用户名: 密码: 验证码:
萘降解菌株Pseudomonas putida ND6中水杨醛脱氢酶NahV的生物学功能和转录调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
萘降解菌株Pseudomonas putida ND6分离自天津市南排污河,是一株高效降解萘的菌株,能在48h内降解培养基中98%的萘(2g/L)。同大部分萘降解细菌一样,P. putida ND6的萘降解基因位于一个10,1858bp的大质粒pND6-1上,此质粒已被测序和注释。序列分析表明P. putida ND6的萘降解基因排列及降解途径都与其它经典的萘降解菌株相似,上游操纵子(nah操纵子)包括nahAaAbAcAdBFCED,编码将萘转变为水杨酸所需的酶;下游操纵子(sal操纵子)包括nahGTHINLOMKJY,编码水杨酸经由儿茶酚间位裂解途径生成乙酰乙醛和丙酮酸所需的酶。
     P. putida ND6的独特之处在于在经典的萘降解操纵子之外有两个额外的萘降解基因,既水杨醛脱氢酶基因nahF的同工基因nahv和水杨酸羟化酶基因nahG的同工基因nahU。本论文主要研究了其中水杨醛脱氢酶同工酶NahV的生物学功能和转录调控方式。
     质粒拷贝数(Plasmid copy number, PCN)是指每个细菌细胞中所含质粒的个数。P. putida ND6的萘降解基因位于大质粒pND6-1上。应用实时定量PCR(quantitative real-time PCR, qPCR)方法测定了萘降解菌株P. putida ND6中萘降解质粒pND6-1的拷贝数为2。
     通过自杀载体基因敲除的方法,分别构建了nahF和nahv基因突变株ND6-△△F和ND6-△△V。对比了野生型ND6与基因敲除菌株ND6-△△F和ND6-△△V在生长和萘降解速率方面的不同,发现不论ND6-△△F还是ND6-△△V的萘降解速率与野生型ND6相比都有所降低;在mRNA和蛋白表达水平上,在nahF(或nahV)基因突变株ND6-△△F(或ND6-△△V)中,另一基因nahv(或nahF)的表达量都比野生型高;在水杨醛脱氢酶活性方面,无论以何种碳源培养,野生型ND6的水杨醛脱氢酶活性都比基因突变株高。以上结果表明,虽然NahF的水杨醛脱氢酶活性比NahV高,但萘降解菌株P. putida ND6中额外的水杨醛脱氢酶NahV的存在增加了细胞中水杨醛脱氢酶的剂量,从而加快了萘降解的速率;NahV能作为经典水杨醛脱氢酶NahF的后备和补充,当经典水杨醛脱氢酶基因nahF在细菌的进化过程中发生突变或缺失后,NahV能部分取代NahF的作用,行使水杨醛脱氢酶的功能,使得突变株能继续生存。
     构建了nahR基因突变株ND6-△△R,对比了突变株与野生株中NahF和NahV在mRNA及酶活性水平的差异。无论以何种碳源培养,诱导物水杨酸钠是否存在时,P. putida ND6中的nahR基因都有一定量的本底表达,当加入诱导物水杨酸钠时,nahR基因的表达量增加;P. putida ND6菌株中的水杨醛脱氢酶基因nahF和nahv都不是组成型表达(以葡萄糖为唯一碳源时,检测不到它们的表达)。只有当诱导物水杨酸钠和调节蛋白NahR同时存在,水杨酸钠与NahR相结合,才能使RNA聚合酶Ⅰ结合于启动子的正确位置,起始水杨醛脱氢酶基因nahF和nahv的转录。
Pseudomonas putida ND6, which was isolated from Tianjin southern effluents, can degrade naphthalene of2g/L in minimal medium by98%in48hours. As most other naphthalene-degrading strains, the naphthalene-degrading genes of P. putida ND6are located on the large10,1858base pair (bp) pND6-1plasmid which has been sequenced and annotated. Sequence analysis indicated that P. putida ND6-mediated naphthalene degradation occurred via mechanisms similar to those described for other naphthalene-degrading strains. The naphthalene-degrading genes in these strains are organized in two operons:the upper pathway operon (nahAaAbAcAdBFCED) encoding enzymes involved in the conversion of naphthalene to salicylate and the lower pathway operon (nahGTHINLOMKJ) encoding enzymes necessary for the conversion of salicylate to tricarboxylic acid cycle intermediates via the meta-cleavage pathway.
