用户名: 密码: 验证码:
聚丙烯酸酯类柴油降凝剂的合成与降凝机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油降凝剂能有效地提高柴油的低温流动性,是改善柴油低温流动性最经济最方便的方法。通过添加降凝剂形成低凝柴油,可以增加原油中柴油馏分切割,节约原油能源,有很大的社会经济效益。柴油降凝剂的研究已有大量报道,但降凝剂的降凝效果强烈依赖于柴油的组成,且有关降凝机理还不甚清楚。为此,本文以长庆油田生产的柴油为原料,重点考察了不同组成和结构特点的聚丙烯酸酯对其降凝性能。同时依此为模型对其降凝机理进行了研究。
     基于降凝剂性能与柴油本身的组成有很大关系,故本文首先对柴油中蜡含量和正构烷烃的碳数分布进行了分析。结果表明:本文所用柴油为一种含蜡量为21.6%的高蜡柴油,碳数为13、14和15的正构烷烃占总正构烷烃的质量百分数为30.9%,峰值碳数为15,平均碳数为15.4。
     为了考察不同侧链碳数对其降凝行为的影响,通过酯化反应合成了不同侧链碳数的丙烯酸高碳醇酯,以此为单体进行聚合,得到不同侧链碳数的PA。通过降凝效果测试发现,以侧链碳数为14的降凝剂对柴油的降凝效果最好,验证了碳数匹配理论。因为聚合条件对降凝效果有影响,本文进一步对PA-14的聚合条件进行四因素三水平正交优化。优化聚合物分别能使柴油的凝点降低18℃,冷滤点降低6℃。此研究结果说明,同一类降凝剂对凝点降和冷滤点降存在一定差异。通过对降凝剂不同加入量对降凝行为的研究,发现凝点存在最佳值,而冷滤点随着降凝剂增多而下降,当降凝剂量达到一定值时冷滤点不再降低。
     为了考察降凝剂对具有混合成分特点的柴油可能存在的协同作用,本研究特意制备了丙烯酸高碳醇酯混合共聚物和混合聚丙烯酸高碳酯,并测定了它们的降凝效果。结果说明,降凝剂侧链碳数与柴油中正构烷烃的匹配性对良好的降凝效果起决定性作用。为了考察短链分子是否具有降凝剂的作用,本文以丙烯酸十四酯作为降凝剂加入柴油中,结果发现短链的丙烯酸十四酯对柴油没有降凝作用。可见,聚合物的骨架碳链在降凝效果上起到很大的作用。同时,测定了PA-14与AEO-3、Span80和Span85复配降凝剂的降凝效果,发现这三种非离子表面活性剂对聚丙烯酸酯类降凝剂有协同性,这是降低降凝剂成本的重要途径之一。
     通过内烯酸十四酯与马来酸酐、苯乙烯和丙烯酸丁酯等第二单体进行共聚来研究不同结构降凝剂对柴油的降凝效果。研究发现,第二单体的加入能有效提高凝点降,而对冷滤点降的改善不好。
     为了研究聚丙烯酸高碳醇酯对柴油的降凝机理,本研究通过冷热台偏光显微镜对蜡晶形成过程进行了在线跟踪。显微观测显示降凝剂(PPD)能够有效地改变蜡晶的形貌,使蜡晶由大块片状变为均匀的圆球状。依据不同时间及不同条件下显微观察结果,提出了降凝剂的晶核分散机理。降凝剂用量较少时,将出现以蜡晶为晶核,降凝剂吸附在蜡晶周边形成边界层,从而使高分子具有分割蜡晶的作用。当降凝剂用量适量时,作为高分子的降凝剂首先形成晶核,较为分散和尺寸较小的高分子晶核使蜡晶结晶尺寸更小,从而能有效地发挥降凝剂的降凝性能。运用晶核分散机理能够解释大多数降凝剂对凝点具有较好的感受性,而对冷滤点感受性较差的现象。
     另外,通过降凝效果测定和显微观测柴油储存时间对低温流动性的影响,结果发现,延长储存时间能提高柴油低温流动性,但也使降凝剂的作用效果降低。
     最后,运用冷冻干燥处理蜡晶,可以有效分离柴油中的轻组分,同时保留蜡晶的形貌。通过上述处理可在显微镜下清楚地看到降凝剂分子在蜡晶中的分布。与此相关的观测结果进一步验证了本文提出的晶核分散机理。
Pour point depressant (PPD) to improve the fluidity of diesel fuel atlow temperature is not only effective but also economical and convenient. By this way,PPD can enlarge the distillate line of crude oil for diesel fuel. So, it is very profitable foreconomy and society due to saving energy sources of crude oil.
