用户名: 密码: 验证码:
可变形翼型的非定常气动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可变形飞行器是为了满足航天航空技术飞速发展的需求而提出来的一种新概念且能够适应多环境,执行多任务的飞行器。与传统的固定外形飞行器相比,可变形飞行器能够根据飞行环境和作战任务等需求自适应改变外形,使其在整个飞行过程中和执行任务时,始终保持全阶段的性能最优化。可变性飞行技术被广泛认为是实现未来航天航空飞行器新突破的革命性技术之一
     由于可变形飞行器的优越性使其成为近年来研究者关注的焦点之一,其中可变形飞行器的气动布局和气动特性是可变形飞行器研究的基本出发点和核心。可变形飞行器的研究作为一个崭新的研究领域,各国的研究情况还处于不同程度的起步阶段,其中许多基础性的科学问题和关键性技术的研究还相对薄弱。因此本文的工作是针对如何改变翼型以适应不同飞行条件要求这一复杂问题来开展研究的。
     本文以儒可夫斯基翼型为例,采用理论分析和数值计算相结合的方法研究二维可变形机翼的非定常气动特性,具体研究内容如下:
     1、为了从理论上认识和分析可变形机翼非定常气动性能,本文对于不可压理想流体来流条件下,利用复变函数论,理论推导了可变形儒可夫斯基翼型的非定常气动升力和阻力的解析公式,同时也为后续关于可变形机翼数值计算的验证提供了检验方法。
     2、对于不可压缩理想流体来流条件下,提出了利用解析解和离散涡的相结合的方法研究可变形儒可夫斯基翼型的流场及非定常气动力,较详细地分析了变形机翼升力系数的准定常计算方法的误差来源,并给出了修正方案。计算结果显示脱落涡尾迹对升力系数和绕流环量影响很小,变形机翼升力系数准定常计算方法的误差主要来源于流体非定常运动引起的附加升力,该非定常附加升力系数仅与当前时刻飞行姿态及翼型形状和变形速率有关,与具体的变形历史过程无关,变形机翼的升力系数近似等于准定常计算结果叠加上相应的非定常附加升力系数。
     3、在亚音速流动条件下,利用仿射变换将可压缩流动转化为不可压缩流动的速度场,利用不压缩流动计算方法计算流动速度场,再利用逆变换转化为相应的亚音速流动的速度场,进而分析了机翼变形的非定常气动特性。建立了变形机翼准定常升力系数和非定常附加升力系数在可压缩和不可压缩两种状态下的简单近似对应关系;着重分析了机翼往复变形过程中升力变化特性。
     4、在超音速流动条件下,从小扰动线化方程出发,利用基于格林函数的边界元法求解了二维超音速流动速度场,进而对变形机翼的气动特性进行理论分析和数值计算。重点讨论了非定常附加升力系数随着翼型基本参数变化的关系;同时还给出了不同来流马赫数、攻角以及翼型参数变形加速度对完成机翼往复变形时的气动特性所造成影响。
     综上所述,本文的工作是针对理想流体在低速、亚音速以及超音速来流条件下,利用理论分析和数值模拟相结合的方法,研究了二维可变形儒可夫斯基翼型的非定常气动特性。希望本文所研究的工作能给工程实践带来帮助。
Morphing aircraft is a bran-new concept proposed to meet the needs of the rapid development of aerospace technology, which is able to adapt to multi-environment and perform multi-mission. Compared with the traditional aircraft with fixed-shape, morphing aircraft can self-adaptive morph according to flight circumstance and battle mission to maintain an all-stage optimal performance throughout the flight and mission. The morphing flight technology is widely regarded as one of the potentially revolutionary technology to realize the new breakthrough of the future aviation aircraft.
     The advantage of morphing aircraft makes it become a research hotspot in recent years. Aerodynamic characteristic is the fundamental for the research of morphing aircraft. As a bran-new research field, its scientific fundamentals and key technology for morphing aircraft are still in beginning stage. In this thesis, how to change the airfoil shape to adapt the different flight conditions is studied.
     The studies are carried out based on the morphing Joukowski airfoil, using the theoretical analysis and numerical simulations to study the unsteady aerodynamic characteristics for2D-morphing airfoils. The works can be summarized as follows:
     1. As an initial study on the theoretically investigating the unsteady aerodynamic characteristics for morphing airfoil, under the inviscid incompressible ideal fluid flow conditions, we derive the unsteady aerodynamic lift and resistance formula for the morphing Joukowski airfoil by using complex function theory. These analytical results can be used to test the program code for numerical simulations of morphing airfoil.