     P. putida ND6is unique in that it possesses two isofunctional salicylaldehyde dehydrogenase genes nahF and nahV in addition to two isofunctional salicylate hydroxylase genes nahG and nahU. In this study, the biological function and regulation model of NahV in P. putida ND6were studied.
     Plasmid copy number (PCN) is the number of the plasmid copy included in one strain. The PCN of plasmid pND6-1in P. putida ND6is two determined by quantitative real-time PCR. This is the first report of copy number of plasmid that the size is more than100kb.
     Using homologous recombination method, nahF-mutated strain P. putida ND6-AAF and nahv-mutated strain P. putida ND6-△△V were constructed, respectively.By comparing the respective mutants to the parental strain with respect to growth and naphthalene-degrading rates, we found that the naphthalene-degrading rates differed between the wild-type and mutant strains, that is, naphthalene-degrading rates was considerably lower in both the ND6-△△F and ND6-AAV than that in wild-type ND6. At the mRNA and protein level, the nahF or nah V expression levels in the ND6-△△V or ND6-△△F mutant were higher compared to levels observed in the wild-type strain. Furthermore, the salicylaldehyde dehydrogenase activities were considerably lower in both the nah V and nahF mutants compared to wild-type ND6when cultured with naphthalene or salicylate as the sole carbon source. In conclusion, the presence of the additional salicylaldehyde dehydroxylase NahV may be physiologically advantageous to the host strain ND6, which facilitates degradation of naphthalene through increasing the salicylaldehyde transformation efficiency, prevents salicylaldehyde toxic effect and reduces lethality when deletion mutations happened in the classical salicylaldehyde dehydroxylase NahF.
     nahR-mutated strain P. putida ND6-△△R was also constructed to compare the differences between mutant and wild-type strain at mRNA and salicylaldehyde dehydrogenase activities level. We can detect the expression of nahR in P. putida ND6, whenever cultured with any carbon source, and the expression of nahR increased with the addition of inducer salicylate. Neither nahF nor nahV gene expressed constitutively. NahR binds to the promoter first. In the presence of inducer salicylate, NahR shifts its conformation to interact with RNA polymerase and help it bind to the promoter to initiate transcription.
引文
[1]Preuss R, Angerer J and Drexler H. Naphthalene-an environmental and occupational toxicant. Int Arch Occup Environ Health,2003,76(8):556-576
    [2]Tattersfielfd F. The decomposition of naphthalene in the soil and the effect upon its insecticidal action. Ann appl Biol,1928,15(1):57-80
    [3]Gray P H H and Thorntonh G. Soil bacteria that decompose certain aromatic compounds. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt Ⅱ,1928,73:74-96
    [4]Tausson W O. Naphthalin als Kohlenstoffquelle fur Bakterien. Planta,1927,4:214-256
    [5]Jacobs S E. The influence of antiseptics on the bacterial and protozoan population of greenhouse soils. Part I. Naphthalene. Ann appl Biol,1931,18:98-136
    [6]Walker N and Wiltshire G H. The breakdown of naphthalene by a soil bacterium. J Gen Microbiol,1953,8:273-276
    [7]Murphy J F and Stone R W. The bacterial dissimilation of naphthalene. Can J Microbiol, 1955,1:579-588.
