用户名: 密码: 验证码:
膨润土颗粒的制备及其脱色效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨润土是近年发展起来的一种新型水处理吸附材料,由于其具有较好的吸附和离子交换性能,且资源丰富、价格便宜,因此被广泛应用于水处理等领域。本课题针对粉状膨润土遇水易形成泥浆、浊度高且通透性能差等缺点进行了膨润土的成型实验研究,同时为了进一步提高膨润土颗粒的吸附能力,对其进行了表面化学活化改性,考察了活化改性前后膨润土颗粒对染料废水的脱色效果。
     本研究以膨润土为主要原料,对其进行成型、化学改性和脱色效果研究,本论文主要分为以下三部分:
     1.以淀粉为胶粘剂、煤粉为致孔剂,通过考察焙烧温度、时间、胶粘剂和致孔剂的用量等影响因素研究粉状膨润土的成型条件,然后以阳离子聚合物聚环氧氯丙烷二甲铵(EPI-DMA)为改性剂对膨润土颗粒进行有机负载,得到改性膨润土颗粒。在此基础上,探讨改性后的膨润土颗粒对模拟染料废水活性翠兰、活性艳红、分散黄棕和分散蓝的脱色性能。本文通过静态吸附试验,从吸附热力学探讨了改性膨润土颗粒对上述四种模拟染料废水的吸附机理,计算了有关的热力学函数,研究了吸附时间、投加量、pH值对处理效果的影响。
     研究结果表明:膨润土粉末、煤粉和淀粉以50:10:1的质量比例挤压造粒,600℃下煅烧6h后得到多孔膨润土颗粒。然后采用50g/L、水浴40℃、4h的条件对多孔膨润土颗粒进行有机负载,即可制得改性膨润土颗粒,该颗粒吸附剂对活性翠兰K-GL的脱色效果可达96.78%。通过对活性翠兰、活性艳红、分散黄棕和分散蓝四种染料的吸附研究,发现平衡吸附量q_e与平衡浓度C_e之间的关系更好的符合Langmuir等温吸附模型;吸附动力学遵循二级动力学拟合方程所述规律;饱和吸附量Q_m的大小顺序为:分散蓝>分散黄棕>活性翠兰>活性艳红;吸附指数1/n的值基本均介于易吸附(1/n=0.1-0.5)的范围,其容易程度为:活性翠兰>分散黄棕>分散蓝>活性艳红。改性膨润土颗粒对四种染料的速率为:分散黄棕>分散蓝>活性翠兰>活性艳红;且计算得到四种染料的吸附活化能E_a分别为3.12,37.46,0.52,21.81 kJ/moL,说明阳离子聚合物膨润土颗粒对四种染料的吸附均以物理吸附为主。
     2.以污泥为添加剂,研究制备多孔污泥膨润土颗粒及其酸化的最佳条件,考察焙烧温度、焙烧时间以及不同配料比对颗粒孔隙的影响和不同酸种类、固液比、酸浓度、活化温度以及活化时间等因素对染料脱色效果的影响,最终制得了具有较好脱色性能的酸化污泥膨润土颗粒产品。在此基础上将其用于染料活性翠兰的脱色效果研究,通过考察pH值、投加量、反应时间和反应温度的影响,进行了方程的拟合,并计算了热力学参数(△H~0,△S~0,△G)和吸附活化能Ea。
     研究结果表明:污泥与膨润土以1:3的质量配比,700下焙烧时间7 h,所得的颗粒采用6 mol/L的硫酸,以1:25(g:ml)的固液比,常温下酸活化4 h,即制得酸化污泥膨润土颗粒。将其用于活性翠兰染料的脱色,常温下反应2 h的脱色率可以达到47%,效果明显优于不规则炭、柱状炭和酸化前颗粒。通过对活性翠兰的脱色效果研究发现,颗粒吸附剂对活性翠兰的吸附量随温度和初始浓度的增加而增大,吸附等温线符合Langmuir吸附模型,其吸附动力学更好地适合于伪二级动力学方程所述规律;吸附活化能较低,为5.52 kJ/moL,说明吸附过程以物理吸附为主。同时△H~0>T△S~0和△G>0表明整个吸附过程活化焓的影响大于活化熵,且属于非自发反应。
     3.对膨润土颗粒的性能指标(比表面积、散失率、吸水率和SEM等)进行表征。利用低温液氮吸附等温线对膨润土颗粒的孔隙分布进行分析;用扫描电镜(SEM)研究其表面结构形貌;采用散失率来衡量颗粒的机械强度;采用灼烧减量值测定膨润土颗粒矿物骨架层间有机物含量的情况。
Powdery bentonite is a kind of novel adsorbent developed in recent years. It is widely applied in the field of wastewater treatment for its better adsorption performances, ion exchange properties, abundant resources and cheap prices. In this paper, bentonite granules were prepared to resolve problems produced by powdery adsorbent, such as poor permeability, high turbidity and difficult to subside. And in order to improve the decoloration capacity, granular adsorbents were modified by chemical methods and its decoloration performances were studied onto dyes.
     As raw material, bentonite granules were prepared mixed with pore-causing agent and crossing-linking agent in this experiment. Then they were modified to improve the discoloring properties onto dyes in wastewater. The experiment was divided into three parts:
