用户名: 密码: 验证码:
隔声屏障结构声学模拟、设计与性能优化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国车辆的急剧增加和道路交通的快速发展,道路噪声影响日益严重,提高隔声屏障降噪性能的研究成为重点。利用仿真模拟软件RAYNOISE对声屏障T形和Y形顶部结构及多重楔形屏体结构的降噪效果进行了研究。确定了T形和Y形顶部结构各自的适用范围;研究了三种结构添加实用的吸声材料对降噪效果的影响。用隔声室对中空铝塑复合板的隔声性能进行了测试,用驻波管法对泡沫铝及相应结构的隔声吸声性能进行了研究。根据模拟结果设计了渐变腔T形顶部结构加多重楔形组合的声屏障并在京秦高速公路进行了工程实践。
     仿真模拟结果显示:多重楔形结构相对于直立形声屏障具有较好的降噪效果。如:在屏障后距离30m、高度2m处具有14.5dB的插入损失,在相同位置处比直立形声屏障的插入损失大4.3dB。屏体上部的半多重楔形和整个屏体的多重楔形具有相同的降噪效果,该新发现为简化屏体设计提供了依据。
     模拟结果显示:Y形分叉型顶部结构在声影区较高高度具有较好的降噪效果。在屏障后50m距离、高度20m的插入损失仍能达到3.4dB,比直立形高出3.2dB,适合用于防治高度较高的噪声敏感点噪声。而T形圆弧形顶部结构在屏障后低于2m区域有较好的降噪效果,在此区域插入损失比直立形高出1.7~2.4dB,适用于屏障后较低区域的噪声敏感点。模拟结果显示,附加吸声材料的三种结构不能改善声屏障后的降噪效果。
     模拟结果显示:多重楔形结构和T形圆弧型顶部结构组合的声屏障在高度低于2m区域的降噪效果得到明显提高,比单独应用多重楔形与T形圆弧形结构分别高出2.4dB和4.6dB,可能是T形圆弧型顶部结构减少了顶部绕射声向底部区域的传播。
     隔声室测试结果显示,中空铝塑复合板在低频表现出较好的隔声性能,达到25dB以上。驻波管法对泡沫铝进行测试,结果具有较好的吸声性能,当空腔深度增加时吸声系数峰值向低频移动,在空腔深度为125mm时,吸收峰值频率移动到500Hz,与交通噪声的频率一致,吸收频带变宽,吸声系数可达到0.94。两种材料具有良好的隔声、吸声性能,适用于隔声屏障建设。
     按照模拟结果结合噪声环境现状设计了渐变腔T型弧形顶部结构并应用于高速公路。这种结构空腔深度为70mm~140mm,空腔截面逐渐变化,具有吸收低频及宽频带噪声的特点,可以更好吸收顶部绕射声。设计了T形圆弧形顶部结构与半多重楔形结构的组合屏体,在京秦高速公路建设了高度3m,长度380m的声屏障。实测显示声屏障在20m时实测插入损失达到10.9dB,与报道的类似测试位置高度为4m的声屏障降噪效果一致。对声屏障实测降噪效果与仿真模拟结果进行了比较,实测结果与模拟结果具有相同的变化规律。模拟结果与实测结果相比偏高,原因可能是模拟假设声源条件与实际有差异、背景噪声、屏障漏声等因素。
Traffic noise is becoming serious with the rapid increase of roads and vehicles. Improving the performance of noise barrier is more and more important. Reducing effect of noise barrier with T-shaped, Y-shaped top structure and multi-triangle structure was studied by noise simulating program—RAYNOISE. The applied range of the T-shaped and Y-shaped top structure was confirmed. The performance of three structures covering sound absorbent material was studied. The performance of new sound insulating material—hollow plastic-aluminum board and new sound adsorbing material—foam aluminum, was studied in laboratory. The noise barrier with T-shaped top structure and multi-triangle structure was designed and built at JingQin highway according to the simulating results.
     The simulating results showed that the multi-triangle structure is more effective, compared with simple erective noise barrier. The insertion loss is 14.5dB behind the noise barrier at 2m high and 30m far, and the additional insertion loss is 4.3dB higher than that of the erective noise barrier. The half multi-triangle and multi-triangle structures have the same effect on the noise reduction, which can guide the design of barrier’s structure.
