xia, T.D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z.Y. Tang, S.C. Glotzer,N.A. Kotov, Self-assembly of self-limiting monodisperse supraparticles from polydispersenanoparticle [J]. Nat. Nanotechnol.,2011,(6):580-587.
    [139] P.V. Braun, P. Osenar, S.I. Stupp, Semiconducting superlattices templated by molecularassemblies [J]. Nature,1996,(380):325-328.
    [140] F. Gao, Q.Y. Lu, D.Y. Zhao, Synthesis of crystalline mesoporous CdS semiconductornanoarrays though a mesoporous SBA-15silica template technique [J]. Adv. Mater.,2003,(115):739-742.
    [141] G.X. Qian, K.F. Huo, J.J. Fu, T.F. Hung, P.K. Chu, In situ growth of aligned CdS nanowirearrays on Cd foil and their optical and electron field emission properties [J]. J Appl. Phys.,2008,(104):014312.
    [142] Y.F. Lin, Y.J. Hsu, S.Y. Lu, K.T. Chen, T.Y. Tseng, Well-aligned ternary Cd1xZnxS nanowirearrays and their composition-dependent field emission properties [J]. J. Phys. Chem. C,2007,(111):13418-13426.
    [143] X.L. Zhang, X.M. Huang, Y.Y. Yang, S. Wang, Y. Gong, Y.H. Luo, D.M. Li, Q.B. Meng,Investigation on New CuInS2/Carbon Composite Counter Electrodes for CdS/CdSeCosensitized Solar Cells [J]. ACS Appl. Mater. Interfaces,2013,(5):5954-5960.
    [144]谢亚红,岳凡,马俊红,杨桂花,张云,王吉德,一维纳米ZnO阵列的制备及其在染料敏化太阳能电池方面的应用研究进展[J].材料导报A:综述篇2012,(26):145-150.
    [145]吴素贞,邓赞红,董伟伟,方晓东,氧化锌基发光二极管的研究进展[J].材料导报A:综述篇2013,(27):28-33.
    [146] X.Y. Yu, J.Y. Liao, K.Q. Qiu, D.B. Kuang, C.Y. Su, Dynamic Study of Highly EfficientCdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition [J]. ACSnano,2011,(5):9494-9500.
    [147] K.H. Lin, C.Y. Chuang, Y.Y. Lee, F.C. Li, Y.M. Chang, Charge Transfer in theHeterointerfaces of CdS/CdSe Cosensitized TiO2Photoelectrode [J]. J. Phys. Chem. C,2012,(116):1550-1555.
    [148] C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis andcharacterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemicalproperty [J]. J. Alloys. Compd.2012,(523):139-145.
    [149] A.M. Smith, S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band GapEngineering [J]. Acc. Chem. Res.2010,(43):190-200.
    [150] W.W. Yu, L.H. Qu, W.Z. Guo, X.G. Peng, Experimental Determination of the ExtinctionCoefficient of CdTe, CdSe, and CdS Nanocrystals [J]. Chem. Mater.2003,(15):2854-2860.
    [151] P. Wang, S.M. Zakeeruddin, J.E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A.Hagfeldt, M.K. Nazeeruddin, M. Gr tzel, Stable New Sensitizer with Improved LightHarvesting for Nanocrystalline Dye-Sensitized Solar Cells [J]. Adv. Mater.,2004,(16):1806-1811.
    [152] V.I. Klimov, Mechanisms for Photogeneration and Recombination of Multiexcitons inSemiconductor Nanocrystals: Implications for Lasing and Solar Energy Conversion [J]. J.Phys. Chem. B,2006,(110):16827-16845.
    [153] S. B. Rawal, S.D. Sung, S.Y. Moon, Y.J. Shin, W.I. Lee, Optimization of CdS layer on ZnOnanorod arrays for efficient CdS/CdSe co-sensitized solar cell [J]. Mater. Lett.,2012,(82):240-243.
    [154] Y. Zhang, C.G. Hu, C.H. Zheng, Y. Xi, B.Y. Wan, Synthesis and Thermoelectric Property ofCu2-xSe Nanowires [J]. J. Phys. Chem. C,2010,(114):14849-14853.
    [155] C.G. Hu, W. Yan, B.Y. Wan, K.Y. Zhang, Y. Zhang, Y.S Tian, Water-induced structure phasetransition of CdSe nanocrystals in composite hydroxide melts [J]. Physica E,2010,(42):1790-1794.
    [156] B. Qin, Z.Z. Zhao, R. Song, S. Shanbhag, Z.Y. Tang, A Temperature-Driven Reversible PhaseTransfer of2-(Diethylamino) ethanethiol-Stabilized CdTe Nanoparticles [J]. Angew. Chem.Int. Ed.,2008,(47):9875-9878.
    [157] K.S. Ramaiah, R.D. Pilkington, A.E. Hill, et al., Structural and optical investigations on CdSthin films grown by chemical bath technique [J]. Mater. Chem. Phys.,2001,(68):22–30.