     1. By using coal as pore-causing agent and amylum as crossing-linking agen, a series of porous-organo bentonite granules were prepared. And raw samples were modified by EPI-DMA to obtain optimum properties of adsorption. The decoloration effects of this new cationic polymer bentonite granule for two types dyes-activated dyes and disperse dyes were investigated. The adsorption thermodynamic characteristics and mechanism of dyes on bentonite granules were studied by using the bottle-point technique. The influencing factors of pH value, dosage of decolorizer and reaction time were considered on the dyes removal.
     The results showed that porous-organo bentonite granule was obtained with the quality ratio of bentonite, coal and starch was 50:10:1 and calcined at 600℃for 6 hours. And modified bentonite granules with better adsorption capability were manufactured by reacting with the EPI-DMA concentration of 50g/L at 40℃for 4 hours. The removal rate to Reactive Turquoise Blue K-GL could be 96.78%. In the acidic and neutral conditions, the modified bentonite granule had almost the same removal effects onto dyes and strong durability, while it was greatly influenced in alkaline condition. At room temperatures, modified bentonite granules had remarkable adsorption efficiencies to different dyes. The decoloring property of modified bentonite granule to the two types of dyes was more excellent than the raw material, which were all enhanced from less than 10% up to more than 90%. The sample dosing amounts to dyes of Reactive Turquoise Blue, Reactive Brilliant Red, Disperse Yellow Brown and Disperse Blue were respectively 10g/L, 20g/L, 16 g/L and 16g/L, while the adsorption time for reactive dyes was 2h and lh for disperse dyes. The adsorption isotherm accorded with the Langmuir equation better than Freundlich equation. The adsorption dynamics followed the law of the second order kinetic equation. The order of adsorption quantity size was Disperse Blue> Disperse Yellow Brown>Reactive Turquoise Blue> Reactive Brilliant Red and the adsorption rate was Disperse Yellow Brown> Disperse Blue> Reactive Brilliant Red> Reactive Turquoise Blue.
     2. Taking sludge as pore-forming agent, the optimized conditions for the preparation and acidification of bentonite granules were studied. The effects of calcination temperature, roasting time and sludge content on the holes of granules were investigated to obtain porous samples with better mechanical strength. By altering acid type, acid concentration, solid-liquid ratio, activation temperature and activation time, acid activated bentonite granule with better decoloration properties was achieved. The new acidified sludge-bentonite granule was applied to the decoloration of Reactive Turquoise Blue. The influences of pH value, dosage of decolorizer, reaction time and reaction temperature were investigated onto the removal effects. The data were analyzed to fit simulated equations and the important thermodynamics parameters (ΔH~0,ΔS~0,ΔG) and the activation energy E_a were also acquired by experiment data processing.
