用户名: 密码: 验证码:
毫秒激光与金属材料相互作用中的热学和力学效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毫秒激光与金属材料相互作用中将出现一系列的热学和力学效应。本文针对塑性屈服、熔融及小孔成形过程进行了理论计算、有限元模拟和实验研究。
     从实验和数值模拟两个方面研究了毫秒激光致金属材料产生塑性屈服的现象。在测量了薄铝板上反鼓包的成形过程的基础上,依据热传导理论及热弹塑性力学理论,用有限元法模拟了相关变形过程,通过比较实验和数值结果验证了数值算法的合理性。继而建立了毫秒激光与厚航空铝合金板相互作用的物理模型,用有限元法模拟了温度场和应力场的分布,得到了塑性屈服时间、范围以及残余应力的大小。并且将这几方面作为评判标准,比较了高斯型与顶帽型激光使厚铝合金板产生塑性屈服的过程。
     依据毫秒激光致金属厚板产生熔融相变情况,建立了半无限大轴对称模型。基于热传导理论及温度分布形式,得到了温度和熔融深度的解析解,并利用实验研究获得的熔池形貌验证了解析计算结果。进而讨论了熔融深度与作用激光脉宽及能量的关系,对深度先随脉宽增加然后又减小的现象进行了解释。
     提出了毫秒激光逆重力方向对厚铝板打孔的实验方法,并根据实验和温度解得到了小孔深度解析式。进而比较了激光顺打孔(顺重力方向)和逆打孔实验中熔融物的迁移质量、挂渣现象和小孔体积,讨论了重力对于物质迁移的作用。证明了逆打孔时激光能量更多的用于将材料加热至熔融,在重力辅助作用下,熔融物质更易迁移出孔,因而打孔效率更高。继而改变激光能量进行实验研究,发现大能量毫秒激光打孔较深,且算法需考虑离焦效应的影响。然后利用改进后的算法研究了毫秒激光对不同金属材料的打孔速率。
     针对激光打孔时光在小孔中传输的实际情况建立物理模型,分别采用物理光学法及光线追迹法研究了光束在小孔内多次反射过程,计算了小孔对入射光的总吸收率和吸收光强在小孔内的分布情况。通过比较计算结果得到结论:当孔口衍射作用明显或孔直径小于入射光波长时,光线追迹法将不再适用于计算小孔吸收,其中衍射的作用取决于偏振态、入射角度、光斑大小及小孔边缘处的相对光强。
     本文的研究结果可为进一步研究毫秒激光与金属相互作用中出现的温升、热应力、塑性屈服、熔融及小孔成形提供理论和实验研究依据,亦有助于毫秒激光在加工和军事中得到进一步的应用。
Series of thermal and mechanical effect will occur during millisecond laser heating of metals. In this dissertation, the plastic damage, melting and hole formation processes are investigated by theoretical calculation, finite element simulation and experiment.
     By means of experimental and numerical simulation, the plastic yielding process of metals induced by millisecond laser is studied. The reverse bulging in a thin aluminum plate is detected. According to which, this deformation is simulated by the finite element method (FEM) based on the heat conduction equation and thermal elasto-plastic constitutive relation. And the numerical algorithm is verified by comparing the experimental and the calculated results. Furthermore, a physical model of the millisecond laser interaction with an aluminum alloy slab is established. By using of FEM, the distributions of the temperature field and the stress field are studied numerically. In particular, the yielding time, the range of plastic damage region and the magnitude of residual stress are obtained. And the plastic damage for Gaussian and Top hat laser are compared according to these three results.
     A semi-infinite axisymmetric model is established for millisecond laser melting of a metal slab. The analytical solutions of the entire temperature filed and the melting depth are obtained based on the heat conduction theory and the distribution of temperature field. The molten pool obtained in calculation agrees with the experiment results. Moreover, the melting depth versus the laser pulse width is investigated. It is found that with the increasing of the pulsed width, the depth increases at first and reaches the maximum value, then turn to decrease. This phenomenon is discussed.
     An upward drilling method is proposed. In the experiment, the laser beam is designed to transmit along the opposite direction of the gravity and drill hole at the bottom of an aluminum slab. Based on the experiment and the temperature solution, the analytical solution of hole depth is obtained. For further verifying the gravity action, the downward (along the gravity direction) and the upward drilling cases are carried out in experiment. Meanwhile, the removed mass of molten material, the adherent dross and the hole volume are compared. The results show that more molten material is expelled with the assistance of the gravity, and more laser energy is used to melt the aluminum slab in the upward drilling. In a word, it is more efficient to drill hole upwardly. Thereafter, the hole depth versus laser energy is studied. It is found that the depth with high energy is deep and the defocusing effect should be considered in the calculation. In addition, the modified solution is used to calculate the drilling speed of millisecond laser for different metals.