    [158] L.Q. Jing, H.G. Fu, B.Q. Wang, D.J. Wang, B.F. Xin, S.D. Li, J.Z. Sun, Effects of Sn dopanton the photoinduced charge property and photocatalytic activity of TiO2nanoparticles [J].Appl. Catal. B,2006,(62):282-291.
    [159] L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, Silicon nanowire solar cells [J]. Appl.Phys. Lett.,2007,(91):233117.
    [160] J.M. Spurgeon, H.A. Atwater, N.S. Lewis, A comparison between the behavior of nanorodarray and planar Cd(Se,Te) photoelectrodes [J]. J. Phys. Chem. C,2008,(112):6186-6193.
    [161] L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaicapplications [J]. Nano Lett.,2007,(7):3249-3252.
    [162] X.T. Yin, W.X. Que, D. Fei, H.X. Xie, Z.L. He, G.F. Wang, Strategies to prepare an efficientphotoanode for ZnO nanowires-based CdS–CdSe co-sensitized solar cells [J]. Electrochim.Acta,2013,(89):561-570.
    [163] X.K. Qiu, W.X. Que, X.T. Yin, J. Zhang, J. Chen, ZnO/CdS/CdSe core/double shell nanorodarrays derived by a successive ionic layer adsorption and reaction process for quantumdot-sensitized solar cells [J]. Semicond. Sci. Tech.,2011,(26):095028.
    [164] Y. L. Lee, C.F. Chi, S.Y. Liau,[J]. Chem. Mater.,2010,(22):922-927.
    [165] M. Wang, J.G. Jiang, J.W. Shi, L.J. Guo, CdS/CdSe Core Shell Nanorod Arrays: EnergyLevel Alignment and Enhanced Photoelectrochemical Performance [J]. ACS Appl. Mater.Interfaces,2013,(5):4021-4025.
    [166] C. K. Xu, P. H. Shin, L. L. Cao, J. M. Wu and D. Gao, Ordered TiO2Nanotube Arrays onTransparent Conductive Oxide for Dye-Sensitized Solar Cells,[J]. Chem. Mater.,2010,(22):143.
    [167] Y. Tak, S. J. Hong, J. S. Lee and K. Yong, Fabrication of ZnO/CdS core/shell nanowire arraysfor efficient solar energy conversion [J]. J. Mater. Chem.,2009,(19):5945.
    [168] C. Y. Wang, Fundamental Models for Fuel Cell Engineering [J]. Chem. Rev,2004,(104):4727.
    [169] J. J. Chen, C. Jeffrey, S. Wu, P. C. Wu and D. P. Tsai, Plasmonic Photocatalyst for H2Evolution in Photocatalytic Water Splitting [J]. J. Phys. Chem. C.,2011,(115):210.
    [170] X. J. Lv, S. X. Zhou, C. Zhang, H. X. Chang, Y. Chen and W. F. Fu, Hybridized Nanowiresand Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3Thin Film for EfficientWater Splitting [J]. J. Mater. Chem.,2012,(22):18542.
    [171] X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, Direct-Current Nanogenerator Driven byUltrasonic Waves [J]. Science.,2007,(102):316.
    [172]刘科高,张久兴,路清梅,张隆,周美玲;CoSb3纳米晶块体热电材料的制备研究[J].稀有金属材料与工程,2004,(33):329-332.
    [173] E.S. Toberer, A.F. May, G.J. Snyder, Zintl Chemistry for Designing High EfficiencyThermoelectric Materials [J]. Chem. Mater.,2010,(22):624-634.
    [174] Y.Y. Wang, J.Zhou, R.G. Yang, Thermoelectric Properties of Molecular Nanowires [J]. J. Phys.Chem. C.,2011,(115):24418-24428.
    [175] B.C. Sales, D. Mandrus, R.K. Williams, Filled skutterudite antimonides: A new class ofthermoelectric materials [J]. Science,1996,(272):1325-1328.
    [176] M. Christensen, N. Lock, J. Overgaard, B.B. Iversen, Crystal structures of thermoelectric n-and p-type Ba8Ga16Ge30studied by single crystal, multi-temperature, neutron diffraction,conventional X-ray diffraction and resonant synchrotron X-ray diffraction [J]. J. Am. Chem.Soc.,2006,(128):15657-15665.
    [177] M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann,J. Andreasso, C.R. H. Bahl, B.B. Iversen, Avoided crossing of rattler modes in thermoelectricmaterials [J]. Nature Mater.,2008,(7):811-815.
    [178] M. Scheele, N. Oeschler, K. Meier, A. Kornowski, C. Klinke and H. Weller, Synthesis andThermoelectric Characterization of Bi2Te3Nanoparticles [J]. Adv. Funct. Mater.,2009,(19):3476-3483.
    [179] M. V. Kovalenko, B. Spokoyny, J. S. Lee, M. Scheele, A. Weber, S. Perera, D. Landry, D. V.Talapin, Semiconductor Nanocrystals Functionalized with Antimony Telluride Zintl Ions forNanostructured Thermoelectrics [J]. J. Am. Chem. Soc.,2010,(132):6686-6695.