     Firstly, the content of wax and n-paraffin distribution for a given diesel fuel wereanalyzed. The results show the diesel fuel is high-wax oil with 21.6% of wax content.The n-paraffin with carbon number (CN) 13, 14 and 15 has 30.9% in total n-paraffin.The dominant CN of n-paraffin is 15, and the average CN is 15.4.
     The higher alcohol acrylates as polymerisable monomer are synthesized byesterifying acrylic acid with higher alcohols. Then, the higher alcohol acrylate polymerswith different alkyl branch-chain are prepared. By means of examining the cold flowperformance, the poly (tetradecyl acrylate) (PA-14) shows the best performance, whichis attributed to the fact that carbon number of side chain matches with that of the dieselfuel. Then the polymerization conditions of PA-14 were optimized by orthogonalmethod. The polymers with the best solidifying point depression (ΔSP) and cold filterplugging point depression (ΔCFPP) were prepared, and volume ofΔSP andΔCFPPwere 18℃and 6℃, respectively.
     Copolymers with different higher alcohol acrylates and mixtures of the poly(higher alcohol acrylates) with different branch-chain carbon number were prepared andtheir cold flow performances were determined. The copolymers have a better cold flowperformance than the mixture of the polymers, in which copolymers with more 14 ofbranch-chain CN segments is very better in cold flow performance. Based theexperiments of PPD of the mixtures of PA-14 with AEO-3, Span-80 or Span-85, theresults indicate that three kinds of non-ionic surfactants have synergism with poly(higher alcohol acrylates). Otherwise, the addition of surfactants can reduce the cost ofPPD.
     To study the cold flow performance of PPD with different structures, tetradecylacrylate is copolymerized respectively with maleid anhydride, styrene and butyl acrylate.It is found that copolymers can enhance theΔSP, but have no effect withΔCFPP.
     The effect of amount of PPD on the cold flow performance was investigated. Theresults illustrated that a given PPD in certain content has the best performance in△SP, however, the PPD in this case has not a performance in△CFPP. This experiment impliesthat the interaction between PPD and diesel fuel in molecular scale makes the effect on△SP and△CFPP in defferent way.
     The formation of wax crystal was observed by in-situ polarizing microscope.Comparing the wax crystal morphology in presence of PPD with absence of PPD, theobservations indicate that PPD could efficiently reform the morphology of wax crystalthrough changing the wax crystal from slice agglomeration to even spherulites.Consequently, this effect makes the wax crystal hardly form in big size. Based on theobservations, it makes a conclusion that the mechanism for effect of PPD on△SP and△CFPP is attributed to dispersion-nucleation. When the content of PPD is lower, thewax directly forms crystal nucleus, and PPD wraps the wax crystal. When the content isproper, PPD as crystal nucleus firstly appears, and the wax crystal is incorporated intoPPD crystal. Owing to PPD nucleus being small and dispersed, the small co-crystalcould be observed. According to the mechanism proposed in this research, thedifference of performance in△SP and in△CFPP could be explained.
     It was examined and observed with microscope that the aged diesel fuel influencesthe cold flow performance. Aged diesel fuel can improve the cold flow performance, butthe effect of PPD on cold flow of diesel fuel is reduced.
     At last, freeze drying treatment of wax crystal was observed by microscope. Bymeans of this method, the effect of PPD on the wax crystallization can be seen clearly.The result further proves the proposed mechanism.
引文
[1] 加里 L 兰德曼.在产油层中沉积聚合物降凝剂的方法:中国,87106635[P].1988-06-01.