    [8]Colla C, Biaggi C and Treccani V. Microbial oxidative metabolism of anthracene and phenanthrene. I. Formation of hydroxynaphthoic acid (in Italian). Atti accad nazl Lincei Rend Classe sci fis matenat,1957,23:66-69
    [9]Davies J I and Evans W C. Oxidative metabolism of naphthalene by soil Pseudomonads. Biochem J,1964,91:251-261
    [10]Dunn N and Gunsalus I C. Transmissible plasmids coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol,1973,114(3):974-979
    [11]Johnston J B and Gunsalus I C. Isolation of metabolic plasmid DNA from Pseudomonas putida. Biochem Biophys Res Commun,1977,75(1):13-19
    [12]Serdar C M. Plasmid involvement in the metabolism of naphthalene and parathion: [dissertation]. Austin:University of Texas,1985
    [13]Cane P A and Williams P A. The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains:phenotypic changes correlated with structural modification of the plasmid pWW60-1. J Gen Microbiol,1982,128:2281-2290
    [14]Dennis J J and Zylstra G J. Complete sequence and genetic organization of pDTGl, the 83 kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816-4. J Mol Biol,2004,341(3):753-768
    [15]Li W, Shi J, Wang X, et al. Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene,2004, 336(2):231-240
    [16]Park W and Madsen E L. Characterization in Pseudomonas putida Cgl of nahR and its role in bacterial survival in soil. Appl Microbiol Biotechnol,2004,66(2):209-216
    [17]Yen K M and Gunsalus I C. Plasmid gene organization:naphthalene/salicylate oxidation, Proc Natl Acad Sci USA,1982,79(3):874-878
    [18]Yen K M, Sullivan M and Gunsalus I C. Electron microscope heteroduplex mapping of naphthalene oxidation genes on the NAH7 and SAL1 plasmids. Plasmid,1983,9(2):105-111
    [19]Barnsley E A. The induction of the enzymes of naphthalene metabolism in Pseudomonas by salicylate and 2-aminobenzoate. J Gen Microbi,1975,88:193-196
    [20]Barnsley E A. Role of regulation of the ortho and meta pathways of catechol metabolism in Pseudomonas metabolizing naphthalene and salicylate. J Bacteriol,1976,125(2):404-408
    [21]Schell M A. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene,1985,36(3):301-309
    [22]Connors M A and Barnsley E A. Metabolism of naphthalene by Pseudornonas: salicylaldehyde as the first possible inducer in the metabolic pathway. J. Bacteriol,1980, 141(3):1052-1054
    [23]Yen K M and Gunsalus, I. C., Regulation of naphthalene catabolic genes of plasmid NAH7, J. Bacteriol.,162,1008.1985.
    [24]Grund A D and Gunsalus I C. Cloning of genes for naphthalene metabolism in Pseudomonas putida. J Bacteriol,1983,156(1):89-94
    [25]Schell M A. Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc Natl Acad Sci USA,1986,83(2): 369-373
    [26]Schell M A and Wender P E. Identification of the nahR gene product and nucleotide sequences required for its activation of the saloperon, J Bacteriol,1986,166(1):9-14
    [27]Raiband O and Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet,1984,18:173-206
    [28]Huang J Z and Schell M A. In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation. J Biol Chem, 1991,266(17):10830-10838
    [29]Schell M A and Sukordhaman M. Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the Rhizobium nodD genes. J Bacteriol,1989,171(4):1952-1959
    [30]Henikoff S, Haughn G, Calvo J, et al. A large family of bacterial activator ptroteins. Proc Natl Acad Sci USA,1988,85(18):6602-6606
    [31]Schell M A. In Pseudomonas:biotransformations, pathogenesis, and evolving biotechnology, Washington D C:Chakrabarty A,1990.165-176
    [32]Chang M, Essar D W and Crawford I P. In Pseudomonas:biotransformations, pathogenesis, and evolving biotechnology, Washington D C:Chakrabarty A,1990.292-302
    [33]Barnett M and Long S R. DNA sequence and translational product of a new nodulation-regulatory locus:syrM has sequence similarity to NodD proteins. J Bacteriol,1990,172: 3695-3700