     Simulating results showed that insertion loss of Y-shaped structure has good reducing effect at higher area of the shadow area. The insertion loss is 3.4dB at the receiving point 20 height and 50m far behind the noise barrier, which is 3.2dB higher than the erective noise barrier. So it is suitable for higher receiving point. T-shaped structure has a good reducing noise effect at the area lower than 2m behind the noise barrier. The insertion loss is between 1.7 and 2.4dB higher than that of the erective noise barrier. So it is suitable for low area behind the noise barrier. Simulating results showed that sound absorbent material covered on the multi-triangle structure, T-shaped and Y-shaped top structure is no effective to improving the performance of noise barrier.
     Simulating results on combination of multi-triangle structure and T-shaped top structure showed that the sound reduction is obvious at area lower than 2m behind the barrier. The additional insertion loss is 2.4dB and 4.6dB to the multi-triangle and the T-shaped top structure, respectively. The reason maybe is the T-shaped structure reduced the diffraction of the noise over the top edge.
     Sound insulation performance of the plastic-aluminum hallow board was measured in sound insulation chamber. It is showed that the material has good sound insulating performance at low frequency. The sound insulation is over 25dB at low frequency. The sound absorbing performance of the sound absorbing material—aluminum foam was measured by standing wave tube, it is showed that the absorbing frequency peak moved to low frequency with the depth of the cavity increasing. The absorbing frequency peak moved to 500Hz when the depth of the cavity is 125mm, and the absorbing frequency brand become wider. The two new materials are suitable for noise barrier.
     According to the simulating results and the noise environment, the gradual changing cavity T-shaped top structure was designed and built at highway. The cavity depth of the structure changed gradually from 70mm to 140mm. The structure has wide frequency range and low frequency absorbing characteristic, can be useful to absorb the diffracting sound over the top structure. A 380m length and 3m height noise barrier with T-shaped top structure and multi-triangle structure was designed and built at Jing-Qin highway. The insertion loss measured in field was 10.4dB, 20m behind the barrier, has the same effect with the reported 4m height noise barrier. The results showed that the insertion loss measured in the sound field is lower than the simulating results. The reason maybe is the difference of the real sound source and the simulating sound source, the background noise, the leak of noise.
引文
[1]戴泉玉,叶凯,尚小东,等.声屏障在城市交通噪声污染防治中的应用前景分析[J].交通环保,2007,(6):33-35.
    [2]魏显威,叶慧海,黄述芳.高等级公路交通噪声问题分析[J].交通环保(增刊),2003,24(12):130-132.
    [3]谢浩.设置高架路声屏障降低城区交通噪声[J].噪声与振动控制,2002,(4):43-44.
    [4]范锦忠.轻集料混凝土砌块绿色生态型声屏障发展概论[J].建筑砌块与砌块建筑,2003(5):5-8.
    [5]张彬,宋雷鸣,张新华.城市道路声屏障研究与设计[J].噪声与振动控制,2004(8):32—35.
    [6] G.R. Watts, P.A. Morgan, M. Surgand. Assessment of the diffraction efficiency of novel barrier profiles using an MLS-based approach[J].Journal of Sound and Vibration, 2004(274): 669-683.
    [7] Takashi Ishizuka, Kyoji Fujiwara. Performance of noise barriers with various edge shapes and acoustical conditions[J].Applied Acoustics,2004,65:125-141.
    [8] M.R. Monazzam, Y.W. Lam. Performance of profiled single noise barriers covered with quadratic residue diffusers[J]. Applied Acoustics, 2005, 66:709-730.
    [9]朱晓天,候秋文.脉冲法对隔声屏障顶端式样的衍射分析[J].环境工程,2006,24(3):54-57.
    [10]王季卿.上海城市高架道路声屏障实效综议[J].噪声与振动控制,2007,(S1):388-393.
    [11]庄稼捷,周迪.现代城市道路交通噪声及控制[J].噪声与振动控制,2007,(S1):408-412.
    [12]周海生,黄继成,倪永春,等.城市交通噪声降噪措施的研究[J].上海交通,2004,(3):43-47.
    [13]卞国全,王联群.居住建筑设计中交通噪声的影响及其控制措施[J].安徽建筑,2000,(3):55-57.
    [14]王波.城市道路交通噪声污染防治对策[J].交通环保,2003,24(5):16.