     The model of light propagation in a hole during laser drilling is established. The total absorptance and absorbed intensity distribution inside the hole are calculated with the ray-tracing and physical optics methods respectively. The comparison of the results show that the ray-tracing method is not applicable if the diffraction at the hole entrance is important, or the hole diameter is smaller than the wavelength of the incident beam. Particularly, the influence of diffraction depends on the polarization state, the incident angle, the beam waist and the relative intensity on the hole entrance.
     The research consequences may offer theoretical and experimental references to the further study of the temperature rising, the thermal stress, the plastic damage, the melting and the formation of hole, and accelerate the application of millisecond laser in manufacturing and military.
引文
[1]M.R. Sabatini, M.A. Richardson. Airborne laser system testing and analysis. ADA534869,2010
    [2]陈黎.美国机载激光器研发近期进展情况及未来前景.激光与红外,2011,41(3):243~247
    [3]C.D. Boley, K.P. Cutter, S.N. Fochs, P.H. Pax, M.D. Rotter, A.M. Rubenchik. Interaction of a high-power laser beam with metal sheets. Journal of Applied Physics,2010,107(4):043106-1-5
    [4]左铁钏,陈虹.21世纪的绿色制造——激光制造技术及应用.机械工程学报,2009,45(10):106~110
    [5]C.Y. Yeo, S.C. Tam, S. Jana, M.W.S. Lau. A technical review of the laser drilling of aerospace materials. Journal of Materials Processing Technology,1994,42:15-49
    [6]W.M. Steen, J. Mazumder. Laser Material Processing, Springer,2010
    [7]M.R.H. Knowles, A.I. Bell, G R. Rutterford, A.J. Andrews, G.F. Turner, A. Kearsley. Laser drilling of fuel injection components. Proceedings of ICALEO, 2000,91:F42-F51
    [8]J. Rapp. The laser with Bosch-a flexible tool in serial production of an automotive supplier.2003, Proceedings of SPIE,4831:390-396
    [9]S.V. Kayukov, A. A. Gusev, E.G Zaichikov, A.L. Petrov. Drilling of narrow holes in metals by millisecond pulses. Laser Physics,1998,8(2):527-531
    [10]M. Naeem. Advancement in laser drilling for aerospace gas turbines. Proceedings of the 3rd Pacific International conference on Application of Lasers and Optics, 2008, Paper 401
    [11]R.D. Wu. A view from a leading Chinese laser system manufacturer. Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Application System Technologies,2007, paper JWB1
    [12]J. Yang, Y. Zhao, X. Zhu. Transition between nonthermal and thermal ablation of metallic targets under strike of high-influence ultrashort laser pulses. Applied Physics Letters,2006,88:094101
    [13]L. Tunna, W. O'Neill, A. Khan, C. Sutcliffe. Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications. Optics and Lasers in Engineering,2005,43(9):937-950
    [14]M. Schneider, M. Muller, R. Fabbro, L. Berthe. Study of hole properties in percussion regime with a new analysis method. Journal of Laser Micro/Nanoengineering,2007,2(2):128-132
    [15]J.F. Ready. Effects due to absorption of laser radiation. Journal of Applied Physics, 1965,36(2):463-468
    [16]D.S. Ivanov, L.V. Zhighilei. Combined atomistic-continuum modeling of short-pulse laser merlting and disintegration. Physical Review B,2003,68:064114
    [17]H.S. Carslaw, J.C. Jaeger. Conduction of heat in solids, Clarendon Press,1959
    [18]J. F. Ready. Effects of high-power laser radiation. Academic, New York,1971
    [19]K. Brugger. Exact Solutions for the Temperature Rise in a Laser-Heated Slab. Journal of Applied Physics,1972,43(2):577-583
    [20]J.H. Bechtel. Heating of solid targets with laser pulses. Journal of Applied Physics, 1975,46:1585-1593
    [21]A.D. Rakic. Algorithm for the determination of intrinsic optical constants of metal films:application to aluminum. Applied Optics,1995,34:4755-4767
    [22]M. Sparks. Theory of laser heating of solids:Metals. Journal of Applied Physics, 1976,47(3):837-849
    [23]M. Lax. Temperature rise induced by a laser beam. Journal of Applied Physics, 1977,48(9),3919-3924
    [24]R.E. Warren, M. Sparks. Laser heating of a slab having temperature-dependent surface absorptance. Journal of Applied Physics,1979,50(12):7952-7957
