用户名: 密码: 验证码:
碲化铋基热电薄膜制备及其热电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是实现热能和电能直接转换的材料,可用于温差发电和通电制冷。Bi_2Te_3基化合物是室温性能最好的热电材料,PbTe基化合物是中温(300~900K)性能较好的热电材料。经过几十年的研究,块体Bi_2Te_3基和PbTe基材料的热电优值一直徘徊在1左右。随着纳米技术的兴起,近年来有关在低维材料中取得高热电优值的报道不断出现。将材料的晶粒细化到纳米级或在材料内部添加纳米级第二相粒子并降低材料维数,可以增加对载流子和声子的散射,提高Seebeck系数,降低热导率,提高热电性能。本文从理论模拟计算入手,设计了(Bi_2Te_3/PbTe)n薄膜的结构,采用磁控溅射法制备了不同结构的p型Bi_2Te_3薄膜和Bi_2Te_3与PbTe的复合薄膜,对薄膜结构与性能作了系统研究。
     本文首先从波尔兹曼方程出发,首次引入了Bi_2Te_3/PbTe粗糙界面效应,限定量子隧道效应,模拟计算(Bi_2Te_3/PbTe)n多层量子阱结构的热电性能,结果表明:当PbTe障碍层的宽度为1nm时,隧道传输系数为0.15;粗糙的(Bi_2Te_3/PbTe)n界面对载流子产生漫反射,使得(Bi_2Te_3/PbTe)n多层量子阱的最大ZT值急剧降低;限定PbTe障碍层的宽度为1nm,PbTe障碍层的存在使得镜面参数p为1时的ZT值比Bi_2Te_3理想超晶格的ZT值低近1倍。当Bi_2Te_3亚层宽度增大时,计算值还表明(Bi_2Te_3/PbTe)n多层量子阱的ZT值急剧下降;当p为0.5,Bi_2Te_3亚层宽度超过2nm时,其ZT值比Bi_2Te_3块体材料的还要低。模拟结果与制备得到的(Bi_2Te_3/PbTe)n多层膜的实验结果中功率因子较低相一致。
     本文系统的研究了磁控溅射工艺制备得到的Bi_2Te_3薄膜、(Bi_2Te_3/PbTe)n多层膜和(PbTe)np/Bi_2Te_3纳米复合薄膜的结构。研究发现,采用射频磁控溅射,在低功率(25W)溅射条件下,在平整的表面(解理云母片或冷抛石英玻璃)上,Bi_2Te_3以非晶态的结构沉积在基底表面;随着沉积时间的延长,Bi_2Te_3薄膜变厚的同时发生结晶,形成纳米晶薄膜;采用间歇沉积(沉积1min,停止溅射约1min后再溅射)的方式首次得到了非晶态的微米量级厚度的Bi_2Te_3薄膜。采用直流磁控溅射沉积PbTe时,PbTe以颗粒形态沉积在基底表面,首先形成不连续的岛状结构,当连续沉积3s以上时,形成连续的薄膜。控制磁控溅射工艺成功地得到(Bi_2Te_3/PbTe)n纳米多层膜,多层膜中PbTe亚层厚度最小约为6nm。首次采用磁控溅射多层膜的工艺得到了PbTe纳米颗粒弥散分布在Bi_2Te_3基体中的(PbTe)np/Bi_2Te_3纳米复合薄膜,其中PbTe纳米颗粒的尺寸在2~5nm,并且PbTe纳米颗粒均匀弥散分布在Bi_2Te_3基体中,不存在搭接现象。
     射频磁控沉积的Bi_2Te_3非晶态薄膜在300℃条件下退火3小时后,薄膜发生结晶,晶粒尺寸不超过20nm。退火前非晶态的Bi_2Te_3中载流子处于定域态中,限制了载流子的迁移,使得非晶态中的电导率比退火后的晶态Bi_2Te_3薄膜的电导率要低。研究Bi过量程度不同的p型Bi_2Te_3晶态薄膜,其电导率在300~700S/cm范围内变化,电导率较小,主要原因是受到薄膜内部大量的缺陷和界面的散射造成;Seebeck系数在80~160μV/K范围内变化;最大的功率因子只有8×10-4WK-2m-1。采用磁控溅射沉积制备得到(Bi_2Te_3/PbTe)n纳米多层膜,PbTe亚层是结晶态,Bi_2Te_3亚层是非晶态的。由理论分析表明Bi_2Te_3/PbTe界面的镜面参数p约为0.3~0.4时,理论计算得到的电学性能与实验吻合;退火后镜面参数降低。载流子主要在Bi_2Te_3亚层中传输,受到强烈的界面散射使得p型(Bi_2Te_3/PbTe)n多层膜的Seebeck系数在100℃时为250μV/K;但其电导率低,功率因子总体较低。在(PbTe)np/Bi_2Te_3纳米复合薄膜中,载流子主要在Bi_2Te_3基体中进行输运,一方面沉积得到的薄膜中PbTe纳米颗粒是晶态的,Bi_2Te_3在沉积过程中依托PbTe晶粒生长,有利于Bi_2Te_3与PbTe之间形成比较理想的界面,界面散射较弱,电导率相对退火后的(PbTe)np/Bi_2Te_3纳米复合薄膜较高;而退火后的Seebeck系数由于比较强烈的界面散射而有所增大。与Bi_2Te_3/PbTe多层膜相比,(PbTe)np/Bi_2Te_3纳米复合薄膜的功率因子较高。
     采用3ω法测量了(PbTe)np/Bi_2Te_3纳米复合薄膜的热导率,发现薄膜的声子热导率在300~360K的温度范围内随着温度的升高而增大,说明(PbTe)np/Bi_2Te_3纳米复合薄膜中声子的散射机制主要是界面散射。利用有效介质理论和界面热阻,引入基体晶粒大小的尺寸效应,分析了(PbTe)np/Bi_2Te_3纳米复合薄膜的热导率随PbTe纳米颗粒体积含量增加的变化,得到Bi_2Te_3/PbTe的界面热阻在PbTe体积含量较低时,随PbTe体积含量的增大而变小;当PbTe体积含量较大时,界面热阻又变大,且界面热阻变化范围小,0.94~2.48×10-9m2K/W。