    [15]杨满宏,叶慧海.贵石沟五矿住宅区公路声屏障设计方法研究[J].噪声与振动控制,1998,(4):32-34.
    [16]陈子明,王恕铨.高架复合道路交通噪声的声屏障(A):计权声插入损失的计算[J].环境科学,1996,17(6):27-30.
    [17]杨满宏,罗宏剑.不同声学元件在公路声屏障中的应用[J].环境工程,1999,17(3):41-43.
    [18]郑耀斌,周兆驹.高车流量公路声屏障绕射衰减理论模型与计算[J].噪声与振动控制,2008,(4):35-42.
    [19] HJ/T90-2004,声屏障声学设计和测量规范[S].北京,中国环境出版社,2004.
    [20]张英,周敬宣,夏锴,等.声屏障吸声作用对绕射降噪量贡献的分析[J].噪声与振动控制,2007,(3):100-102.
    [21]杨满宏.声屏障对公路交通噪声衰减理论模型的研究[J].交通环保,1996,17(6):17-20.
    [22] T.A Busch, R.E. Nugent. A reduced-scale railway noise barrier’s insertion loss and absorption coefficients: comparison of field measurements and predictions[J]. Journal of Sound and Vibration,2003,(267):749-759.
    [23] W.F. Cheng, C.F. Ng. The acoustic performance of an inclined barrier for high-rise residents[J]. Journal of Sound and Vibration,2001,242(2):295-308.
    [24] D.C. Hothersall, K.V. Horoshenkov, P.A. Morgan etc. Scale modeling of railway noise barriers[J]. Journal of Sound and Vibration,2000,234(2):207-223.
    [25] Hocine Bougdah, Inan Ekici, Jian Kang. A laboratory investigation of noise reduction by riblike structures on the ground[J]. Acoustical Society of America,2006,120(6):3714-3722.
    [26]王小鹏,陈天宁,黄协清,等.声屏障声学特性的模型试验研究[J].噪声振动与控制,2002,(6):42-44.
    [27] R.Pirichieva. Model study of the sound propagation behind barriers of finite length[J]. Acoust. Soc. Am. 1990,87(5):2109-2113.
    [28] Sung Soo Jung, Yong Tae Kim, Cheol Ung Cheong, etc. Noise barrier with top cylindrical tubes[J]. Journal of the Korean Physical Society,2006,49(1):145-149.
    [29]雷斌.武汉市轨道交通声屏障的研究与设计[J].都市快轨交通,2007,20(1):97-100.
    [30] G.R. Watts. In situ method for determining the transmission loss of noise barrier[J].Applied Acoustics,1997,51(4):421-438.
    [31] Massimo Garai, Paolo Guidorzi. European methodology for testing the airborne sound insulation characteristics of noise barriers in situ: Experimental verification and comparison with laboratory data[J]. Acoustical Society of America,2000,108(3):1054-1067.
    [32]孙华云,刘岩,张晓排.倒L型声屏障降噪效果试验与分析[J].噪声与振动控制,2008,(5):160-162.
    [33] C.J. Padmos, F. de Roo. Sound diffraction testing of noise barrier tops according to PrCEN/TS 1793-4[J]. 8th International congress of Acoustics,2004,2.
    [34] F. Asdrubali, F. D’Alessandro,G. Pispola. Experimental evaluation of the diffracting performances of multipurpose noise barrier profiles[J].Acta Acustica United With Acustica, 2005,(9):81.
    [35]俞悟周.高架道路声屏障的降噪效果[J].环境工程学报,2008,2(6):844-847.
    [36] D. Duhamel. Shape optimization of noise barriers using genetic algorithms[J].Journal of Sound and Vibration,2006,(297):432-443.
    [37] Pichai Pamanikabud, Marupong Tanstacha. Geographical information system for traffic noise analysis and forecasting with the appearance of barriers[J].Environmental Modeling & Software,2003,(18):959-973.
    [38] S.J. Martin and D.C. Hothersall. Numerical modeling of median road traffic noisebarriers[J]. Journal of Sound and Vibration,2002,251(4):671-681.
    [39] Z. Xiangyang, C. Ke’an, S. Jincai. A study of various barriers in enclosed sound field by using the computer program-SOFIS[J]. Journal of Sound and Vibration, 2002,253(5): 1115-1124.
    [40]吴洪洋.道路声屏障降噪理论的研究进展[J].噪声与振动控制2006,(3):85-95.