    [34]Storz G, Tartaglia L A and Ames B N. Transcriptional regulator of oxidative stress-inducible genes:direct activation by oxidation. Science,1990,248(4952):189-194
    [35]Park W, Padmanabhan P,Padmanabhan S, et al. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA. Microbiology,2002,148(8): 2319-2329
    [36]Jeon C O, Park M, Ro H S, et al. The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2:evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol,2006,72(2):1086-1095
    [37]Ensley B D, Mann M B, Osslund T D, et al. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science,1983,222:167-169
    [38]Burlage R S, Sayler G S and Larimer F. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional. fusions. J Bacteriol,1990,172:4749-4757
    [39]King J M H, DiGrazia P M, Applegate B, et al. Rapid, sensitive bioluminescence reporter technology for exposure and biodegradation. Science,1990,249:778-781
    [40]Heitzer A, Malachowsky K, Thonnard, J E, et al. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium. Appl Environ Microbiol,1994,60(5):1487-1494
    [41]Ensley B D, Gibson D T and Laborde A L. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacreriol,1982,149(3): 948-954
    [42]Ensley B D and Gibson D T. Naphthalene dioxygenase:purification and properties of a terminal oxygenase component. J Bacteriol,1983,155(2):505-511
    [43]Patel T R and Gibson D T. Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacreriol,1974,119(3):879-888
    [44]Patel T R and Gibson D T. Bacterial cis-dihydrodiol dehydrogenase:comparison of physicochemical and immunological properties. J Bacreriol,1976,128(3):842-850
    [45]Patel T R and Barnsley E A. Naphthalene metabolism by Pseudomonas:purification and properties of 1,2-dihydroxynaphthalene oxygenase. J Bacreriol,1980,143(2):668-673
    [46]Dagley S. Catabolism of aromatic compounds by microorganisms. Adv Microb Physiol, 1971,6(0):1-46
    [47]Starovoitov II, Nefedova M Y, Yakovlev G I, et al. Gentisic acid as a microbial oxidation product of naphthalene. Izv. Akad. Nauk SSSR Ser. Khim,1975,24(9):2091-2092
    [48]Monticello D J, Bakker D, Schell M, et al. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate. Appl Environ Microbiol,1985,49(4):761-764
    [49]Buswell, J A, Paterson A and Salkinoja-Salonen M S. Hydroxylation of salicylic acid to gentisate by a bacterial enzyme. FEMS Microbiol Lett,1980,8(3):135-137
    [50]Yano K and Arima K. Metabolism of aromatic compounds by bacteria.II. rn-Hydroxybenzoic acid hydroxylase A and B; 5-dehydroshikimic acid, a precursor of protocatechuic acid, a new pathway from salicylic acid to gentisic acid. J Gen Appl Microbiol,1958,4:241-258
    [51]Yen K M and Serdar C M. Genetics of naphthalene catabolism in pseudomonads. Crit Rev Microbiol,1988,15:247-268
    [52]Sota M, Yano H, Ono A, et al. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase. J Bacteriol,2006,188:4057-4067
    [53]Feist C F and Hegeman G D. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J Bacteriol,1969,100:869~877
    [54]Ornston L N. The conversion of catechol and protocatechuate to 3-ketoadipate by Pseudomonas putida. J Biol Chem,1966,241:3800-3810
    [55]Farr D R and Cain R B. Catechol oxygenase induction in Pseudomonas aeruginosa. Biochem J,1968,106:879-885
    [56]Murray K and Williams P A. Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida. J Bacteriol,1974,117:1153~1157
    [57]Fuenmayor S L, Wild M, Boyes A L, et al. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol,1998,180:2522~2530
    [58]Zhou N Y, Fuenmayor S L and Williams P A. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol,2001, 183:700~708
    [59]Zhou N Y, AI-Dulayymi J, Baird M S, et al. Salicylate 5-hydroxylase from Ralstonia sp. strain U2:a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J Bacteriol,2002,184:1547-1555
