用户名: 密码: 验证码:
注超临界CO_2稠油输送工艺技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界CO_2具有扩散系数大、溶解能力强的特点,可以迅速渗透到混合物内部。向稠油中注入一定浓度的CO_2,可使稠油体积发生膨胀、密度减小,粘度迅速降低,从而实现稠油的降粘输送。与传统技术相比,该工艺具有节能、环保、经济性好等诸多优点。因此,研究注超临界二氧化碳稠油输送工艺的降粘规律,对加快油田稠油资源的开发利用意义重大。
     本文着重研究了稠油的流变特性及粘温特性,对稠油的性质有了初步的认识;建立了注超临界CO_2稠油输送的物理模型;然后,在稠油输送环道实验装置上进行了注超临界CO_2稠油流动规律的研究,分析了各个工艺参数对稠油粘度的影响规律。结果表明:稠油动力粘度很高,流动性较差;采用注超临界CO_2工艺后,温度、气油比、压力对稠油粘度的影响较大,随着温度的升高,稠油粘度成指数性下降趋势;气油比越大,降粘效果越好,但当气油比超过20后,随着气油比的继续增大,稠油粘度下降趋于平缓;压力的升高,对稠油的降粘效果会有较大的促进作用,但当压力升高到一定程度时,粘度-压力曲线趋于平缓,过高的压力甚至可能使稠油粘度有所增大;最终得出较佳的工况参数为:输送压力20MPa,温度90℃、气油比为20。
     此外,论文还对注超临界CO_2稠油输送工艺的特点及机理进行了一系列的研究,指出了现有实验装置的不足及今后的研究重点。
The viscosity of supercritical carbon dioxide is similar to the viscosity of gas. It is self-diffusion coefficient is about 100 times of liquid’s, so supercritical carbon dioxide can permeate into the mixture easily. Therefore, in the transportation of viscous oil, some carbon dioxide is inputted into the viscous oil, which can mix with the viscous oil to a homogeneous phase easily in the critical condition. As a result, the viscosity of viscous oil can be cut down enormously. Finally, energy consumption drops.
     First, the viscosity-temperature characteristics and rheological characteristics of viscous oil have been researched. And then the mobility pattern of viscous oil has been stressly studied. The influence quantity of each flow parameter has been analyzed. According to the results, the dynamic viscosity of viscous oil is much greater than normal oil. The flowability of viscous oil is very terrible. After carbon dioxide is imputed into the viscous oil, the dynamic viscosity of viscous oil is readily reduced. Temperature、pressure and gas/oil ratio all have great influence on the flowability of viscous oil. Along with the rising of temperature, the flowability of viscous oil has exponential declined; And the dynamic viscosity of viscous oil decreases sharply along with rising of gas/oil ratio, but when the gas/oil ratio is greater than 20, the curve of gas/oil ratio -dynamic viscosity becomes a little smooth; The greater the transporting pressure is, the deeper the extent of the supercritical carbon dioxide- viscous oil miscible phase is. However, excessive syste??essure maybe have an objectionable influence on the dynamic viscosity of viscous oil. Finally, we have obtained conclusion that the preferable operational condition in this experimentation is: P=20MPa, T=90℃, n=20.
     In addition, the advantage and disadvantage of transporting viscous oil by inputting supercritical carbon dioxide technological process are detailed introduced. Afterwards, the disadvantage of available experimental apparatus and the highlight of future research have been pointed out.
引文
[1]王鸿膺,寇杰,张传农.河口稠油掺水降粘试验研究[J].油气储运,2005,24(3):35~38.
    [2]徐丕东,袁向春,邱国清等.提高胜利油区稠油热采采收率技术研究[J].油气采收率技术,2003,7(1):13~17.
    [3]刘志泉.中国原油性质及综合评价[M].北京:石油工业出版社,1996.
    [4]田仲强,黄敏,田荣恩等.胜利油田稠油开采技术现状[J].特种油气藏,2001,8(4):52~57.
    [5]尉小明,刘喜林,王卫东等,稠油降粘方法概述[J].精细石油化工,2002(5):45~49.