    [41] A.T. Peplow. Nunerical predictions of sound propagation from a cutting over road-side noise barrier[J].Journal of Computational acoustics,2005,13(1):145-162.
    [42] A.T. Peplow. On the efficiency of screens near roadside cuttings[J]. Journal of Sound and Vibration,2006,(298):982-1000.
    [43] P.A. Morgan, D.C. Hothersall, S.N. Chandler-Wilde. Influence of shape and absorbing surface—A numerical study of railway noise barriers, Journal of Sound and Vibration, 1998, 217(3): 405-417.
    [44] D.Duhamel,Efficient calculation of the three-dimension sound pressure field around a noise barrier[J]. Sound & Vibration,1996,197(5):547-571.
    [45] D. Duhamel, P. Sergent. Sound propagation over noise barriers with absorbing ground[J]. Journal of Sound and Vibration,1998,218(5):799-823.
    [46] S. Ogata, H. Tsura, H. Nakajima, etc. Investigation for insertion loss of noise barrier for sound source moving at high speed[J]. Acoustical Science and Technology, 2003,24(3): 148-150.
    [47] D. Ouis. Noise attenuation by a hard wedge-shaped barrier[J]. Journal of Sound and Vibration,2003,262(2):347-364.
    [48] K.M.Li,Q. Wang. A BEM approach to assess the acoustic performance of noise barriers in a refracting atmosphere.[J].Journal of Sound and Vibration,1998,211(4):663-681.
    [49] Yiu Wai Lam. A boundary element method for the calculation of noise barrier insertion loss in the presence of atmospheric turbulence[J]. Applied Acoustics,2004,(65):583-603.
    [50] J. Forssen. Calculation of noise barrier performance using the substitute-sources method for a three-dimensional turbulent atmosphere[J]. Acustica-Acta Acustica, 2002, 88(2): 181-189.
    [51]蔡俊,林琼,蔡伟民.用边界元法研究不同顶端声屏障的性能[J].噪声与振动控制,2006(3):89-109.
    [52]王小鹏,陈天宁,陈花玲,等.顶部折壁式声屏障插入损失的预估方法研究[J].环境工程,2004,22(3):50-53.
    [53]张新华,辜小安,邵龙海.声学仿真软件在噪声预测和评价中的应用[J].噪声与振动控制,2002,(1):37-39.
    [54] E. van Haaren, P.H. van Tol. Validation of ray acoustics applied for the modeling of noise barriers[J].Journal of Sound and Vibration,2000,231(3):681-688.
    [55]王舒扬,李英,杨忠振.城市临街高层住宅楼交通噪音的控制方法[J].城市问题,2006(5):32-35.
    [56]李晓东,龚辉,徐碧华.Cadna/A软件应用于声屏障插入损失的计算[J].上海船舶运输科学研究所学报,2008,31(1):48-51.
    [57] M.J.C. Palma, A. Samagaio. Acoustic performance of a noise barrier coated with an absorptive material[J]. Noise Control Engineering Journal,2006,54(4):245-250.
    [58]张智博,陈大跃.轨道交通嵌入式声屏障设计及现场声学性能仿真研究[J].噪声与振动控制,2007,(4):82-102.
    [59]陈欣,潘凯.统计能量分析在声屏障设计中的应用[J].噪声与振动控制,2008,(4):126-128.
    [60] Shima H. ect. Noise Reduction of a Multiple Noise Barrier[J]. Inter-Noise 1996:791-794.
    [61] Shinichi S, Hideki T, FDTD analysis of diffraction over various types of noise barriers, Proc, of ICA 2004 Mo,F2.I-252-254.]
    [62] G.R. Watts, P.A. Morgan. Acoustic performance of an interference-type noise-barrier profile[J]. Applied Acoustics,1996,49(1):1-16.
    [63]朱晓天,候秋文.脉冲法对隔声屏障顶端式样的衍射分析[J].环境工程,2006,24(3):54-57.
    [64] prCEN/TS1793-4, Road traffic noise reducing devices-Test method for determining the acoustic performance-Part 4: Intrinsic characteristics-Insitu values of sound diffraction, CEN,Brussels,2002.
    [65] G.R. Watts. Acoustic performance of a multiple edge noise barrier profile at motorway sites[J].Applied Acoustics 47(1996)47-66.