     针对军事装备上高温部位的热红外隐身的需求,本文首次提出设计温差发电和通电制冷两种方式来解决这一问题。理论分析和实验表明,采用温差发电方式不能有效地降低“表面”温度;采用通电制冷的方式能迅速有效地降低“表面”温度,且能通过调节外加电流大小来控制“表面”温度,有望实现智能热红外隐身。
Thermoelectric materials interconvert heat and electricity directly. They are used in power generation and cooling. Bi_2Te_3 based materials are the best thermoelectric materials at room temperature. And PbTe based materials are the better thermoelectric materials from 300 to 900K. But the figure of merits ZT of Bi_2Te_3 and PbTe are about 1 for decades. In recent years, the research of thermoelectric material has made new progress by nanotechnology. Low dimensional and nanostructured materials have a large amount of boundaries that will strongly scatter the phonons and carriers. Therefore the Seebeck coefficient is improved and the thermal conductivity reduced. In this paper, structures of (Bi_2Te_3/PbTe)n multilayer films were designed according to the theoretical calculation from Boltzmann equation and various nanostructured p type Bi_2Te_3 films and composite films of Bi_2Te_3 and PbTe were fabricated by magnetron sputtering. The structures and properties are systematically investigated.
     In this paper, rough interface of Bi_2Te_3/PbTe and quantum tunnel effect are induced to analyse the ZT of (Bi_2Te_3/PbTe)n multilayer quantum well from Boltzmann equation for the first time. The result shows that increases rapidly when the thickness of PbTe barrier is under 3 nm. Rough interface of Bi_2Te_3/PbTe scatters the carriers strongly and ZT of (Bi_2Te_3/PbTe)n multilayer quantum well decreases rapidly because of the rough interface. If the thickness of PbTe barrier is restricted to 1 nm (the tunnel transmission coefficient is 0.15), the ZT of Bi_2Te_3/PbTe multilayer quantum well is much lower than the ZT of ideal superlattice even if the specularity parameter p is 1. The calculational result also shows that the ZT decreases with increasing of the Bi_2Te_3 sub-layer. If the p is 0.5, the ZT of Bi_2Te_3/PbTe multilayer quantum well is lower than the ZT of bulk Bi_2Te_3 when the thickness of Bi_2Te_3 sub-layer is over 2nm. The calculational results are consistent to the experimental results of (Bi_2Te_3/PbTe)n nultilayer films with low power factors.