    [2] 陈玉英,刘子聪.化学清防蜡剂在百色油田的应用[J].化学清洗,1996,12(4):15-18.
    [3] 吴迪,李克顺,艾广智.乳液型油井防蜡降凝剂DODP-2的研制[J].油气田地面工程,1998,17(6):37-40.
    [4] Wirtz, Herbert, Von Halasz. New copolymers, mixtures thereof with poly (methyl) acrylate esters and the use thereof for improving the cold fluidity of crude oils: US, 5349019[P]. 1994-09-20.
    [5] 康万利,马一玫.原油降凝剂研究进展[J].油气储运,2005,24(4):3-9.
    [6] 李建波,梁发书,郭川梅,等.稠油降粘剂的合成及其作用机理分析[J].西南石油学院学报,2001,23(1):40-43.
    [7] 胡慧萍,陈小毅,李智勇.用作渣油降粘剂的丙烯酸酯类聚合物的合成及降粘性能研究[J].化学工程师,1999,75:16-17.
    [8] Kim B Peyton, Sophia L Wang. Composition and method for lubricant wax dispersant and pour point improver: US, 6174843 [P]. 2001-01-16.
    [9] Steven Zabamick, Nikki Widmor. Studies of jet fuel freezing by differential scanning calorimetry[J]. Energy & Fuels, 2001, 15(6): 1447-1453.
    [10] Leteoffe J M, Claudy P, Kok M V, et al. Crude oils: characterization of waxes precipitated on cooling by DSC and thermomicroscopy[J]. Fuel, 1995, 74(6): 810-817.
    [11] 李鸿英,张劲军.蜡对原油流变性的影响[J].油气储运,2002,21(11):6-12.
    [12] 吴迪,艾广智.李克顺.用旋转粘度计法测定原油溶蜡点[J].油气田地面工程,1999,18(2):42-44.
    [13] Pierre Claudy, Jean-Marie Letoffe, Bernard Neff, et al. Diesel fuels: determination of onset crystallization temperature, pour point and filter plugging point by differential scanning calorimetry and correlation with standard test methods[J]. Fuel, 1986, 65: 861-864.
    [14] 陈俊,张劲军.原油及石油产品倾点测定规范分析[J].油气储运,2003,22(10):4-8.
    [15] 刘树清.聚乙烯蜡用作柴油流动性改进剂的研究[J].石油炼制与化工,1991,25:58-61.
    [16] 张付生.降凝剂BEM降低原油凝点的机理探讨[J].油田化学,2001,18(1):80-82.
    [17] 宋昭峥,赵密福,葛际江,等.聚丙烯酸酯降凝剂对蜡晶形态和电性质的影响[J].石油学报(石油加工),2004,20(2):41-46.
    [18] Ahmed K Aboul-Gheit, Thanaa Abd-El-Moghny, Al-Eseimi M M. Characterization of oils by differential scanning calorimetry[J]. Thermochimica Acta, 1997, 306: 127-130.
    [19] 敬加强.含蜡原油流动性改进机理实验研究[J].油田化学,2004,21(1):75-78.
    [20] Andre L C Machado, Elizabete F Lucas, Gaspar Gonzalez. Ploy (ethylene-co-vin-yl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions[J]. Journal of Petroleum Science and Engineering, 2001, 32: 159-165.
    [21] 廖克俭.润滑油、燃料油和原油降凝剂:中国,92102530.0[P].1992-09-09.
    [22] 陈国群,张帆,张劲军.含蜡原油触变性与温度关系的研究[J].油气储运,2003,22(12):28-34.
    [23] 敬加强,杨莉,秦文婷,等.含蜡原油结构形成机理研究[J].西南石油学院学报,2003,25(6):49-54.
    [24] Karen S. Pedersen, Hans P. Ronningsen. Influence of wax inhibitors on wax appearance temperature, pour point, and viscosity of waxy crude oils[J]. Energy & Fuels, 2003, 17: 321-328.
    [25] Nestor U Soriano Jr, Veronica P Migo, Masatoshi Matsumura. Ozonized vegetable oil as pour point depressant for neat biodiesel[J]. Fuel, 2006, 85: 25-31.