    [60]Jeon C O, Park W, Padmanabhan P,et al. Discovery of a previously undescribed bacterium with distinctive dioxygenase that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci USA,2003,100:13591-13596
    [61]Jeon C O, Park W, Ghiorse W C, et al. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol,2004,54:93~97
    [62]Williams P A and Murray K. Metabolism of benzoate and the methylbenzoates by Pseudomonas purida (arvilla) mt-2:evidence for the existence of a TOL plasmid. J Bacreriol, 1974,120(1):416~423
    [63]Rheinwald J G, Chakrabarty A M and Gunsalus I C. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci USA,1973,70(3):885~889
    [64]Chakrabarty A M, Chou G and Gunsalus I C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc Natl Acad Sci USA,1973,70(4):1137~1140
    [65]Thacker R, Rorvig O, Kahlon P,et al. NIC, a conjugative nicotine-nicotinate degradative plasmid in Pseudomonas convexa. J Bacreriol,1978,135(1):289-290
    [66]Grimm A C and Harwood C S. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol, 1999,181:3310-3316
    [67]Evans W C, Fernley H N and Griffiths E. Oxidative metabolism of phenanthrene and anthracene by soil Pseudomonads. The ring-fission mechanism. Biochem J,1965,95: 819-831
    [68]Williams P A, Catterall F A and Murray K. Metabolism of naphthalene,2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG:regulation of tangential pathways. J Bacteriol, 1975,124(2):679-685
    [69]Greated A, Lambertsen L, Williams P A, et al. Complete sequence of the IncP-9 TOL plasmid pWWO from Pseudomonas putida. Environ. Microbiol,2002,4:856-871
    [70]Williams P A., Shaw L E, Pitt C, et al. xylUW, two genes at the start of the upper pathway operon of TOL plasmid pWWO, appear to play no essential part in determining its catabolic phenotype. Microbiology,1997,43:101-107
    [71]张心平,岳晓含,黄今勇,等.萘降解质粒pND6的分离和鉴定.应用与环境生物学报,2000,6(2):187-190
    [72]蔡宝立,刘斌,马琳,等.萘降解质粒pND6-1中萘趋化基因nahY的克隆和核苷酸序列分析.应用与环境生物学报,2002,8(6):662-665
    [73]Denome S A, Stanley D C, Olson E S, et al. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains:complete DNA sequence of an upper naphthalene catabolic pathway. J Bacteriol,1993,175:6890-6901
    [74]Bosch R, Garcia-Valdes E and Moore E R. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene,1999,236:149-157
    [75]Bosch R, Garcia-Valdes E and Moore E R. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN 10. Gene,2000,245:65-74
    [76]Tsuda M and Iino T. Naphthalene degrading genes on plasmid NAH7 are on a defective transposon. Mol Gen Genet,1990,223:33-39
    [77]Negoro S. Biodegradation of nylon oligomers. Appl Microbiol Biotechnol,2000,54: 461-466
    [78]Zhao H B, Chen D F, Li Y J, et al. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6. Microbiol Res,2005,160:307-313
    [79]Laemmli C M, Leveau J H J, Zehnder A J B, et al. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134 (pJP4). J Bacteriol,2000,182:4165-4172
    [80]Roth J R, Benson N, Galitski T, et al. Rearrangements of the bacterial chromosome: formation and applications. In:Neidhardt F C, Curtiss III R, Ingrham J L, eds. Escherichia coli and Salmonella:Cellular and Molecular Biology. Washington:ASM Press,1996. 2256~2276
    [81]Einarsdottir G H, Stankovich M T and Tu S C. Studies of electron transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding. Biochemistry,1988,27(9):3277~3285
    [82]Suzuki K and Katagiri M. Mechanism of salicylate hydroxylasecatalyzed decarboxylation. Biochim Biophys Acta,1981,657(2):530-534
    [83]Suzuki K, Takemori S and Katagigiri M. Mechanism of the salicylate hydroxylase reaction. IV. Fluorometric analysis of the complex formation. Biochim Biophys Acta,1969,191(1): 77~85
    [84]Takemori S, Hon-nami K, Kawahara F, et al. Mechanism of the salicylate hydroxylase reaction. VI. The monomeric nature of the enzyme. Biochim Biophys Acta,1974,342: 137~144