     The influences of magnetron sputtering technics on the structures of Bi_2Te_3, (Bi_2Te_3/PbTe)n multilayer and (PbTe)np/Bi_2Te_3 nanocomposite films are systematically studied in this paper. The results show that amorphous Bi_2Te_3 deposit on the glabrous surfaces (mica or cool polishing quartz glass) perfectly with low sputtering power 25W. Amorphous Bi_2Te_3 will become nano-grain with the increasing of continuous sputtering time, and constitute tree structure vertical the substrate. Amorphous Bi_2Te_3 films can be acquired by the method of intermittent depositing. PbTe deposits on the surfaces with nano-particles magnetron sputtering. When the depositing time is over 3s, PbTe nano-particles will be continuous films with tight contact among the particles. Otherwise, PbTe nano-particles will be nano-island structure on the surfaces. So it can be acquired that (Bi_2Te_3/PbTe)n nano-multilayer and (PbTe)np/Bi_2Te_3 nanocomposite films of PbTe nano-particles dispersing in Bi_2Te_3 substrate. In the multilayer, the thicknesses of PbTe sub-layer are over 6 nm. The size of PbTe nano-particles are 2~5nm in the Bi_2Te_3 substrate without contact.
     The amorphous Bi_2Te_3 films crystallize completely after annealing under the condition of 300℃and 3 hours and the grain size is under 20nm. The carriers are confined in the confined states of amorphous Bi_2Te_3 films. So the conductivities of amorphous Bi_2Te_3 films are less than the conductivities in crystalline Bi_2Te_3 films. The conductivities are 300~700 S/cm in crystalline Bi_2Te_3 films with over Bi. The conductivities are low because the hole is scattered strongly by the plentiful defects and interface. Seebeck coefficients are 80 to 160μV/K in the films. And the best power factor is only 8×10-4WK-2m-1. In the (Bi_2Te_3/PbTe)n nano-multilayer films, the sub-layer of PbTe is crystalline and the sub-layer of Bi_2Te_3 amorphous. According to the model of rough interface, the specularity parameter p of the Bi_2Te_3/PbTe interface is about 0.3~0.4. And the value is higher than the p of the Bi_2Te_3/PbTe interface after annealing. Because Bi_2Te_3 deposits on the surface of PbTe sub-layer, but the coherent deposition is broken after annealing. The carriers are scattered strongly by the interface when they transmit in the Bi_2Te_3 sub-layer. So the Seebeck coefficients increase and Seebeck coefficient of p type Bi_2Te_3/PbTe multilayer films is 250μV/K at 100℃. But the conductivities are low because of scattering to the carriers and the power factors are low. In the (PbTe)np/Bi_2Te_3 nanocomposite films, Bi_2Te_3 deposits along the nucleuses of nano-grain and that is benefit to form coherent interface between Bi_2Te_3 and PbTe. The carriers are scattered weakly by the interface. But the coherent interfaces are destroyed after annealing as the same of (Bi_2Te_3/PbTe)n multilayer films. So the conductivities of the (PbTe)np/Bi_2Te_3 nanocomposite films as grown are higher than the conductivities after annealing. In verse, the Seebeck coefficients are higher after annealing because of the interface strongly scattering to carriers. The power factors are higher to the (PbTe)np/Bi_2Te_3 nanocomposite films than that to the (Bi_2Te_3/PbTe)n multilayer films.
     The 3ωthermal conductivity measurement technique was introduced to measure the thermal conductivities of the (PbTe)np/Bi_2Te_3 nanocomposite films. The results show that the lattice thermal conductivities increase with the increasing of temperatures in the temperature zone 300 to 360K. That is, the phonons are scattered by the interfaces when they transmit in the films in the temperature zone. For interpreting the regular of phonon thermal conductivities depending on fraction of PbTe nano-particles, a model is introduced to integrate Effective Medium Theory, interfacial thermal resistance and nano-grain size effect in the substrates. The interfacial thermal resistances of Bi_2Te_3/PbTe are about 0.94 to 2.48×10-9m2K/W in this paper. For the (PbTe)np/Bi_2Te_3 nanocomposite films after annealing, Bi_2Te_3 crystallize along on the PbTe and so the coherent interface is better in the higher fraction of PbTe nano-particles when the fraction is small. But the coherent interface is destroyed when the fraction of PbTe nano-particles is large enough. That exhibits that the interfacial thermal resistances increase with the increasing of PbTe nano-particles at first. But the interfacial thermal resistances decrease with the increasing of PbTe nano-particles at last when the volume of PbTe nano-particles is large enough.