    [25]J.R. Meyer, M.R. Kruer, F.J. Bartoli. Optical heating in semiconductors:Laser damage in Ge, Si, InSb, and GaAs. Journal of Applied Physics,1980, 51(10):5513-5522
    [26]M. K. El-Adawi, E.F. Elshehawey. Heating a slab induced by a time dependent laser irradiance-An exact solution. Journal of Applied Physics,1986, 60(7):2250-2255
    [27]B.J. Bartholomeusz. Thermal response of a laser-irradiated metal slab. Journal of Applied Physics,1988,64(8):3815-3819
    [28]M.K. El-Adawi, M.A. Abdel-Naby, S.A. Shalaby. Laser heating of a two-layer system with constant surface absorption:an exact solution. International Journal of Heat and Mass Transfer,1995,38(5):947-952
    [29]T. Elperin, G. Rudin. Temperature field in a multilayer assemble affected by a local heating. International Journal of Heat and Mass Transfer,1995,38(17):3143-3147
    [30]F. Brygo, A. Semerok, R. Oltra, J.M. Weulersse, S. Fomichev. Laser heating and ablation at high repetition rate in thermal confinement regime. Applied Surface Science,2006,252:8314-8318
    [31]P. Majumdar, H. Xia. A Green's function model for the analysis of laser heating of materials. Applied Mathematical Modelling,2007,31:1186-1200
    [32]J.V. Beck. Transient three-dimensional heat conduction problems with partial heating. International Journal of Heat and Mass Transfer,2011,54:2479-2489
    [33]S.Z. Shuja, B.S. Yilbas. Pulsative heating of surfaces. International Journal of Heat and Mass Transfer,1998,41:3899-3918
    [34]A.Yanez, J.C. Alvarez, A.J. Lopez, G. Nicolas, J.A. Perez, A. Ramil, E. Saavedra. Modelling of temperature evolution on metals during laser hardening process. Applied Surface Science,2002,186(1-4):611-616
    [35]N.H. Cheung. Pulsed laser heating of thin films:An efficient algorithm for computing temperature profiles. Journal of Applied Physics,1991, 70(12):7654-7656
    [36]Zhong Ji, Sichun wu. FEM simulation of the temperature field during the laser forming of sheet metal. Journal of Materials Processing Technology,1998, 74:89-95
    [37]J.C. Li, J. Merlin, Y.X Qin, Q.G Zhen, Y.C. Fu. Rapid calculation research of temperature fields in laser heat treatments. Optical Engineering,2003, 42(12):3545-3550
    [38]B.Q. Xu, Z.H. Shen, J.Lu, X.W. Ni, S.Y. Zhang. Numerical simulation of laser-induced transient temperature field in film-substrate system by finite element method. International Journal of Heat and Mass Transfer,2003,46:4963-4968
    [39]袁红,赵剑衡,谭福利,孙承纬.激光辐照下旋转柱壳温度场的数值模拟.强激光与粒子束,2005,17(5):681~684
    [40]袁红,赵剑衡,谭福利,孙承纬.连续和重复频率激光对旋转壳体加热效率比较的数值模拟.高能量密度物理,2006,4:153~156
    [41]H.W. Song, G Yu, A.F.H. Kaplan, J.S. Tan, X.L. Yu. Thermal fatigue on pistons induced by shaped high power laser. Part Ⅱ:Design of spatial intensity distribution via numerical simulation. International Journal of Heat and Mass Transfer,2008,51: 768-778
    [42]L.P. Welsh, J.A. Tuchman, I.P. Herman. The importance of thermal stresses and strains induced in laser processing with focused Gaussian beams. Journal of Applied Physics,1988,64(11):6274-6286
    [43]LA. Volchenok, G.I. Rudin. Thermoelastic stresses in a multilayer plate upon action of laser radiation. Journal of Engineering Physics and Thermophysics,1988, 55(5):1386-1290
    [44]强希文.强激光与靶材相互作用的力学效应研究.激光与红外,2000,30(3):141~144
    [45]K.E. Evans, S.J. Abbott, A.N. Burgess. Finite element modeling of laser-induced hole formation in optical storage media. Applied Optics,1988,27(4):732-735
    [46]O.U. Khan, B.S. Yilbas. Laser heating of sheet metal and thermal stress development. Journal of Materials Processing Technology,2004, 155-156:2045-2050
    [47]梁清香,张根全.有限元与MARC实现.北京:机械工业出版社,2005
    [48]H. Arnet, F Vollertsen. Extending laser bending for the generation of convex shapes. Proceedings of the Institution of Mechanical Engineers, Part B, Journal of engineering manufacture,1995,209(B6):433-442
    [49]Z. Hu, R. Kovacevic, M. Labudovic. Experimental and numerical modeling of buckling instability of laser sheet of forming. International Journal of Machine Tools & Manufacture,2002,42:1427-1439