     The results indicated that the optimal conditions to obtain porous sludge-bentonite granules were as follows: the calcinations temperature was 700℃, the ignition time was 7h, and the mixture ratio of sludge to bentonite was 1:3. And a product with better adsorption was acidized by the sulphuric acid of 6 moL/L with solid-liquid ratio of 1:25 (g:mL), reacting for 4h at ambient temperature. The decolorizing performance of the prepared bentonite granule, increased to 47%, was more excellent than that of the other three granular absorbents (irregular carbons, cylindrical carbons and raw materials). The discoloration results onto Reactive Turquoise Blue showed that the adsorption isotherm fitted the isothermal adsorption equation of Langmuir better than Freundlich. The adsorption dynamics followed the law of the pseudo-second order kinetic equation. The low value of E_a which was 5.52kJ/moL suggested that physical adsorption is primary. And the relation ofΔH~0>TΔS~0 mean that the influence of the enthalpy was more remarkable than the entropy in the activation reaction, whileΔG>0 also mean the chemical reactions were not spontaneous.
     3. Characterizing Bentonite Granules: The pore distribution of bentonite granules was analyzed through the adsorption isotherms for nitrogen. The surface structure and morphology were characterized with the help of SEM photos. The mechanical strength was measured by lost rations and the content of organic compounds was determined by the value of incandesce reduction.
引文
[1] 陈红书.浅析我国水资源与水污染治理现状[J].云南环境科学.2003,22(3):66-69.
    [2] 唐受印,等编.废水处理工程[M].北京:化学工业出版社.1998.
    [3] 杨展里.我国城市污水处理技术剖析及对策研究[J].环境科学研究.2001,14(5):62-64.
    [4] 钱易,米样友.现代废水处理新技术[M].北京:中国科学技术出版社.1993.
    [5] S.S. Tahir, R. Naseem. Removal of Cr(Ⅲ) from tannery wastewater by adsorption onto bentonite clay [J]. Separation and Purification Technology. 2007, 53(3): 312-321.
    [6] E. Eren, B. Afsin. An investigation of Cu(Ⅱ) adsorption by raw and acid-activated bentonite: A combined potentiometric, thermodynamic, XRD, IR, DTA study [J]. Journal of Hazardous Materials. 2008, 151(2-3): 682-691.
    [7] Z. Rawajfih, N. Nsour. Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite [J]. Journal of Colloid and Interface Science. 2006, 298(1): 39-49.
    [8] S. Andini, R. Cioffi, et al. Simultaneous adsorption of chlorophenol and heavy metal ions on organophilic bentonite [J]. Applied Clay Science. 2006, 31(1-2): 126-133.
    [9] M. Akcay, G. Akcay. The removal of phenolic compounds from aqueous solutions by organophilic bentonite [J]. Journal of Hazardous Materials. 2004, 113(1-3): 189-193.
    [10] F. Ayari, E. Srasra, M. Trabelsi-Ayadi. Retention of organic molecule "quinalizarin" by bentonitic clay saturated with different cations [J]. Desalination. 2007, 206(1-3): 499-506.
    [11] A. Demirbas, A. Sari, O. Isildak. Adsorption thermodynamics of stearic acid onto bentonite [J]. Journal of Hazardous Materials. 2006, 35(1-3): 226-231.
    [12] M. Bacquet, B. Martel, M. Morcellet, et al. Adsorption of poly(4-vinylpyridine) onto bentonite [J]. Material Letters. 2004, 58(3-4): 455-459.
    [13] T. Asselman, G. Gamier. Adsorption of model wood polymers and colloids on bentonites [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 168(2): 175-182.