     For the need to thermal infrared stealth of high temperature surfaces of martial equipments, two models are designed to resolve the difficulty with the effects to giving power and refrigeration of thermoelectric materials for the first time. The results show that the effect to giving power can’t to decrease the external temperature effectively. And the effect to refrigeration can decrease the external temperature effectively and rapidly and control the external temperature by varying the electric current of the thermoelectric module. That is imaginable to achieve intelligent thermal infrared stealth.
引文
[1] Cadofl J B, Miller E. Thermoelectric Materials and Device [M]. New York :Reinhold Publ Corp, 1961
    [2] Wood C. Materials for Thermoelectric Energy Conversion [J], Rep. Prog Phys, 1988,51(1):459-463
    [3] Gerald Mahan, Brian Sales and Jeff Sharp. Thermoelectric Materials: New Approaches to An Old Problem [J]. Physics Today, 1997, 50(2):42-47
    [4]胡淑红,朱铁军,赵新兵等.热电材料:古老的课题,新的研究方法[J].功能材料, 2001, 32(2):113-114
    [5]钟广学等.半导体致冷器件及其应用[M].北京:科学出版社, 1989, 11
    [6]高敏,张景韶,D.M. Rowe.温差电转换及其应用[M].兵器工业出版社,1995
    [7]马秋花,赵昆渝,李智东等.热电材料综述[J].电工材料,2004,(1):43-47
    [8]朱文,杨君友,崔昆等.热电材料在发电和制冷方面的应用前景及研究进展[J].材料科学与工程,2002,20(4):585-588
    [9]南策文.热电材料及多场耦合效应[J],中国科学基金,1999,13(4):199-202
    [10]孟建,任玉芳.稀土磷化物的温差电性质[J],材料科学进展,1989,3(5):456-459
    [11]蔡克峰,南策文.碳化硼热电材料研究进展[J],材料导报,1998,12(1):41-43
    [12] G.Min, D.M.Rowe.“Symbiotic”application of thermoelectric conversion for fluid preheating/power generation [J]. Energy Conversion and Management, 2001, (1):221
    [13] J.nurnus, H.Bottner, C.Kunzel, U.Vetter, et.al. Thin film based thermoelectric energy conversion systems[C]. 21th International Conference on Thermoelectric, 2002:523
    [14] G.Chen, C.Dames, T.Harris, et.al. Thermal Conductivity Reduction Mechanisms in Superlattices [C]. 23th International Conference on Thermoelectric, 2003:336
    [15] Ronggui Yang, Gang Chen. Recent Development in Nanostructured Thermoelectric Materials and Devices[C]. 2004 Inter Society Conference on Thermal Phenomena, 2004:731.
    [16] Ioffe A.F.. Semiconductor Thermoelements and Thermoelectric Cooling [M]. Infosearch Ltd., London, 1957
    [17] Goldsmid H.J.. Electrionic Refrigeration [M]. Pion, London, 1986
    [18]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994,286-298
    [19] Gray P.E.. Dynamic Behaviour of Thermoelectric Device [M]. New York,Wiley,1960
    [20] Bateman P.J. Thermoelectric Power Generation [J]. Contemporary Physics, 1960,22(1):302-311
    [21] Rosi F.D., Hocking E.F., Lindenblad N.E.. Semiconducting Materials for Thermoelectric Power Generation [J]. RCA Review, 1961,22(1):82-121
    [22] Rosi F.D.. Thermoelectricity and Thermoelectric Power Generation [J]. solid-state electronics,1968,11(2):833-868
    [23] Heikes R.R., Ure R. W.. Thermoelectricity Science and Engineering [M]. New York, Interscience, 1961
    [24] Rowe D.M.. Thermoelectric Power Generation [J].Proceedings of Institute of Electrical Engineers Cardiff, U K, 1978,125911R:1113-1136
    [25] Burshteyn A I. Semiconductor Thermoelectric Device [M]. London, Temple Press, 1961
    [26] Rowe D.M.. CRC handbook of Thermoelectric [M]. CRC Press, New York,1995
    [27] Weili Liu. In-plane Thermoelectric Properties of Si/Ge Superlattices[D].Los Angeles, University of California, 2004:20-22
    [28] Bhandari C.M., Rowe D.M.. Thermal Conductivity of Highly Disordered Semiconductor Alloys [J]. Journal of Physics D, 1977, 10:L59-L61