    [50]Wenchuan Li, Y. Lawrence Yao. Numerical and experimental investigation of convex laser forming process. Journal of Manufacturing Processes,2001, 3(2):73-81
    [51]Yongjun Shi, Yancong Liu, Zhenqiang Yao,Hong Shen. A study on bending direction of sheet metal in laser forming. Journal of Applied Physics,2008, 103:053101-1-6
    [52]周益春,段祝平,王春奎.反冲塞效应的热弹性理论分析(Ⅰ)—温度场分析.应用数学和力学,1995,16(10):851~860
    [53]周益春,段祝平,解伯民.反冲塞效应的热弹性理论分析(Ⅱ)—反鼓包运动.应用数学和力学,1996,17(7):577~588
    [54]尹益辉,颜怡霞,陈裕泽,苏毅.脉冲激光诱导的薄片反冲塞破坏分析.强激光与粒子束,2002,14(1):70~76
    [55]段晓峰,汪岳峰,牛燕雄,张雏.激光辐照光学材料热力效应的解析计算和损伤评估.中国激光,2004,31(12):1455~1459
    [56]C.Y. Wei, H.B. He, Z. Deng, Jianda Shao, Z.X. Fan. Study of thermal behaviors in C02 laser irradiated glass. Optical Engineering,2005,44(4):044202
    [57]夏晋军,龚辉,程雷,李成富.光学材料连续波激光热-力破坏效应.光学学报,1997,17(1):20~23
    [58]陶伟明,班勇婷,王慰军,杨兴旺.一种裂纹扩展的有限元仿真分析方法及其实现.力学季刊,2009,30(4):612~617
    [59]李清源.连续波激光对弹道导弹的毁伤效应.强度与环境,2005,32(2):29~32
    [60]赵剑衡,章冠人,刘绪发.激光辐照下充压柱壳结构变形的数值模拟,高压物理学报,1996,10(4):262~268
    [61]袁红,赵剑衡,谭福利,孙承纬.激光辐照下静止及旋转充压柱壳结构变形的对比分析.强激光与粒子束,2005,17(11):1660~1664
    [62]G. Thomson, M. Pridham. Material property changes associated with laser forming of mild steel components. Journal of Materials Processing Technology,2001, 118:40-44
    [63]J.G Cheng, J.Zhang, C.C. Chu, J. Zhe. Experimental study and computer simulation of fracture toughness of sheet metal after laser forming. International Journal of Advanced Manufacturing Technology,2005,26:1222-1230
    [64]J. Zhang, D. Pizada, C.C. Chu, GJ. Cheng. Fatigue life prediction after laser forming. Journal of Manufacturing Science and Engineering,2005,127:157-164
    [65]H. Shen, Z.Q Yao. Study on mechanical properties after laser forming. Optics and Lasers in Engineering,2009,47:111-117
    [66]L.J. Yang, J. Tang, M.L. Wang, Y. Wang, Y.B. Chen. Surface characteristic of stainless steel sheet after pulsed laser forming. Applied Surface Science,2010,256: 7018-7026
    [67]P. Peyre, C. Carboni, P. Forget, G. Beranger, C. Lemaitre, D. Stuart. Influence of thermal and mechanical surface modifications induced by laser shock processing on the initiation of corrosion pits in 316L stainless steel. Journal of Materials Science, 2007,42:6866-6877
    [68]K.W. Jones, M.L. Dunn. Fatigue crack growth through a residual stress field introduced by plastic beam bending. Fatigue & Fracture of Engineering Materials Structures,2008,31:863-875
    [69]Yanbei Chen, Jian Lu, Xiaowu Ni. Plastic penetration during laser heating of a metal plate. Journal of Materials Processing Technology,2007,205:9-15
    [70]裴继斌,张立文,张全忠,王存山,董闯.扫描次数对钢板激光弯曲成形影响的模拟.中国激光,2007,34(12):1721-1725
    [71]H.S. Hsieh, J.M. Lin. Thermal-mechanical analysis on the transient deformation during pulsed laser forming. International Journal of Machine Tools and Manufacture,2004,44:191-199
    [72]G. Chen, X. Xu, C.C. Poon, A.C. Tam. Experimental and numerical studies on microscale bending of stainless steel with pulsed laser. Journal of Applied Mechanics,1999,66:772-779
    [73]B.S. Yilbas, S.Z. Shujia. Heat transfer analysis of laser heated surfaces-conduction limited case. Applied Surface Science,1997,108:167-175
    [74]袁永华,刘常龄,王伟平,刘自强,任小彬.重复频率激光辐照涂层金属材料的温升.强激光与粒子束,1997,19(3):477~480
    [75]F. Shaapur, S.D. Allen. Experimental determination of laser heated surface temperature distributions. Applied Physics Letters,1987,50(12):723-724
    [76]Takao Kato, Hiroshi Fujii. Temperature measurement in a solid body heated by laser beam. International Journal of Machine Tools and Manufacture,2004, 44:927-931
    [77]天津大学材料力学教研室光弹组.光弹性原理及测试技术.北京:科学出版社,1980
    [78]L. Tollier, R. Fabbro, E. Bartnicki. Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser shock characterization. Journal of Applied Physics,1998,83(3):1224-1230
    [79]C.R. Sun, J.L Chen, H. Lu. Improved phase-shifted digital speckle shearography for time-dependent deformation measurement. Optical Engineering,2008, 47(6):065601
    [80]Marco Bova, Luigi Bruno, Andrea Poggialini. Measurement of elasto-plastic deformations by speckle interferometry. Proceedings of SPIE,2010,7837:78370F