     2. Under the inviscid incompressible ideal fluid flow conditions, the unsteady flow field and aerodynamic lift for the morphing Joukowski airfoil are calculated by combining the analytical solution and the discrete vortex method together. The error sources of the quasi-steady assumption are analyzed rigorously and correspondingly the error correction method is proposed. Numerical calculations show that the vortex wake of morphing airfoil has almost no effect on the lift coefficient and the circulation around the airfoil. The additional unsteady aerodynamic lift caused by unsteady fluid flow due to the airfoil deformation is the main error source of the quasi-steady solution for the aerodynamic lift of morphing airfoil. It is also shown that the temporal flight attitude, the airfoil profiles and the deformation velocity determine the unsteady additional lift coefficient, which has little relation with the evolutionary history of deformation. It is proposed that the lift coefficient of morphing airfoil is approximately equal to the lift coefficient of the quasi-steady assumption solution adding the corresponding additional unsteady lift coefficient.
     3. The subsonic flow for the morphing Joukowski airfoil is transformed into incompressible flow by using an affine transformation. Then the subsonic flow can be calculated with the inverse affine transformation from the corresponding incompressible flow problem, which is solved by combining the analytical solution and the discrete vortex method together. In this chapter, for the quasi-steady aerodynamic force and the additional unsteady aerodynamic lift caused by the virtual mass force, the simple relationships between the subsonic flow and the corresponding incompressible flow are proposed. The aerodynamic characteristics of the morphing airfoil during reciprocating deformation are investigated.
     4. The two-dimensional small-perturbation equations governing the supersonic flow-past the morphing airfoils are calculated using the boundary element method based upon the Green formula. The unsteady supersonic aerodynamic characteristics for morphing airfoil are studied analytically and numerically. The relationships for the unsteady lift coefficient as a function of the geometry parameters for the morphing airfoil are discussed. The influences of different free-stream Mach, the angle of attack and morphing acceleration on aerodynamic characteristics during the reciprocating deformation are obtained.
     In summary, the study for unsteady aerodynamic characteristics of two-dimensional morphing Joukowski airfoil by theoretical analysis and numerical calculation is performed under the incompressible, subsonic and supersonic flow conditions for inviscid fluid. The research of this work is expected to have a practical help to the engineering practice in the future.
引文
[1]Perry B, Cole S R., Miller G D. Summary of an active flexible wing program [J]. Journal of Aircraft,1995,32(1):10-15.
    [2]Seigler T M, Neal D A, Bae J S, et al. Modeling and Flight Control of Large-Scale Morphing Aircraft [J]. Journal of Aircraft,2007,44(4):1077-1087.
    [3]张颖,未来航空器:变形飞机[J].国外科技动态,2006(1):43-48.
    [4]吴健,昂海松.可折叠翼变形飞行器气动特性研究[J].航空制造技术,2010(2):25-28.
    [5]R.W.Wlezien, G.C.Horner, A.R.McGowan, et al. The Aircraft Morphing Program, NASA-Langley Research Center, MS493 Hampton, VA23681-2199, April 20-23,1998, Long Beach, CA, AIAA-98-1927.
    [6]崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路[J].航空制造技术,2007(8):38-41.
    [7]董二宝.智能变形飞行器结构实现机制与若干关键技术研究.中国科学技术大学博士论文,2010.
    [8]童秉纲,陆夕云.飞行和游动的生物力学与仿生技术[C].香山科学会议第214次学术研讨会,北京,2003.
    [9]J.Lighthill. Mathematical Biofluiddynamics. SIAM. Society for industrial and applied mathematics. Philadelphia.1975.
    [10]沈海龙.船体与节能附体及螺旋桨的非定常干扰研究.哈尔滨工程大学博士论文,2009.
    [11]R. Barrett, Adaptive Aerostructures:The first decade of flight on uninhabited aerial vehicles [C]. Proceedings of Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies, SPIE-5388, Bellingham, WA,2004: 190-201.
    [12]R. Barrett. All-moving active aerodynamic surface research[C]. Proceedings of Active Materials and Smart Structures, SPⅢ-2427,1995.
    [13]J. Kudva, P. Jardine, C.Martin, et al. Overview of the ARPA/WL "Smart structures and materials development-smart wing" Contract [C]. SPIE-2721,1996:10-16.