    [29] Vining C.B., Laskow W., Hanson J.O., Beck R.R.V., and Gorsuch P.D.. Thermoelectric Properties of Pressure-sintered Si0.8Ge0.2 Thermoelectric Alloy [J]. Journal of Applied Physics, 1991,69:4333-4340
    [30] Fuschillo N. and Gibson R.. Germanium-silicon, lead telluride, and bismuth telluride alloy solor thermoelectric generators for venus and mercury probes [J]. Advanced Energy Conversion, 1967, 7:43-52
    [31] Dubios L.H.. Introduction to the DARPA Program in Advanced Thermoelectric Materials and Devices [C]. Proceedings ICT’99, 18 International Conference on Thermoelectric, 1999:1-4
    [32] Cohn J.L., Nolas G.S., Fessatidis V., Metcalf T.H., and Slack G.A.. Glasslike Heat Conduction in High-mobility Crystalline Semiconductors [J]. Physical Review Letters, 1999,82:779-782
    [33] Nolas G.S., Kaeser M., Littleton R.T., et al. High Figure of Merit in Partially Filled Ytterbium Skutterudite Materials [J]. Applied Physics Letters, 2000, 77(12):1855-1857
    [34] Bhattacharya S., Pope A.L., Littleton R.T., Tritt T.M., Ponnambalam V. Xia Y., and Poon S.J.. Effect of Sb Doping on the Thermoelectric Properties of Ti-based Half-Heusler Compounds TiNiSn1-xSbx [J]. Applied Physics Letters, 2000, 77:2476-2478
    [35] Hicks L.D., Dresselhaus M.S.. Effect of quantum-well structures on thethermoelectric figure of merit [J]. Physical Review B, 1993, 47(5):12727- 12731
    [36] Hicks L.D., Dresselhaus M.S.. Thermoelectric figure of merit of a one-dimensional conductor [J]. Physical Review B, 1993, 47(6):16631-16634
    [37] Chen G.. Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-film Structures [J]. Journal of Heat Transfer, 1997, 119:220-229
    [38] Chen G.. Thermal Conductivity and Ballistic Phonon Transport in The Cross-plane Direction of Superlattices [J]. Physical Review B, 1998, 57:14958-14973
    [39] Hyldegaard P. and Mahan G.D.. Phonon Superlattice Transport [J]. Physical Review B, 1997, 56:10754-10757
    [40] Tamura S., Tanaka Y., and Maris H.J.. Phonon Group Velocity and Thermal Conduction in Superlattices [J]. Physical Review B, 1999, 60:2627-2630
    [41] Yang B., and Chen G.. Lattice Dynamics Study of Phonon Heat Conduction in Quantum Wells [J]. Physics of Low-Dimensional Structures, 2000, 5/6:37-48
    [42]马秋花,孙亚光.Bi-Te基热电材料的研究进展[J].稀有金属快报,2007,26(6):7-10
    [43] Ni H L, Zhu T J, Zhao X B. Thermoelectric Properties of Hydrothermally Synthesized and Hot Pressed n-Type Bi2Te3 Alloys with Different Contents of Te [J]. Materials Science and Engineering, 2005, B117:119-122
    [44]樊希安,杨君友,陈柔刚,朱文,鲍思前等.块体Bi2Te3基热电材料性能优化及最新进展[J].功能材料,2005, 36(8):1162-1166
    [45] Nolas G.S., Sharp J., and Goldsmid H.J.. Thermoelectrics. Berlin:Springer, 2001, 36
    [46] Seo J., Lee C., and Park K.. Effect of extrusion temperature and dopant on thermoelectric properries for hot-extruded p-type Te-doped Bi0.5Sb1.5Te3 and n-type SbI3-doped Bi2Te2.85Se0.15 [J]. Materials Science and Engineering, 1998, B54:135-140
    [47] Huong N.T., Setou T., Nakamoto G, et al. High thermoelectric performance at low temperature of p-Bi1.8Sb0.2Te3.0 grown by the gradient freeze method from Te rich melt [J]. Journal of Alloys and Compounds, 2004, 368:44-50
    [48] Zemskov V.S., Belaya A.D., Beluy U.S., et al. Growth and investigation of thermoelectric properties of Bi-Sb alloy single crystals [J]. Journal of Crystal Growth, 2000, 212:161-166