    [81]张可星,刘绪发,刘仓理,孙承纬,张宁.铝靶激光热应力的实验研究.高压物理学报,1997,11(4):296~302
    [82]常春耘,徐荣青,陈笑,沈中华,陆健,倪晓武.激光反冲塞效应的实验验证.光电子·激光,2003,14(12):1352~1354
    [83]G. Dai, Z.H. Shen, J.L., X.W. Ni. Measurement of target deformation under laser shock with optical beam shading technique. Proceedings of SPIE,2007, 6834:68342Z
    [84]路浩,刘雪松,杨建国,方洪渊.激光全息小孔法验证超声波残余应力无损测量.焊接学报,2008,29(8):77~80
    [85]A.F.M. Arif, B.S. Yilbas, B.J. Abdul Aleem. Laser cutting of thick sheet metals: Residual stress analysis. Optics Laser Technology,2009,41:224-232
    [86]Takashi Ueda, Yoshihiro Wakimura, Tatsuaki Furumoto, Akira Hosokawa, Ryutaro Tanaka. Experimental investigation on laser flattening of sheet metal. Optics and Lasers in Engineering,2011,49:137-144
    [87]G.A. Webster, A.N. Ezeilo. Residual stress distribution and their influence on fatigue life times. International Journal of Fatigue,2001,23:S375-S383
    [88]M.S. Amer, M.A. El-Ashry, L.R. Dosser, K.E. Hix, J.F. Maguire, Bryan Irwin. Femtosecond versus nanosecond laser machining:comparison of induced stresses and structural change in silicon wafers. Applied Surface Science,2005, 242:162-167
    [89]吴昊,孟永钢,苏才钧,郭占社,温诗铸.多晶硅薄膜残余应力显微拉曼谱实验分析.机械强度,2007,29(2):233-236
    [90]石一飞,沈中华,倪晓武,陆健.激光激发瑞利波测量铝合金焊接残余应力的实验研究.中国激光,2008,35(10):1627~1631
    [91]YD. Kim, W.S. Kim. A numerical analysis of heat and fluid flow with a deformable curved free surface in a laser melting process. International Journal of Heat and Fluid Flow,2008,29:1481-1493
    [92]B. Mahmoudi, M. J. Torkamany, A.R. Sabour Rouh Aghdam, J. Sabbaghzade. Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser. Materials & Design,2010,31:2553-2560.
    [93]H.X. Zhan, Y. Wang, C.W. Li, T. Han, B. Han, W.M. Zhao. Computational and experimental study of a melt-hardened zone on a roller modified by wide-band laser treatment. Optics Laser Technology,2009,41:251-257
    [94]J.M. Sanchez-Amaya, T. Delgado, L. Gozalez-Rovira, F.J. Botana. Laser welding of aluminium alloys 5083 and 6082 under conduction regime. Applied Surface Science,2009,255:9512-9521
    [95]T.M. Shao, M. Hua, H.Y. Tam, Edmund H.M. Cheung. An approach to modelling of laser polishing of metals. Surface and Coatings Technology,2005,197:77-84
    [96]C. Nusser, I. Wehrmann, E. Willenborg. Influence of intensity distribution and pulse duration on laser micro polishing. Physics Procedia,2011,12:462-471
    [97]M.D. Feit, A.M. Rubenchik, C.D. Boley, M. Rotter. Development of a process model for CO2 laser mitigation of damage growth in fused silica. Proceedings of SPIE,2004,5273:145-154
    [98]D.P Wan, H.B Liu, Y.M. Wang, D.J. Hu, Z.X. Gui. CO2 laser beam modulating for surface texturing machining. Optics Laser Technology,2008,40:309-314
    [99]Z.H. Shen, S.Y. Zhang, J. Lu, X.W. Ni. Mathematical modeling of laser induced heating and melting in solids. Optics Laser Technology,2001,33:533-537
    [100]M.K. El-Adawi, S.A. Shalaby. Laser melting of solids-An exact solution for time intervals greater than the transit time. Journal of Applied Physics,1986, 60(7,1):2260-2265
    [101]J. Xie, A. Kar. Mathematical modeling of melting during laser materials processing. Journal of Applied Physics,1997,81(7):3015-3022
    [102]V.N. Tokarev, A.F.H. Kaplan. An analytical modeling of time dependent pulsed laser melting. Journal of Applied Physics,1999,86:2836-2846
    [103]WJ. Chang, T.H. Fang. Modelling of solid-liquid interface during laser processing using an inverse methodology. Applied Physics B,2005,80:373-376
    [104]U. Gratzke, P.D. Kapadia, J. Dowden. Heat conduction in high-speed laser welding. Journal of Physics D:Applied Physics,1991,24:2125-2134
    [105]J.Y. Degorce, A. Saucier, M. Meunier. A simple analytical method for the characterization of the melt region of a semiconductor under focused laser irradiation. Applied Surface Science,2003,208-209:267-271
    [106]J.Goldak, M. Bibby, J. Moore, R. House, B. Patel. Computer modeling of heat flow in welds, Metallurgical and materials tranactions B,1986,17(3):587-600
    [107]A. Sluzalec. Flow of metal undergoing laser irradiation. Numerical Heat Transfer, 1988,13(2):253-263.