    [14]覃新川.短翼水动力计算模型与多桨多舵水动力干扰研究.哈尔滨工程大学博士学位论文,2006.
    [15]R. Barrett, P. Frye, M. Schliesman. Design, development and testing of a solid state adaptive Rotor[C]. SPIE-3321,1998:424-435.
    [16]R. Barrett, P. Frye, M. Schliesman. Design, construction and characterization of a flight worthy piezoelectric solid state adaptive rotor[J]. Smart Mater. Struct.1998(7):42-431.
    [17]Richard Guiler, Dr. Wade Huebsch. Wind Tunnel Analysis of a Morphing Swept Wing Tailless Aircraft,23rd AIAA Applied Aerodynamics Conference 6-9 June 2005, Toronto, Ontario Canada, AIAA 2005-4981.
    [18]Perry B, Cole S R, Miller G D. Summary of an active flexible wing program. J Aircraft,1995, 32(1):10-15.
    [19]Curry, Marty. "NASA AAW Fact Sheet, FS-061-DFRC". NASA. Dryden Flight Research Center,2005,02.
    [20]J. N. Kudva. Overview of the DARPA Smart Wing project, Journal of Intelligent Material Systems and Structures,15(4):261-268,2004.
    [21]Jennifer P. Florance, Alpheus W. Burner, Gary A. Fleming, at al. Contributions of the NASA Langley Research Center to the DARPA/AFRL/NASA/Northrop Grumman Smart Wing Program,44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference 7-10 April 2003, Norfolk, Virginia, AIAA 2003-1961.
    [22]Thomas M. Seigler, David A. Neal and Daniel J. Inman. Dynamic Modeling of Large-Scale Morphing Aircraft.47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference,1-4 May 2006, Newport, Rhode Island, AIAA 2006-1893.
    [23]Kudva, J. N, et al. Overview of the DARPA/AFRL/NASA Smart Wing Program. SPIE Symposium on Smart Structures and Materials, San Diego, CA,2002,03.
    [24]Gary W. Hunter, Morphing, Self-Repairing Engines:A Vision for the Intelligent Engine of the Future, AIAA/ICAS International Air and Space Symposium and Exposition:The Next 100 Y 14-17 July 2003, Dayton, Ohio, AIAA 2003-2643.
    [25]衷红卫,操小龙.智能变形飞行器变形产生控制力的机理和方法研究[c].航空飞行器发展与空气动力学研讨会,杭州千岛湖,2006.
    [26]Diana N. Talley, Nicolas Schell pfeffer. Methodology for the Mission Requirement Determination and Conceptual Design of a Morphing UCAV. A IAA 2004-6597.
    [27]黄尚廉,陶宝祺.智能结构系统—梦想、现实与未来[J].中国机械工程,2000(21):32-36.
    [28]关世义.导弹智能化技术初探[J].战术导弹技术,2004(4):1-7.
    [29]丛敏.美国研究变形结构飞行器[J].飞航导弹,2005(3):1-2.
    [30]马洪忠,彭建平,吴维等.智能变形飞行器的研究与发展[J].飞航导弹,2006(5):8-11.
    [31]HESS, J. L, S MITH, A.M.O. Caculation of non-lifting potential flow about arbitrary three-dimensional bodies. Douglas Aircraft Report No.E.S.40062, Long Beach, California,1962.
    [32]A. Cheng, D. Cheng. Heritage and early history of the boundary element method. Engineering Analysis with Boundary Element,2005.
    [33]Joseph Katz, Allen Plotkin. Low-speed Aerodynamics[M]. Cambridge university press,2001.
    [34]Jin-Tae Lee. A Potential Based Panel Method for the Analysis of Marine Propellers in Steady Flow. Massachusetts Institute of Technology PhD thesis,1987.
    [35]Ching-Yeh Hsin. Development and analysis of panel methods for propellers in unsteady flow. Massachusetts Institute of Technology PhD thesis,1990.
    [36]Sakir BAL. A Panel Method for the Potential Flow Around 2-D Hydrofoils [J]. Journal of Engineering and Environmental Science.1999, (23)349-361.
    [37]A. A. Becker. The Boundary Element Method in Engineering:A Complete Course[M]. Mcgraw-Hill,1992.
    [38]杨德全,赵忠生.边界元理论及应用[M].北京:北京理工大学出版社,2002.