    [49] Martin-Lopez R., Lenoir B., Devaux X., et al. Mechanical alloying of BiSb semiconducting alloys [J]. Materials Science and Engineering, 1998, A248:147-152
    [50] Pierrat P., Dauscher A., Lenoir R., et al. Preparation of the Bi8Sb32Te60 solid solution by mechanical alloying [J]. Journal of Materials Science, 1997, 32(14):3653-3657
    [51] Yang J Y, Aizawa T , Yamamoto A.,et al. Thermoelectric properties of n-type (Bi2Se3)(x)(Bi2Te3)(1-x) prepared by bulk mechanical alloying and hot pressing [J ] . Journal of Alloys and Compounds , 2000 , 312 : 326-330
    [52] Yang J Y, Aizawa T , Yamamoto A.,et al. Effects of interface layer on thermoelectric properties of a pn junction prepared via the BMA-HP method [J ] Materials Science and Engineering, 2001, B85:34-37
    [53] Yang J Y., Aizawa T., Yamamoto A., et al. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x prepared via bulk mechanical alloying and hot pressing [J]. Journal of Alloys and Compounds, 2000, 309:225-228
    [54] Seo J., Park K., Lee D., et al. Thermoelectric properties of hot-pressed n-type Bi2Te2.85Se0.15 compounds doped with SbI3 [J]. Materials Science and Engineering, 1997, B49:247-250
    [55] Yamamoto S., Kosuga A., Kurosaki K.. Thermoelectric properties of Tl9BiTe6 [J]. Journal of Alloys and Compounds, 2003, 352:275-278
    [56] Seo J., Park K., Lee D.. Fabrication and thermoelectric properties of n-type SbI3-doped Bi2Te2.85Se0.15 compounds by hot extrusion [J]. Materials Research Bulletin, 1998, 33(4):553-559
    [57] Seo J., Cho D., Park D., et al. Fabrication and thermoelectric properties of p-type Bi0.5Sb1.5Te3 compounds by ingot extrusion [J]. Materials Research Bulletin, 2000, 35:2157-2163
    [58] Miura S., Sato Y., Fukuda K., et al. Texture and thermoelectric properties of hot-extruded Bi2Te3 compound [J]. Materials Science and Engineering, 2000, A277(1):244-249
    [59] Chen Lidong, Jiang Jun, Shi Xun. Thermoelectric Performance of Textured Bi2Te3-Based Sintered Materials Prepared by Spark Plasma Sintering [J]. Mat Res Soc Symp Proc, 2004, 793:931-939
    [60] Yang L., Wu J.S., Zhang L.T.. Microstructure evolvements of a rare-earth filled skutterudite compound during annealing and spark plasma sintering [J]. Materials and Design, 2004, 25:97-102
    [61] Yang L., Wu J.S., Zhang L.T.. Synthesis of filled skutterudite compound La0.75Fe3CoSb12 by spark plasma sintering and effect of porosity on thermoelectric properties [J]. Journal of Alloys and Compounds, 2004, 364:83-88
    [62] Tritt T.M.. Holey and unholy semiconductors [J]. Science, 1999, 283:804-805
    [63] Hansen M., Anderko K.. Constitution of Binary Alloys[M]. McGww-Hii, New York, 1958, 1100
    [64] Zhu P.W., Imai Y., Shinohara Y., Jia X.P., and Zou G.T.. Enhanced thermoelectric propertied of PbTe alloyed with Sb2Te3 [J]. J. Phys.-Condes. Matter., 2005, 17(46):7319-7326
    [65]李斌,江锦春,张素英,张凤山.Pb1-xGexTe薄膜在铁电相变点的折射率异常[J].半导体学报, 2002, 23(10):1062-1066
    [66]刘倩,牟强,张方辉.碲化铅单晶及薄膜物理特性的研究[J].陕西科技大学学报, 2005, 23(2):45-49
    [67]李锡华,王明华,新明正弘.热电材料碲化铅PbTe的晶体生长及物理性质研究[J].浙江大学学报, 1999, 33(5):475-48-78
    [68] Ovsyannikov S.V., Shchennikov V.V.. Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures [J]. Physica B, 2004, 344:190-194
    [69] Cui J.L.. Preparation and electrical properties of ternary compound (PbTe)1-x(SnTe)x with nanocrystallines[C], in High-Performance Ceramics Iii, Pts 1 and 2, 2005, Trans Tech Publications Ltd: Zurich-Uetikon. 389-392