    [108]A. De, S.K. Maiti, C.A. Walsh, H.K.D.H. Bhadeshia. Finite element simulation of laser spot welding. Science and Technology of Welding & Joining,2003, 8(5):377-384
    [109]许伯强,汪昊,徐贵东,徐晨光,张子国.金属材料中激光产生熔池的数值模拟及应用.江苏大学学报,2010,31(3):358~362
    [110]G.G. Roy, J.W. Elmer, T. DebRoy. Mathematical modeling of heat transfer, fluid flow, and solidification during linear welding with a pulsed laser beam. Journal of Applied Physics,2006,100:034903
    [111]J.A. Mackenzie, M.L. Robertson. The numerical solution of one-dimensional phase change problems using an adaptive moving mesh method. Journal of Computational Physics,2000,161:537-557
    [112]B. Nedjar. An enthalpy-based finite element method for nonlinear heat problems involving phase change. Computers and structures,2002,80:9-21
    [113]J.Y. Degorce, J.N. Gillet, F. Magny, M. Meunier. Three-dimensional transient temperature field model for laser annealing. Journal of Applied Physics,2005, 97:033520
    [114]B.S. Yilbas, S.B. Mansoor. Laser pulse heating and phase changes in the irradiated region:Temperature-dependent thermal properties case. International Journal of Thermal Sciences,2009,48:761-772
    [115]D. Sowdari, P. Majumdar. Finite element analysis of laser irradiated metal heating and melting processes. Optics Laser Technology,2010,42:855-865
    [116]L. Han, F.W. Liou. Numerical investigation of the influence of laser beam mode on melt pool. International Journal of Heat and Mass Transfer,2004,47:4385-4402
    [117]A.P. Mackwood, R.C. Crafer. Thermal modelling of laser welding and related processes:a literature review. Optics Laser Technology,2005,37:99-115
    [118]孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998
    [119]C.L. Chan, J. Mazumder, M.M. Chen. Effects of surface tension gradient driven convection in a laser melt pool:Three-dimensional perturbation model. Journal of Applied Physics,1988,64(11):6166-6174
    [120]孙承纬.激光辐照效应.北京:国防工业出版社,2002
    [121]T. Zacharia, S.A. David, J.M. Vitek, T.debroy. Heat transfer during Nd:YAG pulsed laser welding and its effects on solidification structure of austenitic stainless steels. Metallurgical transactions A,1989,20A:957-967
    [122]P. Okon, G. Dearden, K. Watkins, M. Sharp, P. French. Laser welding of aluminium alloy 5083,21st International Congress on Applications of Lasers and Electro-Optics, Scottsdale,2002
    [123]Y.C. Liao, M.H. Yu. Effects of laser beam energy and incident angle on the pulse laser welding of stainless steel thin sheet. Journal of Materials Processing Technology,2007,190:102-108
    [124]陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社,1996
    [125]B.S. Yilbas, A.Z. □ahin, R. Davies. Laser heating mechanism including evaporation process initiating laser drilling. International Journal of Machine Tools and Manufacture,1995,35(7):1047-1062
    [126]C. Zhang, I.A. Salama, N.R. Quick, A. Kar. One-dimensional transient analysis of volumetric heating for laser drilling. Journal of Applied Physics,2006,99:113530
    [127]Y.W. Zhang, A. Faghri, Vaporization. Melting and heat conduction in the laser drilling process. International Journal of Heat and Mass Transfer,1999, 42:1775-1790
    [128]M.V. Allmen. Laser drilling velocity in metals. Journal of Applied Physics,1976, 47(12):5460-5463
    [129]C.L. Chan, J. Mazumder. One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction. Journal of Applied Physics,1997,62(11):4579-4586
    [130]P. Solana, P. Kapadia, J. Dowden, W.S.O. Rodden, S.S. Kudesia, D.P. Hand, J.D.C. Jones. Time dependent ablation and liquid ejection processes during the laser drilling of metals. Optics Communication,2001,191:97-112
    [131]G.K.L. Ng, P.L. Crouse, L. Li. An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry. International Journal of Heat and Mass Transfer,2006,49:1358-1374
    [132]K. Salonitis, A. Stournaras, G. Tsoukantas, P. Stavropoulos, G. Chryssolouris. A theoretical and experimental investigation on limitations of pulsed laser drilling. Journal of Materials Processing Technology,2007,183:96-103.