    [66] May D N, ect. The performance of sound absorptive, reflective and T-profile noise barriers in Toronto[J]. Journal of Sound and Vibration, 1980.72:65-71.
    [67] J. Defrance, P. Jean. Integration of the efficiency of noise barrier caps in a 3D ray tracing method. Case of a T-shaped diffracting device[J]. Applied Acoustics,2003, (64)765-780.
    [68] Kyoji Fujiwara, David C. Hothersall and Chul-hwan Kim. Noise barriers with reactive surfaces[J].Applied acoustics,1998,53(4):255-272.
    [69] Kaoru MURATA, Kiyoshi NAGAKURA, Toshiki KITAGAWA, Shin-ichiro TANAKA. Noise reduction effect of noise barrier for Shinkansen based on Y-shaped structure[J].QR of RTRI,2006,47(3):16-168.
    [70] Rawlills,AD Diffraction of Sound by a Rigid Screen with a Soft Perfectly Absorbing Edge[J].Journal of Sound and Vibration,1976.53,53-67.
    [71] P. McIver, A.D. Rawlins. Diffraction by a rigid barrier with a soft or perfectly absorbent end face[J]. Wave Motion,1995,(22):387-402
    [72] T. Okubo, K. Fujiwara. Efficiency of a noise barrier on the ground with an acoustically soft cylindrical edge[J]. Journal of Sound and Vibration,1998,216(5):771-790.
    [73] T. Okubo, K. Fujiwara. Efficiency of a noise barrier with an acoustically soft cylindrical edge fro practical use[J]. Journal of the Acoustical Society of America, 1999, 105(6):3326-3335.
    [74] M. Hasebe, Y. Ishihara, S. Natsume, T. Yamanishi. Diffraction of sound by a highway noise barrier with a soft edge composed of arrayed wells[J].Acoustical Science and Technology,2005,26(3):299-300.
    [75] Chul-Hwan Kim, K. Fujiwara. Sound shielding efficiency of T-shaped noise barrier with tube array on the top surface[J]. Journal of the Acoustical Society of Japan, 1998,54(3): 179-189.
    [76] K. Ohnishi, T. Teranishi, M. Nishimura, etc. Development of the noise barrier with active controlled acoustical soft edge, basic concept and noise reduction measurement using a 2m length prototype[J]. Journal of the Acoustical Society of Japan,2001,57(2):129-138.
    [77] K. Ohnishi, T. Teranishi, Y. Namikawa, etc. Development of the product-type active soft edge noise barrier[J].8th International Congress on Acoustics,2004,4.
    [78]关家振,马克.博海,姚景光,等.平方余数序列扩散体于声屏障的应用[J].噪声与振动控制,2005,S1:283-286.
    [79] M.R. Monazzam, Y.W. Lam. Application of quadratic residue diffusers in noise barrier structures[J]. 8th International Congress on Acoustics,2004,4.
    [80]陈兴帅,荼娅,孙海燕.二次剩余扩散型声屏障的插入损失[J].科技资讯,2008,(6):36-37.
    [81]尹皓.干涉型声屏障结构的研究[J].铁道劳动安全卫生与环保,2007,34(5):205-208.
    [82] Rudolphi E, Akeríóf L. Full scale tests on the design of railway noise barriers[J]. Proceeding of international conference of noise control,1996:799-802.
    [83] F.J. Fahy, D.G. Ramble, J.G. Walker. Development of a novel modular form of sound absorbent facing fo traffic noise barriers[J].Applied Acoustics,1995(44):39-51.
    [84] R.S. Ming. Acoustical barrier for tonal noise[J]. Applied Acoustics,2005,(66):1074-1087.
    [85]蒋伟康,陈光冶,朱振江,等.轨道交通的声屏障技术研究[J].噪声振动与控制,2001(1):29-32.
    [86]俞悟周.高架道路渐变空腔微穿孔声屏障的设计和降噪[J].环境污染与防治,2008,30(7):55-61.
    [87]孙立新,闫增峰,谭伟.铁路沿线居住区景观隔声屏障工程设计与分析[J].建筑科学,2008,24(8):36-39.
    [88]王庭佛,徐剑.道路全封闭声屏障的首次实践(C).第十届全国噪声与振动控制工程学术会议论文集(2005年11月24-27日):254-258.
    [89]程越.组合式全影声屏障[J].噪声与振动控制,2005,(S1):335-337.