    [70] Gelbstein Y., Dashevsky Z. and Dariel M.P.. High performance n-type PbTe-based materials for thermoelectric applications [J]. Physica B, 2005, 363(1-4):196-205
    [71] Dashevsky Z., Shusterman S., Dariel M.P. and Drabkin I.. Thermoelectric efficiency in graded indium-doped PbTe crystals [J]. J. Appl. Phys., 2002, 92(3):1425-1430
    [72] Hsu K.F., Loo S., Guo F. Chen W., Dyck J.S., Uher C., Hogan T., Polychroniadis E.K., and Knnatxidis G.. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit[J]. Science, 2004, 303(5659):818-821
    [73] Wang H., Li J.F., Nan C.W., Zhou M., et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering [J]. Applied Physics Letters, 2006, 88: 092104-092106
    [74] Kengo Kishimoto, Tsuyoshi Koyanagi. Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties [J]. J. Appl. Phys., 2002, 92:2544-2546
    [75] R. Venkatasubramanian, E. Siivola, T. Colpitts, et al. Thin film thermoelectric devices with high room-temperature figures of merit [J]. NATURE, 2001, 413: 597-602
    [76] V.D. Das, N. Soundararajan. Size and temperature effects on the thermoelectric power and electrical resistivity of bismuth telluride thin films [J]. Physical Review B, 1988, 37:45-52
    [77] V.D. Das, R.C. Mallik. Study of scattering of charge carriers in thin films of (Bi0.25Sb0.75)2Te3 alloy with 2% excess Te [J]. Materials Research Bulletin, 2002, 37:1961-1971
    [78] R.C. Mallik, V.D. Das. Study of structural-, compositional-, and thickness-dependent thermoelectric and electrical properties of Bi93Sb7 alloy thin films [J]. Journal of Applied Physics, 2005, 98
    [79] A. Giani, A. Boulouz, F. Pascal-Delannoy, et al. Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology, 1999, 64:19-24
    [80] Z.F. Ding, L. Viculis, J. Nakawatase, et al. Intercalation and solution processing of bismuth telluride and bismuth selenide [J]. Advanced Materials, 2001, 13:797-800
    [81] M. Takahashi, M.Kojima, S. Sato, et al. Electric and thermoelectric properties of electrodeposited bismuth telluride (Bi2Te3) films [J]. Journal of Applied Physics, 2004, 96:5582-5587
    [82] Z. X iao, R.L. Zimmerman, L.R. Holland, et al. MeV Si ion bombardments of thermoelectric Bi2Te3/Sb2Te3 multilayer thin films for reducing thermal conductivity [J]. Nuclear Instruments& Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2005, 241: 568-572
    [83] Z. Xiao, R.L. Zimmerman, L.R Holland, et al. Nanoscale Bi2Te3/Sb2Te3 multilayer thin film materials for reduced thermal conductivity [J]. Nuclear Instruments&Methods in Physics Research Section B-Beam Interactions with Materials andAtoms, 2006, 242:20 1-204
    [84] K.W. Cho, I.H. Kim. Thermoelectric properties of the flash-evaporated n-typeBi2Te2.4Se0.6 thin films [J]. Materials Letters, 2005, 59:966-970
    [85] Y.C. Jung, J.H. Kim, S.H. Suh, et al. Material characteristics of metal organic chemical vapor deposition of Bi2Te3 films on GaAs substrates [J]. Journal of Crystal Growth, 2006, 290:441-445
    [86] J. Walachova, R. Zeipl, J. Zelinka, et al. High room-temperature figure of merit of thin layers prepared by laser ablation from Bi2Te3 target [J]. Applied Physics Letters, 2005, 87:081902
    [87] I1-Ho Kim. Electronic transport properties of the flash-evaporated p-type Bi0.5Sb1.5Te3 thermoelectric thin films [J]. Mater Lett,2000,44:75-79
    [88] Helin Zou, D.M. Rowe, Gao Min. Growth of p- and n- type bismuth telluride thin films by co-evaporation [J]. J Cryst Growth,2001,222:82-87