    [14] E. Bojemueller, A. Nennemann, G. Lagaly. Enhanced pesticide adsorption by thermally modified bentonites [J]. Applied Clay Science. 2001, 18(5-6): 277-284.
    [15] J. Bors, S. Dultz, B. Riebe. Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products [J]. Applied Clay Science. 2000,16(1-2): 1-13.
    [16] Qin-Yan Yue, Qian Li, Bao-Yu Gao, Yan Wang. Kinetics of adsorption of disperse dyes by polyepicholorohydrin-dimethylamine cationic polymer/bentonite [J]. Separation and Purification Technology. 2007, 54(3): 279-290.
    [17] E. Eren, B. Afsin. Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated bentonite surfaces [J]. Dyes and Pigments. 2008, 76(1): 220-225.
    [18] Bulut E, Ozacar M, (?)engil I. A. Adsorption of Malachite Green onto bentonite: equilibrium and kinetic studies and process design [J]. Microporous and Mesoporous Materials. 2008, 115(3): 234-246.
    [19] Ozcan A.S, Erdem B, (O|¨)zcan A. Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005(266): 73-81.
    [20] Li Q, Yue Q Y, Su Y, et al. Cationic polyelectrolyte/bentonite prepared by ultrasonic technique and its use as sdsorbent for Reactive Blue K-GL dye [J]. Journal of Hazardous Materials. 2007(147): 370-380.
    [21] Noyan H, (O|¨)nal M, Sarikaya Y The effect of sulphuric acid activation on the crystallinity, surface area, porosity, surface acidity, and bleaching power of a bentonite [J]. Food Chemistry. 2007, 105(1): 156-163.
    [22] 李倩,岳钦艳,高宝玉.阳离子聚合物聚环氧氯丙烷二甲胺/膨润土纳米复合吸附材料的制备与性能[J].过程工程学报.2007,7(3):598-603.
    [23] 陈继浩,汤庆国,梁金生,等.膨润土增孔复合颗粒对Cr~(6+)的吸附和抗菌性能研究[J].非金属矿.2006,29(5):50-62.
    [24] 庞秀,曹吉林,谭朝阳,等.膨润土及柱撑膨润土的成型及其结构变化[J].中国非金属矿工业导刊.2006,4:24-27.
    [25] P F Luckham, S Rossi. The colloid and rhelogical properties of bentonite suspensions [J]. Advances in Colloid and Interface Science. 1999, 82: 43-92.
    [26] 彭先佳,袁继祖,曹明礼.改性膨润土在废水处理中的应用[J].中国非金属矿工业导刊.2000,17(6):40-41.
    [27] 刘阳,汪永清,陈虎,等.膨润土的改性及其应用[J].中国陶瓷工业.2001,8(2):39-42.
    [28] 张术根,谢志勇,申少华,等.膨润土高层次开发利用研究新进展[J].中国非金属矿工业导刊.2002(1):17-20.
    [29] 郭瓦力,张德金,于桂香.多功能原料-膨润土[J].辽宁化工.1999,28(4):191-194.
    [30] 张秀英.膨润土颗粒吸附剂的制备研究[J].IM&P化工矿物与加工.2007,12:9-22.
    [31] 杨莹琴,等.多孔有机膨润土颗粒对NO~(3-)离子的吸附研究[J].信阳师范学院学报(自然科学版).2005,18(4):442-85.
    [32] Anoop Kapoor, T.Viraraghavan. Use of immobilized bentonite in removal of heavy metals from waste water [J]. Journal of Environmental Engineering. 1998,124(10): 1020-1025.
    [33] 李淑静,宋中庆.膨润土在水处理中的应用展望[J].化学世界.2002,(4):211-213.
    [34] 曾秀琼,刘维屏.无机-有机柱撑膨润土的制备及其在水处理中的应用进展[J].环境污染治理技术与设备.2001,2(2):9-13.