    [90]王季卿.高架道路声屏障的设计与实效[J].噪声与振动控制,2001(12):7-13.
    [91] Stefan Grgurevich, Thomas Boothby, Harvey Manbeck, etc. A comparative study of wood highway sound barriers. Forest Products Journal, 2002, 52(3):35-43.
    [92]袁卫宁,董小林,张玉芬.高速公路共振腔吸声砖声屏障降噪效果[J].交通运输工程学报,2007,7(2):99-103.
    [93]王武祥,李广权.混凝土砌块在交通路网声屏障工程中的应用[J].建筑砌块与砌块建筑,2005(1):9-11.
    [94]杨满宏,刘书套.彩钢复合板公路声屏障材料声学性能研究[J].噪声与振动控制,1999(4):39-43.
    [95]蒋鼎丰.道路及轨道交通声屏障的理想吸声材料[J].上海建材,2000,5:17-18.
    [96]魏化军,蔡国本,夏德荣.上海市轨道交通明珠线声屏障试验研究[J].上海环境科学,2000,19(3):131-133.
    [97]徐志强,杨宜谦,孙宁,等.城市轨道交通微穿孔板式声屏障的研究[J].铁道劳动安全卫生与环保,2003,30(5):212-214.
    [98]毛东兴,夏俊峰,洪宗辉.顶部带吸声柱体的微穿孔声屏障的应用研究[J].声学技术,1999,18(1):26-29.
    [99]周海燕.新型声屏障材料泡沫陶瓷[J].环境保护科学,2002,28(2):42-45.
    [100]囤静华,周洲.珍珠岩声屏障在高速公路上的应用[J].上海船舶运输科学研究所学报,2006,29(2):131-136.
    [101]任文堂,现代城市防噪声屏障的发展现状和应用展望[J].城市管理与科技,2000,(2),28~30.
    [102]张继萍.PMMA塑料板在道路隔声屏障中的应用[J].噪声与振动控制,2004(3):42-44.
    [103]邱泽辉,林殿雄,陈利锡.金属中空复合板独特的结构设计及其优异的隔音效果[J].广东建材,2005(3):18-19.
    [104]钟祥璋,祝培生,朱芳英.泡沫铝吸声板的材料特性及应用[J].装饰装修材料,2002(8):51-53.
    [105]程申涛,鲁雄刚,李重河,等.泡沫铝工业化生产现状及发展趋势[J].上海金属,2008,30(4):49-51.
    [106]张彬,宋雷鸣,张新华.城市道路声屏障研究与设计[J].噪声与振动控制,2004(4):32-48.
    [107]王奕然,孙京健.北京地铁5号线声屏障工程的设计与研究[J].铁道标准设计,2007(10):26-29.
    [108]徐碧华,褚国红,龚辉,等.上海城市外环线大型声屏障设计与实践[J].上海船舶运输科学研究所学报,2008,31(1):12-22.
    [109]韩运强.噪声治理工程——声屏障设计[J].工程建设与设计,2003,(4):12-14.
    [110]李艳.声屏障设计中的结构验算[J].噪声与振动控制,2007,(3):97-99.
    [111]姚成,许志宏.道路声屏障保护区噪声级上升原因的探讨[J].同济大学学报,2000,28(6):741-744.
    [112]闵鹤群,张荣初.道路声屏障底部漏声问题的一种有效解决方法[J].噪声与振动控制,2006,(1):43-45.
    [113]朱琦.城市轨道交通声屏障的设计与施工[J].建筑施工,2007,29(12):948-950.
    [114]刘向东,王呈宇,王若木.秦沈客运专线路基声屏障工程设计与施工[J].交通环保,2002,23(5):43-46.
    [115]唐铭东,吴辰龙,王增煜.浅谈公路建设对噪音的影响及防治措施[J].交通科技与经济,2004,(3):37-38.
    [116] G.R. Watts, N.S. Godfrey. Effects on roadside noise levels of sound absorptive materials in noise barriers[J]. Applied Acoustics,1999,(58):385-402.
    [117]陈继浩,冀志江,王静.一种声屏障顶部吸声装置[P].中国专利:200820108638.7,2008-10-22.
    [118]冀志江,陈继浩,王静.声屏障分叉型顶部降噪装置[P].中国专利:200820108639.1,2008-10-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700