    [39]宋雯婧.涡面元法在水轮机性能计算中的应用.哈尔滨工程大学硕士学位论文,2006.
    [40]张士昂.基于面元法对风力机翼型设计方法的研究.兰州理工大学硕士学位论文,2006.
    [41]Morino L, Kuo C C. Subsonic potential aerodynamics for complex configurations:A general theory [J]. AIAA Journal,1974,12(2):191-197.
    [42]Morino L, Chen L T. Suciu E O. Steady and oscillatory subsonic and supersonic aerodynamics around complex configurations [J]. AIAA Journal,1975,13(3):368-374.
    [43]K. Tseng, L. Morino. Nonlinear green's function method for unsteady transonic flows. AIAA,1982.
    [44]M. S. Vest, J. Katz. Unsteady aerodynamic model of flapping wings. AIAA J.1996, 34:1435-1440P.
    [45]M. J. C. Smith. Simulating moth wing aerodynamics:Towards the development of flapping-wing technology. AIAA J.1996,34:1348-1355P.
    [46]M. J. Wolfgang, J. M. Anderson, M. A. Grosenbaugh. et al. Near-body fluid dynamics in swimming fish. J. Exp. Biol.1999,202:2303-2327p.
    [47]刘千刚等.亚音速机翼、机身、尾翼组合体压力分布及气动系数的计算.气动研究与发展,1978,(5):91-102.
    [48]刘千刚.关于用格林定理建立的物面速势积分方程解的唯一性问题[J].西北工业大学学报,1978,(1):139-145.
    [49]刘千刚.复杂构形的亚、跨、超声速定常及非定常气动力的Green函数计算法综述[J].航空学报,1996,17(2):137-143.
    [50]周文伯,裘松刚,严震.超音速机翼—尾翼组合体的非定常气动力边界元方法[J].空气动力学学报,1994,12(1):100-107.
    [51]朱军政,范西俊.翼型尾缘角对气动力计算的影响[J].南昌水专学报,1994年S1期.
    [52]苏伟.隐身约束的多目标气动外形优化设计.西北工业大学硕士论文,2004.
    [53]谢正桐,周文伯.进入突风域的超音速翼对地面效应的响应[J].上海交通大学学报,1995,vol.29 No2 165-168.
    [54]王晓宏,刘志帆.一种基于边界积分方程的隐式翼型反设计算法[J],力学季刊,2011,32(3): 300-307.
    [55]McGowan, A.R., "Recent Results from NASA's Morphing Project" SPIE Paper No.4698-11, 9th International Symposium on Smart Structures and Materials, March 17-21,2002, San Diego, CA.
    [56]Brian D. Roth, William A. Crossley, Application of Optimization Techniques in the Conceptual Design of Morphing Aircraft, AIAA's 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech 17-19 November 2003, Denver, Colorado, AIAA 2003-6733.
    [57]Brian C. Prock, Terrence A. Weisshaar, William A. Crossley. Morphing Airfoil Shape Change Optimization with Minimum Actuator Energy as an Objective,9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization 4-6 September 2002, Atlanta, Georgia, AIAA 2002-5401.
    [58]Prock, Brian C, Weisshaar, Terrence A., Crossley, William A. Morphing Airfoil Shape Change Optimization with Minimum Acutator Energy as an Objective,9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,4-6 September 2002, Atlanta, GA.
    [59]Jason Bowman, Major Brian Sanders, Dr. Terrence Weisshaar, Evaluating the Impact of Morphing Technologies on Aircraft Performance,43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con 22-25 April 2002, Denver, Colorado, AIAA 2002-1631.
    [60]Roth, B.A., Mavris, D.N.,2000, "A Method for Propulsion Technology Impact Evaluation via Thermodynamic Work Potential", AIAA 2000-485.
    [61]Christopher A. Martin, Howard R. Last, Carlos E. S. Cesnik, William S. Hong, Janet M. Sater. Development of the Morphing Capability Assessment Tool, IDA Paper P-4064, 2005.12.
    [62]David E. Munday, J. D. Jacob, Flow Control Experiments for Low Re Adaptive Airfoils,38th Aerospace Sciences Meeting-& Exhibit 10-13 January 2006/Reno, NV, AIAA 2000-0654.
    [63]David Munday, Jamey Jacob, Active Control of Separation on a Wing with Conformal Camber,39th AIAA Aerospace Sciences Meeting and Exhibit January 8-11,2001/Reno, NV, AIAA-2001-0293.