    [26] 丁兴者,戚国荣,杨士林.聚丙烯酸酯降凝剂的溶液性质及其对含蜡油降凝效果[J].石油炼制与化工,1999,30(5):50-54.
    [27] Shimada, Takeo Isaka, Tsutomu Okada, et al. Fuel oil additive and fuel oil having improved flowability: US, 4802892[P]. 1989-02-07.
    [28] Buhnen Heinz, Payer Wolfgang, Zoller Wilhelm. Process for the manufacture of copolymers of ethylene and their use as additives to mineral oil and mineral oil fractions: EP, 0271738[P]. 1988-06-22.
    [29] 刘树法,陈方,董玉玺,等.柴油降凝剂的制备方法:中国,02143889.7[P].2003-04-16.
    [30]张金利.EVA型聚合物分子设计、合成与应用研究[D].天津:天津大学,2003.
    
    [31] Krull, Matthias Reimann, Werner. Process for improving the cold-flow properties of fuel oils: US, 6110238[P]. 2000-08-29.
    [32] Ei-Gamal I M, Khidr T T, Ghuiha F M. Nitrogen-based copolymers as wax dispersants for paraffinic gas oils[J]. Fuel, 1998, 77(5): 375-385.
    [33] Jiang Qingzhe, Zhao Mifu, Song Zhaozheng, et al. Rheological Properties of Waxy Crude at a Low Temperature in the Presence of Pour Point Depressants [J]. Petroleum Science, 2005, 2(4): 62-65.
    [34] Borthakur A, Chanda D, Dutta Choudhury S R, et al. Alkyl fumarate-vinyl acetate copolymer as flow improver for high waxy indian crude oil[J]. Energy & Fuels, 1996,10: 844-848.
    [35] Charles H Bovington, Christopher J Locke, Kelly Terence. Low viscosity lubricating oil compositions: US, 6720293[P]. 2004-4-13.
    [36] Yuping Songa, Tianhui Rena, Xisheng Fub, et al. Study on the relationship between the structure and activities of alkyl methacrylate-maleic anhydride polymers as cold flow improvers in diesel fuels[J]. Fuel Processing Technology, 2005,86:641-650.
    [37] Ismail M Ei-Gamal, Ahmed M Ai-Sabbagh. Polymeric additives for improving the flow properties of waxy distillate fuels and crudes[J]. Fuel, 1996, 75(6): 743-750.
    [38] Miller, Harold N Sulfone. Copolymeric additive for hydrocarbon oils: US, 4070295 [P]. 1978-01-24.
    [39] Richard L Martin, Harold L Becker, Dora Galvan. Pour point reduction and paraffin deposition reduction by use of imidazolines: US, 0051033[P]. 2007-03-08.
    [40] Hollyday Jr, William C. Nitrogen-containing cold flow improvers for middle distillates: US, 3982909[P]. 1976-09-28.
    [41] Lawrence J Engel, John B Gardiner. Aminated polymeric additives for fuel and lubricants: US, 4068056[P]. 1978-01-10.
    
    [42] Gaydasch, Alexander. Middle distillate: US, 3628928[P]. 1971-12-21.
    [43] Hiebert Gregory L, Marvin B. Pour point depressants and their use: US, 5707946[P]. 1998-01-13.
    [44] Majerczak, Victoria Ann. Pour point depression of heavy cut methyl esters via alkyl methacrylate copolymer: US, 6203585[P]. 2001-03-20.
    [45] 威廉 W 加米尔,亚当 W 罗托多.可生物降解的植物油组合物:中国,01811866.6[P].2003-08-27.
    [46] Garmier, William W. Biodegradable penetrating lubricant: US, 6624124[P]. 2003-09-23.
    [47] Chuang-Wei Chiu, Leon G Schumaeher, Galen J Suppes. Impact of cold flow improvers on soybean biodiesel blend[J]. Biomass and Bioenergy, 2004, 27: 485-491.
    [48] Gulder O J, Glavincevski B. Prediction of cetane number of diesel fuels from carbon type structural composition determined by proton NMR spectroscopy[J]. Ind. Eng. Chem. Prod. Res. Dev., 1986, 25: 153-156.