    [85]Takemori S, Nakamura M, Suzuki K, et al. Mechanism of salicylate hydroxylase reaction. V. Kinetic analyses. Biochim Biophys Acta,1972,284:382~393
    [86]Wang L H and Tu S C. The kinetic mechanism of salicylate hydroxylase as studied by initial rate measurement, rapid reaction kinetics, and isotope effects. J Biol Chem,1984,259(17): 10682~10688
    [87]Wang L H, Tu S C and Lusk R C. Apoenzyme of Pseudomonas cepacia salicylate hydroxylase. Preparation, fluorescence property, and nature of flavin binding. J Biol Chem, 1984,259(2):1136~1142
    [88]White-Stevens R H and Kamin H. Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. J Biol Chem,1972,247(8):2358~2370
    [89]White-Stevens R H, Kamin H and Gibson Q H. Studies of a flavoprotein, salicylate hydroxylase. II. Enzyme mechanism. J Biol Chem,1972,247:2371~2381
    [90]You I S, Ghosal D and Gunsalus I C. Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydroxylase gene (nahG) and its 3'-flanking region. Biochemistry, 1991,30(6):1635~1641
    [91]Suzuki K, Mizuguchi M, Ohnishi K, et al. Structure of chromosomal DNA coding for Pseudomonas putida S-l salicylate hydroxylase. Biochim Biophys Acta,1996,1275(3): 154~156
    [92]Lee J, Oh J, Min K R, et al. Nucleotide sequence of salicylate hydroxylase gene and its 5'-flanking region of Pseudomonas putida KF715. Biochem Biophys Res Commun,1996, 218(2):544~548
    [93]Bosch R, Moore E R B, Garcia-Valdes E, et al. NahW, a novel, inducible salicylate hydroxylase involved in mineralization of naphthalene by Pseudomonas stutzeri AN 10. J Bacteriol,1999,181:2315~2322
    [94]Eggink G, Engel H, Vriend G, et al. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol,1990,212(1):135-142
    [95]Wierenga R K, Terpstra P and Hol W G. Prediction of the occurrence of the ADP-binding bab-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol,1986,187(1): 101-107
    [96]Lehrbach P R, Zeyer J, Reineke W, et al. Enzyme recruitment in vitro:use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J Bacteriol, 1984,158(3):1025-1032
    [97]Morris C M and Barnsley E A. The cometabolism of 1-and 2-chloronaphthalene by Pseudomonads. Can J Microbiol,1982,28(1):73-79
    [98]Lanfranconi M P, Christie-Oleza J A, Martin-Cardona C, et al. Physiological role of NahW the additional salicylate hydroxylase found in Pseudomonas stutzeri AN 10. FEMS Microbiol Lett,2009,300(2):265-272
    [99]Pomposiello P J, Bennik M H J and Demple B. Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol,2001, 183(13):3890-3902
    [100]Riordan J T, Muthaiyan A, Van Voorhies W, et al. Response of Staphylococcus aureus to salicylate challenge. J Bacteriol,2007,189(1):220-227
    [101]Lee D S, Lee M W, Woo S H, et al. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM-7. J Microbiol Biotechn,2005,15(4):859-865
    [102]Donachie W, Gilmour N J L, Mould D, et al. Comparison of cell surface antigen extracts from two serotypes of Pasteurella haemolytica. J Gen Microbiol,1984,130(5):1209-1216
    [103]Slonczewski J L and Foster J W. pH-regulated genes and survival at extreme pH. Escherichia coli and Salmonella. In:Neidhardt F C, Curtiss R III, Ingraham J L, et al, eds. Cellular and Molecular Biology, Vol.1,2nd ed. Washington DC:ASM Press,1996. 1539-1549
    [104]Garcia-Valdes E, Cozar E, Rotger R, et al. New naphthalene degrading marine Pseudomonas strains. Appl Environ Microbiol,1988,54(10):2478-2485
    [105]Zhao H B, Li Y J, Chen W, et al. A novel salicyaldehyde dehydrogenase-NahV involved in catabolism in naphthalene from Pseudomonas putida ND6. Chinese science bulletin,52(14): 1942-1948
    [106]Horn J M, Harayama S and Timmis K N. DNA sequence determination of the TOL plasmid (pWWO) xylGFJ genes of Pseudomonas putida:implications for the evolution of aromatic catabolism. Mol Microbiol,1991,5:2459-2474
    [107]Liu Z J, Sun Y J, Rose J, et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol,1997,4:317-326