    [64]Bradford E. Green, James D. Ott, F/A-18C to E Wing Morphing Study for the Abrupt Wing Stall Program,41st Aerospace Sciences Meeting and Exhibit 6-9 January 2003, Reno, Nevada, AIAA 2003-925.
    [65]Periannan, V.,2005, Investigation of the Effects of Different Objective Functions/Figures of Merit on the Analysis and Optimization of High Performance Aircraft System Synthesis/Design, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, M.S. Thesis.
    [66]Vamsidhar Katam, Raymond P. LeBeau, Jr., Jamey D. Jacob, Simulation of Separation Control on a Morphing Wing with Conformal Camber,35th AIAA Fluid Dynamics Conference and Exhibit 6-9 June 2005, Toronto, Ontario Canada, AIAA 2005-4880.
    [67]Kenneth P. Dial, NATURE'S AIRCRAFT:Power-to-Mass, Morphing, and How Birds Use Half a Wing, Flight Laboratory, Division of Biological Sciences, University of Montana, Missoula, MT,59812, U.S.A.
    [68]Carlos E. S. Cesnik, Howard R. Last, Christopher A. Martin, Framework for Morphing Capability Assessment,45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Confer 19-22 April 2004, Palm Springs, California, AIAA 2004-1654.
    [69]Jason Bowman, Brian Sanders, Bryan Cannon, Jayanth Kudva, Shiv Joshi, Terrence Weisshaar. Development of Next Generation Morphing Aircraft Structures,48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 23-26 April 2007, Honolulu, Hawaii, AIAA 2007-1730.
    [70]Gerald R. Andersen, David L. Cowan, David J. Piatak, Aeroelastic Modeling. Analysis and Testing of a Morphing Wing Structure,48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 23-26 April 2007, Honolulu, Hawaii, AIAA 2007-1734.
    [71]Mujahid Abdulrahim, Rick Lind. Control and Simulation of a Multi-Role Morphing Micro Air Vehicle, AIAA 2005-6481.
    [72]Justin Manzo, Ephrahim Garcia, Adam Wickenheiser, Garnett C. Homer. Adaptive structural systems and compliant skin technology of morphing aircraft structures.
    [73]John B. Davidson, Pawel Chwalowski, Barry S. Lazos. Flight Dynamic Simulation Assessment of A Morphable Hyper-Elliptic Cambered Span Winged Configuration, AIAA Atmospheric Flight Mechanics Conference and Exhibit 11-14 August 2003, Austin, Texas, AIAA 2003-5301.
    [74]Matthew D. Stubbs, Kinematic Design and Analysis of a Morphing Wing, Master of Science in Mechanical Engineering,2003.12.
    [75]Theodorsen T. General theory of aerodynamic instability and the mechanism of flutter [R]. NACA Tech Rep,1935:No.496.
    [76]Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production [J]. J Exp Bio,1973,59:169-230.
    [77]Lighthill M J. On the Weis-Fogh mechanism of lift generation [J]. J Fluid Mech,1973,60: 1-17.
    [78]Maxworthy T J. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight:Part Ⅰ dynamics of the fling [J]. J Fluid Mech,1979,93:47-63.
    [79]Wu T Y. On theoretical modeling of aquatic and aerial animal locomotion [J]. Adv Appl Mech,2001,38:291-353.
    [80]Sun M, Hamadani H. High-lift generation by an airfoil performing unsteady motion at low Reynolds number [J]. Acta Mech Sinica,2001,17:1-18.
    [81]Kramer M O. Hydrodynamics of the dolphin [J]. Adv Hydrosci,1965,2:111-130.
    [82]M. Wickenheiser and E. Garcia, Aerodynamic Modeling of Morphing Wings Using an Extended Lifting-Line Analysis. Jounal of Aircraft,44(1):10-16,2007.
    [83]Janisa J. H., Julie. E. B., Darryll J. P, Stability Analysis for UAVs with a Variable Aspect Ratio Wing, AIAA Paper 2005-2044.
    [84]David A. Neal, Matthew G. Good, Christopher O. Johnston, Harry H. Robertshaw, William H. Mason, Daniel J. Inman, Design and Wind-tunnel Analysis of Fully Adaptive Aircraft Configuration, AIAA Paper:2004-1727.