    [6]雷西娟,王鸿膺.稠油降粘输送方法[J].油气田地面工程,2002,21(5):37~38.
    [7]段全德.稠油集输工艺流程设计[J].油气田地面工程,2006,25(2):15~16.
    [8]赖英旭,郑之初,石在虹等.稠油输送新工艺新方法探索及现场实验[J].水动力学研究与进展,2002,17(5):521~529.
    [9]潘竟军.甲烷和乙烷在风城稠油中的溶解度及气体饱和稠油的粘度及密度[J].油田化学,1999.
    [10]郝永卯. CO_2驱油实验研究[J].石油勘探与开发,2005,32(2):110~112.
    [11]耿宏章,陈建文等.二氧化碳溶解气对原油粘度的影响[J].石油大学报(自然科学版),2004,28(4):78~80.
    [12]罗哲鸣,李传宪.原油流变性及测量[J].石油大学出版社,1994.
    [13]敬加强,罗平亚,游万模.稠油特性及其输送技术研究[J].特种油气藏,2001,8(2):53~58.
    [14] Leontaritis K J.Asphaltene deposition: A comprehensive description of problem manifestations and modeling approaches[C].SPE 18892,1989.
    [15] David A S,et al.Characterization of colloidal asphaltenic particles in heavy oil[J].Fuel,1995,74(8).
    [16]陈维杻.超临界流体萃取的原理和应用[M].北京:化学工业出版社,1998.
    [17]赵亚平,胡成一等.超临界CO_2萃取的原理及应用[J].贵州化工,1994(2):2~7.
    [18] C.Roy et.al. Supercritical Fluid Extraction oils from Ginger Root:Experiments and Modeling .Ind.Eng.Chem.Res. 19??5: 607~611.
    [19]孙克己,曲丽.胜利油田薄层稠油油藏开采技术研究.胜利油田稠油开采会议论文,2008.11.
    [20]邢义良、郎兆新、张丽华.稠油流变性的测量和研究[J].西安石油学院学报,2003.
    [21]杨翠定,顾侃英等.石油化工分析方法[M].北京:科学出版社,1990.
    [22]郑钦祥.稠油降粘技术及输送方法[J].油气田地面工程,2006,25(4):6~7.
    [23]杨筱蘅,张国忠.输油管道设计与管理[M].东营:石油大学出版社,1995.
    [24]吴本芳,沈本贤,杨允明.辽河特稠油降粘研究[J].油气储运,2003,22(6):27~32.
    [25]冯叔初,郭揆常,王学敏.油气集输[M].东营:石油大学出版社,1988.
    [26]袁恩熙.工程流体力学[J].石油工业出版社,1986.
    [27]姚海元,宫敬.稠油-水两相水平管流压降规律的实验研究[J].水动力学研究与进展,2005,20(2):14~20.
    [28]邰淑彩,何娟娟等.应用数理统计[M].武汉大学出版社,2005.
    [29]常运兴,张新军.稠油油溶性降粘降粘机理研究[J].油气田地面工程.2006,25(4):8~9.
    [30]王利生.对重质原油注二氧化碳减粘的研究[J].石油勘探与开发,1989(6).
    [31]付美龙,张鼎业.CO_2在辽河油田杜84块超稠油中的溶解性分析[J].钻采工艺,2006(3):104~109.
    [32]李兆敏,陶磊,张凯等. CO_2在超稠油中的溶解特性实验[J].中国石油大学学报(自然科学版),2008,32(5):92~97.
    [33]尚义.东辛输油管道增输方案与优化运行技术研究[J].中国石油大学硕士学位论文,2005.
    [34]朱自强.超临界流体萃取中的相平衡进展[J].高校化学工程学报,1994,8 (1):1~9.
    [35]苏畅,孙雷,李士伦. CO_2混相驱多级接触过程机理研究[J].西南石油学院学报,2001,23(2):33~38.
    [36]欧阳传湘,闫利衡,姚梦多.超稠油三元复合吞吐物理模拟实验研究[J].新疆石油天然气,2007,3(4):40~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700