    [35] 刘学良,等.改性膨润土或沸石在废水处理中应用展望[J].环境污染治理技术与设备.2000,1(4):57-60.
    [36] Haggerty M, Bowman R S. For sorption of chromate and other inorganic anions by organo-zeolites [J]. Environmental Science & Technology. 1994(28): 452-458.
    [37] 李梦耀,刘建.膨润土的改性研究及其应用[J].长安大学学报.2003,25(2):76-78.
    [38] 吴平霄,廖宗文.蒙脱石层间区域的性质及其环境意义[J].地球科学进展.2000,15(2):184-189.
    [39] 杨莹琴,等.多孔质天然沸石颗粒吸附剂对铜离子的吸附及再生[J].非金属矿.2004,27(2):44-48.
    [40] 余丽秀,孙亚光.分散性有机膨润土评价方法研究[J].非金属矿.2004,27(3):9-11.
    [41] Xiaoyan Yang, Bushra Al-Duri. Application of Branched Pore Diffusion Model in the Adsorption of Reactive Dyes on Activated Carbon. Chemical Engineering Journal [J]. 2001, 83: 15-23.
    [42] Ho Y S, McKay G Pseudo-second order model for sorption processes [J]. Process Biochemistry. 1999, 34: 451-465.
    [43] (?)zacar M, Sengil I A. A kinetic study of metal complex dye sorption onto pine sawdust [J]. Process Biochem, 2005, 40: 565-572.
    [44] Yang X, Al-Duri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon [J]. Journal of Colloid and Interface Science. 2005, 287: 25-34.
    [45] Ho Y S, McKay G.. Pseudo-second order model for sorption processes [J]. Process Biochemistry. 1999, 34: 451-465.
    [46] Jakubov TS, Mainwaring DE. Modified dubinin-radushkevich/dubinin-a0stakhov adsorption equations [J]. Journal of Colloid and Interface Science.2002, 252(2): 263-268.
    [47] Stoeckli F. Recent developments in dubinin's theory [J]. Carbon. 1998, 36(4):363-368.
    [48] 中国林业科学研究院林产化学工业研究所第七研究室编.国外活性炭[M].北京:中国林业出版社.1984:2-4.
    [49] 魏世强,木志坚,青长乐.几种有机物对紫色土镉的溶出效应与吸附-解吸行为影响的研究[J].土壤学报.2003,40(1):4-5.
    [50] Giles C H, J Chem Soc. Studies in adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids [M]. 1960.
    [51] Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study [J]. Dyes and Pigments. 2001,51:25-40.
    [52] Kadirvelu K, Karthika C, Vennilamani N, et al. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: Kinetic and equilibrium studies [J]. Chemosphere. 2005, 60: 1009-1017.
    [53] 孙晓慧,卢瑛莹,陈曙光,等.膨润土对复合污染中表面活性剂的吸附及机理[J].环境科学.2007,28(4):838-842
    [54] Smith J A, Galan A. Sorption of nonionic organic contaminant to single and dual cation bentonites from water [J]. Environmental Science & Technology. 1995, 29(3): 685-692.
    [55] Konduru R R, Viraraghavan T. Dye removal using low cost adsorbents [J]. Water Science Technology. 1997, 36 (2): 189-196.
    [56] (?)zcan A S, Erdem B, (?)zcan A. Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite [J]. Journal of Colloid and Interface Science. 2004, 280: 44-54.
    [57] 李倩,岳钦艳,高宝玉.阳离子聚合物/膨润土纳米复合吸附材料的性能及对红色染料的脱色[J].化工学报.2006,57(2):436-441.
    [58] 高宝玉,张华,岳钦艳,等.有机絮凝剂聚环氧氯丙烷-二甲胺的结构及絮凝性能研究[J].工业水处理.2006,25(10):39-41.