    [85]Bowman J., Sanders M. B., Weisshaar T,. Evaluating the Impact of Morphing Technologies on Aircraft Performance, AIAA Paper 2002-1631.
    [86]Samareh J. A.; Chwalowski P.; Horta L. G.; Piatak D. J.; McGowan A.-M. R.. Integrated Aerodynamic Structural Dynamic Analyses of Aircraft with Large Shape Changes, AIAA Paper 2007-2346.
    [87]Nangia R. K., Palmer M. E, Morphing UCAV Wings Incorporating In-plane and Folded-Tips-Aerodynamic Design Studies, AIAA Paper 2006-2835.
    [88]Cho J., Lee H., Han C., Unsteady aerodynamics of dual biofoils, AIAA Paper 2006-2841.
    [89]Neal D A, Good M G, et al. Design and wind tunnel analysis of fully adaptive aircraft configuration [R]. AIAA Paper 2004-1727.
    [90]Hall J, Mohseni K, Lawrence D. Investigation of variable wing-sweep for application in micro air vehicle [R]. AIAA Paper 2005-7171.
    [91]Secanell M, Suleman A. Gamboa P. Design of a morphing aircraft for a light unmanned aerial vehicle using high-fidelity aerodynamic shape optimization [R]. AIAA Paper 2005-1891.
    [92]T.T. Takahashi, R.J. Spall, D.C. Turner et al. A Multi-Disciplinary Survey of Advanced Subsonic Tactical Cruise Missile Configurations,43rd AIAA Aerospace Sciences Meeting and Exhibit 10-13 January 2005, Reno, Nevada, AIAA 2005-709.
    [93]郭秋亭,张来平,常兴华,赫新.变形飞机动态气动特性数值模拟研究[J].空气动力学学报,2011,29(6):744-750.
    [94]陈钱,尹维龙,白鹏,冷劲松,刘子强.变后掠变展长翼身组合体系统设计与特性分析[J].航空学报,2010,31(3):606-613.
    [95]陈钱,白鹏,尹维龙,冷劲松,詹慧玲,刘子强.可连续光滑偏转后缘的变弯度翼型气动特性分析[J].空气动力学学报,2010,28(1):46-53.
    [96]白鹏,陈钱,刘欣煜,李峰.滑动蒙皮后掠气动力非定常滞回与线性建模[J].力学学报,2011,43(6):1020-1029.
    [97]Moors, D.W. A numerical study of the roll-up of a finite vortex sheet. J of Fluid Mech.vol.63, part2,1974,225-235PP.
    [98]Labrujere, TH. E An improved method for the determination of vortex sheet location behind a wing in incompressible flow.NLRTR72091U, July,1972.
    [99]尹协远,邓国华.关于尾涡卷曲过程的分析[J].中国科学技术大学学报,1982,Vol.12.No.4 91-99.
    [100]Hou, T.Y., V.G. Stredie, and T.Y. Wu, Mathematical modeling and simulation of aquatic and aerial animal locomotion. Journal of Computational Physics,2007.225(2):p.1603-1631.
    [101]Wu, T.Y., On theoretical modeling of aquatic and aerial animal locomotion, in Advances in Applied Mechanics, G. Erik van der and Y.W. Theodore, Editors.2002, Elsevier. p.291-353.
    [102]Rosenhead, L., The Spread of Vorticity in the Wake Behind a Cylinder. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1930.127(806):p. 590-612.
    [103]Chorin, A.J. and P.S. Bernard. Discretization of a vortex sheet, with an example of roll-up. Journal of Computational Physics,1973.13(3):p.423-429.
    [104]NAKAMURA, Y., A. LEONARD, and P.R. SPALART, Vortex simulation of an inviscid shear layer. American Institute of Aeronautics and Astronautics and American Society of Mechanical Engineers,Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference,3rd, St.,1982.
    [105]Krasny, R., Desingularization of periodic vortex sheet roll-up. Journal of Computational Physics,1986.65(2):p.292-313.
    [106]Hald, O. and V.M. Del Prete, Convergence of vortex methods for Euler's equations. Mathematics of Computation,1978.32(143):p.791-809.
    [107]Beale, J.T., A convergent 3-D vortex method with grid-free stretching. Mathematics of Computation,1986.46(174):p.401-424.
    [108]Batchelor, G.K., An Introduction to Fluid Dynamics.1973:Cabridge University Press.