    [133]A.N. Samant, N.B. Dahotre. Computational predictions in single-dimensional laser machine of alumina. International Journal of Machine Tools & Manufacture,2008, 48:1345-1353
    [134]R.E. Wagner. Laser drilling mechanics. Journal of Applied Physics,1974, 45(10):4631-4637
    [135]A. Kar, J. Mazumder. Two-dimensional model for material damage due to melting and vaporization during laser irradiation. Journal of Applied Physics,1990, 68(8):3884-3891
    [136]R.W. Olson, W.C. Swope. Laser drilling with focused Gaussian beams. Journal of Applied Physics,1992,72(8):3687-3696
    [137]PA. Atanasov, E.D. Eugenieva, N.N. Nediakov. Laser drilling of silicon nitride and alumina ceramics:A numerical and experimental study. Journal of Applied Physics, 2001,89(4):2013-2016
    [138]A.V. Gusarov, I. Smurov. Thermal model of nanosecond pulsed laser ablation: Analysis of energy and mass transfer. Journal of Applied Physics,2005,97:014307
    [139]B.S Yilbas, S.B Mansoor. Laser pulse heating and phase changes in the irradiation region: temperature-dependent thermal properties case. International Journal of Thermal Science,2009,48:761-772
    [140]褚庆臣,虞钢,卢国权,何秀丽,郑彩云,许永泰.激光打孔工艺参数对孔型影响的二维数值模拟研究.中国激光,2011,38(6):0603001
    [141]V. Semak, A. Matsunawa. The role of recoil pressure in energy balance during laser materials processing. Journal of Physics D:Applied Physics,1997,30:2541-2552
    [142]A. Matsunawa, V. Semak. The simulation of front keyhole wall dynamics during laser welding. Journal of Physics D:Applied Physics,1997,30:798-809
    [143]R. Rai, G.G. Roy. A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding. Journal of Applied Physics,2007,101:054909
    [144]J.Y. Lee, S.H. Ko, D.F. Farson, C.D. Yoo. Mechanism of keyhole formation and stability in stationary laser welding. Journal of Physics D:Applied Physics,2002, 35:1570-1576
    [145]J. Zhou, H.L. Tsai, P.C. Wang. Transport phenomena and keyhole Dynamics during pulsed laser welding. Transactions of the ASME,2006,128:680-690.
    [146]K.W. Park, S.J. Na. Theoretical investigation on multiple-reflection and Rayleigh absorption-emission-scattering effects in laser drilling. Applied Surface Science, 2010,256:2392-2399
    [147]L. Han, F.W. Liou. Numerical investigation of the influence of laser beam mode on the melt pool. International Journal of Heat and Mass Transfer,2004, 47:4385-4402
    [148]W.W. Duley, W.A. Young. Kinetic effects in drilling with the CO2 laser. Journal of Applied Physics,1973,44(9):4236-4237.
    [149]A. Matsunawa, J.D. Kim, N. Seto, M. Mizutani, S. Katayama. Dynamics of keyhole and molten pool in laser welding. Journal of Laser Applications,1998, 10(6):247-254
    [150]F. Abt, M. Boley, R. Weber, T. Graf, G. Popko, S. Nau. Novel X-ray system for in-situ diagnostics of laser based process-first experimental results. Physics Procedia,2011,12:761-770.
    [151]M. Schneider, L. Berthe, R. Fabbro, M. Muller. Measurement of laser absorption for operating parameters characteristic of laser drilling regime. Journal of Physics D:Applied Physics,2008,41:155502
    [152]P. Stritt, R. Weber, T. Graf, S. Muller, C. Ebert. Utilizing laser power modulation to investigate the transition from heat-conduction to deep-penetration welding. Physics Procedia,2011,12:224-231
    [153]I. Eriksson, P. Gren, J. Powell, A.F.H. Kaplan. New high-speed photography technology for observation of fluid in laser welding.2010,49(10):100503
    [154]Peter Berger, Helmut Hugel, Thomas Graf. Understanding pore formation in laser beam welding. Physics Procedia,2011,12:241-247
    [155]A. Schoonderbeek, C.A. Biesheuvel, R.M. Hofstra, K.J. Boller, J. Meijer. Shadowgraphic imagine of material removal during laser drilling with a long pulsed excimer laser. Applied Physics A,2004,80(4):769-775
    [156]K.T. Voisey, S.S. Kudesia, W.S.O. Rodden, S.P. Hand, J.D.C. Jones, T.W. Clyne. Melt ejection during laser drilling of metals. Materials Science and Engineering A, 2003,536:414-424
    [157]M. Schneider, L. Berthe, R. Fabbro, M. Muller, M. Nivard. Gas investigation for laser drilling. Journal of Laser Applications,2007,19(3):165-169
    [158]D.K.Y. Low, L. Li, A.G. Corfe, P.J. Byrd. Spatter-free laser percussion drilling of closely spaced array. International Journal of Machine Tools & Manufacture,2001, 41:361-377
    [159]M. Born, E. Wolf. Principles of optics. Cambridge University Press,2003
    [160]D. Bergestrom, J. Powell, A.F.H. Kaplan. Absorptance of nonferrous alloys to Nd:YLF and Nd:YAG laser light at room temperature. Applied Optics,2007, 46:1290-1031
    [161]W. Schulz, G. Simon, H. M. Urbassek, I. Decker. On laser fusion cutting of metals. Journal of Physics D:Applied Physics,1987,20:481-488
    [162]K. Venkatakrishnan, B. Tan, P. Stanley, N. R. Sivakumar. The effect of polarization on ultrashort pulsed laser ablation of thin metals films. Journal of Applied Physics, 2002,92:1604-1607