    [180] Y. C. Zhang, H. Wang, S. Kraemer, Y. F. Shi, F. Zhang, M. Snedaker, K. L. Ding, M.Moskovits, G. J. Snyder, G. D. Stuck, Surfactant-Free Synthesis of Bi2Te3Te Micro NanoHeterostructure with Enhanced Thermoelectric Figure of Merit [J]. ACS Nano,2011,(5):3158-3165.
    [181] M. L. Liu, I. W. Chen, F. Q. Huang, L. D. Chen, Improved Thermoelectric Properties ofCu-Doped Quaternary Chalcogenides of Cu2CdSnSe4[J]. Adv. Mater.,2009,(21):3808-3812.
    [182] X. Y. Shi, F. Q. Huang, M. L. Liu, L. D. Chen, Thermoelectric properties of tetrahedrallybonded wide-gap stannite compounds Cu2ZnSn1xInxSe4[J]. Appl. Phys. Lett.,2009,(94):122103.
    [183] X. Y. Shi, L. L. Xi, J. Fan, W. Q. Zhang and L. D. Chen, Cu-Se Bond Network andThermoelectric Compounds with Complex Diamondlike Structure [J]. Chem. Mater.,2010,(22):6029-6031.
    [184] F.J. Fan, B. Yu, Y.X. Wang, Y.L. Zhu, X.J. Liu, S.H. Yu, H.F Ren, Colloidal Synthesis ofCu2CdSnSe4Nanocrystals and Hot-Pressing to nhance the hermoelectric Figure-of-Merit [J].J. Am. Chem. Soc.2011,(133):15910-15913.
    [185] H.L. Liu, X. Shi, F.F. Xu, L.L. Zhang, W.Q. Zhang, L.D. Chen, Q. Li, C. Uher, T. Day, G. J.Snyder, Copper ion liquid-like thermoelectric [J]. Nat. Mater.,2012,(11):422-426.
    [186] S. C. Singh, H. B. Zeng, Nanomaterials and Nanopatterns Based on Laser Processing: A BriefReview on Current State of Art [J]. Sci. Adv. Mater.,2012,(4):368-390.
    [187] Y. G. Sun, Conversion of Ag Nanowires to AgCl Nanowires Decorated with AuNanoparticles and Their Photocatalytic Activity [J]. J. Phys. Chem. C,2010,(114):2127-2133.
    [188] L. Song, H. Yuan, C. Y. Zhang, L. Li, C. Lu, J. Gao, The structural parameter optimization ofinterdigital transducer in single electron transport devices [J]. J. Appl. Phys.,2009,(106)104508.
    [189] X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Direct-Current Nanogenerator Driven byUltrasonic Waves [J]. Science,2007,(316):102-105.
    [190] J. Jiang, Y. Y. Li, J. P. Liu, X. T. Huang, C.Z. Yuan, X.W. Lou, Recent Advances in MetalOxide-based Electrode Architecture Design for Electrochemical Energy Storage [J]. Adv.Mater.2012,(24):5166-5180.
    [191] S. Barth, F. Hernandez-Ramirez, J. D. Holmes, A. R. Rodriguez, Synthesis and applications ofone-dimensional semiconductors [J]. Prog. Mater Sci.,2010,(55):563-627.
    [192] L.W. ter Haar, F. J. Di Salvo, H. E. Hair, R. M. Fleming, J. V. Waszczak, Charge-densitywaves in the mixed-valence two-dimensional metal K3Cu8S6[J]. Phys. Rev. B.,1987,(35):1932-1938.
    [193] H. Li, R. Mackay, S. J. Hwu, Y. K. Kuo, M. J. Skove, Y. Yokota, T. Ohtani, On theelectrochemically grown quasi-one-dimensional KCu7-xS4series (0    [194] Feiyun Li, Chenguo Hu, Yufeng Xiong,Buyong Wan,Wei Yan, and Michao Zhang,Phase-Transition-Dependent Conductivity and Thermoelectric Property of Silver TellurideNanowires [J]. J. Phys. Chem. C,2008,(112):16130-16133.
    [195] A.C. Rastogi, S. Salkalachen, V.G. Bhide, Electrical conduction and phase transitions invacuum-deposited Cu2xS films [J]. Thin. Solid. Films.,1978,(52):1-10.
    [196] T. Ogura, J. Ogura, H. Yoshihara, Y. Yokota, Physical Properties and Successive PhaseTransitions in Quasi-One-Dimensional Sulfides ACu7S4(A=Tl, K, Rb)[J]. J. Solid. State.Chem.1995,(115):379-389.
    [197] I. J. Onyszkiewicz, M. Sidowski, V. Starodub, S. Robaszkiewicz, Phase transitions andtransport properties of complex copper chalcogenides [J]. phys. stat. sol.(a)2003,(196):271-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700