    [49] Coutinho J A P, Mirante F, Ribeiro J C, et al. Cloud and pour point in fuel blends[J]. Fuel, 2002, 81: 963-967.
    [50] Qian J W, Qi G R, Ding X Z, et al. Assessment of polymer flow improvers for crude oil by viscometry[J]. Fuel, 1996, 75(3): 307-312.
    [51] Wu Chuanjie, Zhang Jinli, Li Wei, et al. Artificial neural network model to predict cold filter plugging point of blended diesel fuels[J]. Fuel Processing Technology, 2006, 87: 585-590.
    [52] Wu Chuanjie, Zhanga Jin-Li, Lia Wei, et al. Molecular dynamics simulation guiding the improvement of EVA-type pour point depressant[J]. Fuel, 2005, 84: 2039-2047.
    [53] 高树刚,董巍.聚丙烯酸酯类降凝剂的应用研究[J].化工时刊,2001,2:34-37.
    [54] 蒋路,商红岩,江少明.AEM-101柴油降凝剂的试验研究石[J].油炼制与化工,2001,32(2):36-38.
    [55] Pasadakis N, Sourligas S, Foteinopoulos Ch. Prediction of the distillation profile and cold properties of diesel fuels using mid-IR spectroscopy and neural networks[J]. Fuel, 2006, 85:1131-1137.
    [56] Iain M. Additive flowoilproperties: US, 6106584[P]. 200-8-22.
    [57] 周风山,王世虎,卢凤纪.丙烯酸十八酯制备方法研究[J].化学世界,2002,3:143-146.
    [58] 李为民,王小妹.聚丙烯酸高碳醇酯降凝剂的合成[J].石油与天然气化工,2000,29(4):178-180.
    [59] 李学东,张锡鹏.丙烯酸高级酯的合成[J].石油化工高等学校学报,1996,9(1):18-22.
    [60] 李学东,黄国雄.聚丙烯酸酯类降凝剂的最佳合成条件[J].润滑油,1999,14(4):28-32.
    [61] 高树刚,安红开.聚丙烯酸高级醇酯的合成及对柴油的降凝作用[J].化学工程师,2001,82(1):16-17.
    [62] 宋昭峥,葛际江,张贵才.溶剂对丙烯酸十八酯聚合的影响[J].石油学报(石油加工),2001,17(6):45-49.
    [63] 大森英三.丙烯酸酯聚合物[M].北京:化学工业出版社,1985.136-138.
    [64] 姜少华,侯健,郭利平,等.新型聚丙烯酸酯类柴油降凝剂分子模型的建立及验证[J].燃料化学学报,2003,31(5):30-33.
    [65] 王彪,张怀斌,张付生.一种新型原油降凝剂的研究[J].石油学报,1998,19(2):97-103.
    [66] 杨华,王雷,付雪,等.丙烯酸酯-苯乙烯二元共聚物的合成及其降凝性能[J].石油化工高等学校学报,2005,18(2):26-28,35.
    [67] 李聚源,戚朝荣,张耀君,等.丙烯酸十八酯-顺丁烯二酸酐共聚物的合成及其降凝性能的研究[J].西安石油学院学报(自然科学版),2003,18(5):65-68.
    [68] 纪苏,陈相辉.石油馏分不安定性组分脱除方法研究[J].化学工业与工程技术,2006,27(6):30-34.
    [69] 张贵才,孙铭勤,葛际江,等.原油降凝剂及其影响因素[J].承德石油高等专科学校学报,2005,7(1):5-9.
    [70] 赵秉臣,闫峰,李栋林,等.复配型高粘原油降粘降凝剂[J].细石油化工,1999,6:30-33.
    [71] 宋林花,姜翠玉,韩哲茵.降凝剂对柴油中蜡晶结晶形态的影响[J].化工时刊,2005.19(5):22-24.
    [72] 李会鹏,李会举,沈本贤.柴油低温流动性能研究进展[J].现代化工,2006,26(3):24-27,29.
    [73] 包成林,洪建勇,路小峰,等.原油加剂改性过程中蜡晶形态变化的研究[J].油气储运,2000,19(12):39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700