    [163]S. Nolte, C. Momma, G Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, H. Welling. Polarization effects in ultrashort-pulse laser drilling. Applied Physics A, 1999,68:563-567
    [164]V.G. Niziev, A.V. Nesterov. Influence of beam polarization on laser cutting efficiency. Journal of Physics D:Applied Physics,1999,32:1455-1461
    [165]S. Quabis, R. Dorn, G. Leuchs. Generation of radially polarized doughnut mode of high quality. Applied Physics B,2005,81:597-600
    [166]G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel. Efficient extracavity generation of radially and azimuthally polarized beams. Optics Letters,2007, 32(11):1468-1470
    [167]M.A. Ahmed, A. Voss, M.M. Vogel, T. Graf. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers. Optics Letters,2007,32(22):3272-3274
    [168]M. Kraus, M.A. Ahmed, A. Michalowski, A. Voss, T. Graf. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Optics Express,2010,18:22305-22313
    [169]J. Milewski, E. Sklar. Modelling and validation of multiple reflections for enhanced laser welding. Modelling Simulation in Materials Science and Engineering,1996, 4:305-322
    [170]M.F. Modest. Effects of multiple reflections on hole formation during short-pulsed laser drilling. Journal of Heat Transfer,2006,128:653-661
    [171]H. Ki, P.S. Mohanty, J. Mazumder. Multiple reflection and its influence on keyhole evolution. Journal of Laser Application,2002,14(1):39-45
    [172]林钢,林慧国,赵玉涛.铝合金应用手册.机械工业出版社,2006
    [173]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998
    [174]J. Crank, P. Nicolson. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics,1996,6:207-226
    [175]B.S. Yilbas, A.F.M. Arif. Laser treatment of aluminum surface:Analysis of thermal stress field in the irradiated region. Journal of Materials Processing Technology, 2009,209:77-88
    [176]O.C. Zienkiewicz. The Finite Element Method, third ed., McGraw-Hill Inc., London,1977
    [177]Seong-Hoon Kang, Yong-Taek Im. Three-dimensional thermo-elastic-plastic finite element modeling of quenching process of plain-carbon steel in couple with phase transformation. International Journal of Mechanical Sciences,2007,49:423-439.
    [178]刘庄,吴肇基,吴景之,张毅.热处理过程的数值模拟.北京:科学出版社,1996
    [179]J. Schijve. Fatigue damage in aircraft structures, not wanted, but tolerated? International Journal of Fatigue,2009,31:998-1011
    [180]M. Bass. Encyclopedia of lasers and optical technology. Academic Press Inc., San Diego,1991
    [181]J. Cordingley. Application of a binary diffractive optic for beam shaping in semiconductor processing by lasers. Applied Optics,1993,14:2538-2542
    [182]D. Corey. Beam shaping applications in laser micromachining for the microelectronics industry. SPIE,2001,4443:135-149
    [183]方昆凡.工程材料手册.有色金属卷.北京:北京出版社,2002
    [184]J. Xie. Comparatice studies of metal cutting with high power lasers. SPIE,1997, 3092:764-767
    [185]R.V. Preston, H.R. Shercliff, P.J. Withers, S. Smith. Physically-based constitutive modeling of residual stress development in welding of aluminum alloy 2024. Acta Materialia,2004,52:4973-4983
    [186]W.M. Rohsenow, J.P. Hartnett, E.N. Ganic. Handbook of heat and mass transfer fundamentals. McGraw-Hill Inc., New York,1985
    [187]A. A. Peligrad, E. Zhou, D. Morton, L. Li. A melt depth prediction model for quality control of laser surface glazing of inhomogenous materials. Optics Laser Technology,2001,33:7-13
    [188]D.K.Y. Low, L. Li, P.J. Byrd. The effects of process parameters on spatter deposition in laser percussion drilling. Optics Laser Technology,2000,32:347-354
    [189]Kai Chen, Y. Lawrence Yao, Vijay Modi. Gas Dynamic effects on laser cut quality. Journal of Manufacturing Processes,2001,3:38-49
    [190]S.N. Reznik, A.L. Yarin. Spreading of an axisymmetric viscous drop due to gravity and capillarity on a dry horizontal wall. International Journal of Multiphase Flow, 2002,28:1437-1457
    [191]M.V. Allmen, A. Blatter. Laser-Beam interactions with materials, Springer, Berlin, 1995
    [192]W.R. Simth, R.M.M. Mattheij. Solidification of a two-dimensional high Reynolds number flow and its application to laser percussion drilling. European Journal of Appllied Mathematics,2007,18:1-19
    [193]John Dowden. The theory of laser materials processing:Heat and mass transfer in modern technology. Springer,2008
    [194]B.S. Guru, H.R. Hiziro□lu. Electromagnetic Field Theory Fundamentals. Cambridge University Press, New York,2004
    [195]J.M Jin. The finite element method in electromagnetics. New York:Wiley,1993
    [196]A. Degiron, H.J. Lezec, N. Yamamoto, T.W. Ebbesen. Optical transmission properties of single subwavelength aperture in a real metal. Optics Communication, 2004,239:61-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700