    [109]Leonard, A., Numerical simulation of interacting three-dimensional vortex filaments, in Proceedings of the Fourth International Conference on Numerical Methods in Fluid Dynamics, R. Richtmyer, Editor.1975, Springer Berlin/Heidelberg, p.245-250.
    [110]Ashurst, W.T. and E. Meiburg. Three-dimensional shear layers via vortex dynamics. Journal of Fluid Mechanics,1988.189:p.87-116.
    [111]Knio, O.M. and A.F. Ghoniem. Numerical study of a 3-dimensional vortex method. Journal of Computational Physics,1990.86(1):p.75-106.
    [112]Knio, O.M. and A.F. Ghoniem, Three-dimensional vortex simulation of rollup and entrainment in a shear layer. Journal of Computational Physics,1991.97(1):p.172-223.
    [113]Agishtein, M.E. and A.A. Migdal, Dynamics of vortex surfaces in three dimensions:Theory and simulations. Physical D:Nonlinear Phenomena,1989.40(1):p.91-118.
    [114]Knio, O.M. and A.F. Ghoniemt, Vortex Simulation of a Three-Dimensional Reacting Shear Layer with Infinite-Rate Kinetics. Aiaa Journal,1992.30(1):p.105-116.
    [115]Knio, O.M. and A.F. Ghoniem, The three-dimensional structure of periodic vorticity layers under non-symmetric conditions. Journal of Fluid Mechanics,1992.243(-1):p.353-392.
    [116]Brady, M., A. Leonard, and D.I. Pullin, Regularized Vortex Sheet Evolution in Three Dimensions. Journal of Computational Physics,1998.146(2):p.520-545.
    [117]Pozrikidis, C., Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets. Journal of Fluid Mechanics,2000.425(-1):p.335-366.
    [118]Grant, J.R. and J.S. Marshall, Inviscid Interaction of Vortex Rings:Approach to Singularity Methods,1999.7:p.183-194.
    [119]Marshall, J.S., et al., Vorticity Transport on a Lagrangian Tetrahedral Mesh. Journal of Computational Physics,2000.161(1):p.85-113.
    [120]童秉纲,尹协远,朱克勤.涡运动理论[M].合肥:中国科学技术大学出版社.2009.
    [121]Didden, N., On the formation of vortex rings:Rolling-up and production of circulation. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP),1979.30(1):p.101-116.
    [122]Nitsche, M. and R. Krasny, A Numerical Study of Vortex Ring Formation at the Edge of a Circular Tube. Journal of Fluid Mechanics,1994.276:p.139-161.
    [123]路见可.解析函数边值问题[M].武汉:武汉大学出版社.2004.
    [124]Lai, J.C.S., J. Yue, and M.F. Platzer, Control of backward-facing step flow using a flapping foil. Experiments in Fluids,2002.32(1):p.44-54.
    [125]Koochesfahani, M.M., Vortical patterns in the wake of an oscillating airfoil. Aiaa Journal, 1989.27(9):p.1200-1205.
    [126]童秉纲.气体动力学[M].北京:高等教育出版社,1990.
    [127]王献孚.船用翼理论[M].北京:国防工业出版社,1998.
    [128]潘文全,沈梦育等.流体力学基础[M].北京:机械工业出版社,1982.
    [129]杨岞生,俞守勤.飞行器部件空气动力学[M].长沙:国防工业出版社,1981.
    [130]徐华舫,张炳暄,朱自强.亚、超声速定常位流的面元法[M].长沙:国防工业出版社,1981.
    [131]徐国武,白鹏.翼型连续变形过程中非定常气动特性研究[J].力学季刊,2012,Vo1.33,No.2.
    [132]王言英.格林函数与纳维-斯托克方程及其在船舶与海洋工程中的应用[M].北京:国防工业出版社,2006.
    [133]陈祖墀.偏微分方程[M].北京:高等教育出版社,2003.
    [134]刘志帆.一种基于边界积分方程的隐式翼型反设计算法:中国科学技术大学硕士论文,2011.
    [135]吴子牛,王兵,周睿等.空气动力学[M].北京:清华大学出版社,2007.
    [136]盛其虎.风浪扰动中机翼的非定常气动力特性.哈尔滨工程大学博士学位论文,2003.
    [137]孙珊霞.风力发电叶片结构及铺放性能研究.武汉理工大学硕士学位论文,2007.
    [138]姚绪梁,舒小芳.升力鳍伺服系统非定常水动力特性的研究[J].中国航海,2005,64:24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700