    [59] (?)ztekin N, Alemdar A, G(?)ng(?)r N, et al. Adsorption of Polyethyleneimine from Aqueous Solutions on Bentonite Clays [J]. Materials Letters. 2002, 55: 73-76.
    [60] Martin M.J., Artola A., BaLaguer D.M., et al. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions [J]. Chemical Engineering Journal. 2003,94(3):231-239.
    [61] 黄雅曦,李季,李国学.污泥处理与资源化利用现状分析[J].农业环境科学学报.2003,22(6):765-768.
    [62] 赵丽君,张大群,陈宝柱.污泥处理与处置技术的发展[J].中国给水排水.2001,17(6):23-25.
    [63] 张树国,吴志超,张善发,等.上海市污水处理厂污泥处置对策研究[J].环境工程.2004,22(1):75-78.
    [64] 翟云波,魏先勋,曾光明,等.城市污水处理厂污泥资源化利用途径探讨[J].工业水处理.2004,24(2):8-9.
    [65] 周少奇编著.城市污泥处理处置与资源化[M].广州:华南理工大学出版社.2002,1-3.
    [66] 岳钦艳,解建坤,高宝玉,等.污泥活性炭对染料的吸附动力学研究[J].环境科学学报.2007,27(9):1431-1438
    [67] 裘伯刚.污泥资源化处置与综合利用[J].环境保护科学.2006,32(5):36-41
    [68] Lee J F, Lee C K, Juang L C. Size effects of exchange cation on the pore structure and surface fractality of montmorillonite [J]. Journal of Colloid and Interface Science. 1999(217): 172-176.
    [69] 张太亮,黄志宇,莫军,等.膨润土改性作用机理及改性方法研究[J].钻采工艺.2006,06:103-104.
    [70] 朱利中,刘文涵.改性膨润土在废水处理方面的应用研究[J].环境化学.1997,16(3):233-237.
    [71] Onal M, Sarikaya Y., Alemdaroglu T. The effect of acid activation on some physicochemical properties of a bentonite [J]. Turkish Journal of Chemistry. 2002,26(3): 409-416.
    [72] Yildiz N., Calimli A. Alteration of Three Turkish Bentonites by Treatment with Na_2CO_3 and H_2SO_4 [J]. Turkish Journal of Chemistry. 2002(26): 393-401.
    [73] Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science. 2004, 278: 18-25.
    [74] 沈培友,徐晓燕,马毅杰.无机-有机柱撑蒙脱石吸附对硝基苯酚的热力学与动力学特征研究[J].环境保护科学.2005,6(31):15-19.
    [75] 舒月红,贾晓珊.CTMAB-膨润土从水中吸附氯苯类化合物的机理-吸附动力学与热力学[J].环境科学学报.2005,25(11):1530-1536.
    [76] Magady Y. H, Daifullah A A. Adsorption of a basic dye from aqueous solutions onto sugarindustry-mud in two modes of operations [J]. Waste Management. 1988,18: 219-226.
    [77] 李振华,皮洪琼,何炳林.钙阻抗剂的离子交换反应动力学和热力学研究钙阻抗剂的离子交换反应动力学和热力学研究[J].功能高分子学报.2000,13(1):1-5.
    [78] 陈季华,奚旦立,杨大通.废水处理工艺设汁及实例分析[M].北京:高等教育出版社.1990.
    [79] A. A. Khan, R.P. Singh. Adsorption thermodynamics of carbofuran on Sn (Ⅳ) arsenosilicate in H~+, Na~+ and Ca~(2+) forms [J]. Colloid Surface. 1987, 24: 33-42.
    [80] Ayhan Demirbas, Ahmet Sari, Omer Isildak. Adsorption thermodynamics of stearic acid onto bentonite [J]. Journal of Hazardous Materials B. 2006, 135: 226-231.
    [81] Breen C. The Characterization and Use of Polycation-exchanged Bentonites [J]. Applied Clay Science. 1999,15: 187-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700