    [108]赵化冰,陈威,蔡宝立.恶臭假单胞菌ND6菌株catA基因的克隆和表达及其儿茶酚裂解途径探讨.微生物学报,2007,47(3):387-391
    [109]周涛.质粒拷贝数的测定方法.生物技术通讯,1999,10(1):51-57
    [110]Lee C L, Ow D S W, Oh S K W. Quantitative real-time polymerase chain reaction for determination of plasmid copy number in bacteria. J Microbiol Methods,2006,65(2): 258-267
    [111]Lee C, Kim J, Shin S G, et al. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J Biotechnol,2006,123(3):273-280
    [112]Tao L, Jackson R E, Cheng Q. Directed evolution of copy number of a broad host range plasmid for metabolic engineering. Metabolic Engineering,2005,7(1):10-17
    [113]Providenti M A, O'Brien J M, Ewing R J, et al. The copy-number of plasmids and other genetic elements can be determined by SYBR-Green-based quantitative real-time PCR. J Microbiol Methods,2006,65(3):476-487
    [114]Carapuca E, Azzoni A R, Prazeres D M F, et al. Time-course determination of plasmid content in eukaryotic and prokaryotic cells using Real-Time PCR. Molecular Biotechnology, 2007,37:120-126
    [115]Skulj M, Okrslar V, Jalen S, et al. Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microbial Cell Factories, 2008,7:6-17
    [116]Abolmaaty A, EI-Shemy M G, Khallaf M F, et al. Effect of lysing methods and their variables on the yield of Escherichia coli 0157:H7 DNA and its PCR amplification. J Microbiol Methods,1998,34(2):133-141
    [117]Kamlet J, Doherty R, Taft R, et al. Solubility properties in polymers and biological media.8. An analysis of the factors that influence toxicities or organic nonelectrolytes to the golden orfe fish (Leuciscus idus melanotus). Environ Sci Technol 1987a,21(2):149-155
    [118]Kamlet M J, Doherty R M, Fiserova-Bergerova V, et al. Solubility properties in biological media 9:prediction of solubility and partition of organic nonelectrolytes in blood and tissues from solvatochromic parameters. J Pharm Sci 1987b,76(1):14-17
    [119]Platt A, Shingler V, Taylor S C, et al. The 4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase (acylating) encoded by the nahM and nahO genes of the naphthalene catabolic plasmid pWW60-22 provide further evidence of conservation of meta-cleavage pathway gene sequences. Microbiology,1995,141:2223-2233
    [120]Harayama S, Rekik M, Wasserfallen A, et al. Evolutionary relationships between catabolic pathways for aromatics:conservation of gene order and nucleotide sequences of catecholo xidation genes of pWWO and NAH7 plasmids. Molecular General and Genetics 1987,210: 241~247
    [121]Serdar C M, Gibson D T. Studies of nucleotide sequence homology between naphthalene-utilizing strains of bacteria. Biochemical and Biophysical Research Communications,1989, 164:772-779
    [122]Schell M A, Poser E F. Demonstration, characterization, and mutational analysis of NahR protein binding to nah and sal promoters. Journal of Bacteriology,1989,171(2):837-846
    [123]Park H H, Lim W K, Shin H J. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochimica et Biophysica Acta,2005,1725(2):247-255
    [124]Tropel D, van der Meer J R. Microbiol. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Molecular Biology Reviews,2004,68(3):474~500
    [125]Jones R M, Britt-Compton B, Williams P A. The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are an operon that is regulated by NagR, a LysR-type transcriptional regulator. J Bacteriol,2003,185(19):5847~5853
    [126]Park W, Jeon C O, Madsen E L. Interaction of NahR, a LysR-type transcriptional regulator, with the alpha subunit of RNA polymerase in the naphthalene degrading bacterium, Pseudomonas putida NCIB 9816-4. FEMS Microbiology Letters,2002,213(2):159~165
    [127]Schell M A, Brown P H, Raju S. Use of saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator. Journal of Biological Chemistry,1990,265(7):3844~3850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700