    [89] Venkatasubramanian R., Colpitts T., Watko E., et al. MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications [J]. J Cryst Growth,1997,170:817~821
    [90] G. Springholz, G. lhninger, and G. Bauer. Modulation doping and observationof the integral quantum hall effect in PbTe/Pb1-xEuxTe multiquantum wells [J]. Appl. Phys. Lett., 1993, 63:2908-2910
    [91] J.C. Caylor, K. Coonley, J. Stuart, et al. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity [J]. Appl. Phys. Lett., 2005, 87(2)
    [92] H. Beyer, J. Nurnus, H. Bottner, et al. PbTe based superlattice structures with high thermoelectric efficiency [J]. Appl. Phys. Lett., 2002, 80(7):1216-1218
    [93] I.M. Kokanbaev. Thermoelectric properties of n-PbTe films [J]. J. Eng. Phys. Thermophys., 2003, 76(2):432-433
    [94] Y.M. Lin and M.S. Dresselhaus. Thermoelectric properties of superlattice nanowires [J]. Phy. Rev. B, 2003,68(7)
    [95] M.S. Dresselhaus, G. Chen, M.Y. Tang, et al. New Directions for Low-Dimensional Thermoelectric Materials [J]. Advanced Materials, 2007, 19, 1-12
    [96] H. Kroemer. Proposed Class of Heterojunction Injection Lasers [J]. Proceedings IEEE, 1963, 51:1782-1783
    [97] Esaki L., and Tsu R.. Superlattice and Negative Differential Conductivity in Semiconductors [J]. IBM Journal of Research Development, 1970, Jan.:61-65
    [98]夏建白,朱邦芬.半导体超晶格物理[M].上海:上海科学技术出版社, 1995:1
    [99] Sofo J.O. and Mahan G.D.. Thermoelectric Figure of Merit of Superlattices [J]. Applied Physics Letters, 1994, 65:2690-2692
    [100] Broido D.A., and Reinecke T.L.. Thermoelectric Figure of Merit of Quantum Wire Superlattices [J]. Applied Physics Letters, 1995, 67, 100-102
    [101] Broido D.A., and Reinecke T.L.. Thermoelectric Transport in Quantum Well Superlattices [J]. Applied Physics Letters, 1997, 70:2834-2836
    [102]黄昆.固体物理学[M].北京:高等教育出版社, 1988:213-224
    [103]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994:101-104
    [104] Koga T., Sun X., Cronin S.B. and Dresselhaus M.S.. Carrier Pocket Engineering Applied to Strained Si/Ge Superlattices to Design Useful Thermoelectric Materials [J]. Applied Physics Letters, 1999, 75:2438-2440
    [105] Chen G., Tien C.L. Wu X., and Smith J.S.. Thermal Diffusivity Measurement of GaAs/AlGaAs Thin Film Structures [J]. Journal Heat Transfer, 1994, 116:325-331
    [106] Yao T.. Thermal Properties of AlAs/GaAs Superlattices [J]. Applied Physics Letter, 1987, 51:1798-1800
    [107] Tamura S., Tanaka Y., and Maris H.J.. Phonon Group-Velocity and Thermal Conduction in Superlattices [J]. Physical Review B, 1999,60:2627-2630
    [108] Yang B., and Chen G.. Lattice Dynamics Study of Anisotropic Heat Conduction in Superlattices [J]. Microscale Thermophysical Engineering, 2000, 5:107-116
    [109] Ziman, J.M.. Electrons and Phonons [M]. Oxford University Press, London
    [110]黄昆.固体物理学[M].北京:高等教育出版社, 1988:296-300
    [111]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994:296-298
    [112]黄昆.固体物理学[M].北京:高等教育出版社, 1988:142-147
    [113]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994:247-251
    [114]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994:370
    [115]蒋俊.碲化铋基热电材料的制备与性能研究[D].上海:硅酸盐研究所,2005:10
    [116] Broido D.A., Reinecke T.L.. Effect of superlattice structure on the thermoelectric figure of merit [J]. Physical Review B, 1995, 51(5):13797 ~13800
    [117] Lin-Chung P.J., Reinecke T.L.. Thermoelectric figure of merit of composite superlattice systems [J]. Physical Review B, 1995, 51(5):13244~13248
    [118]曾谨言.量子力学[M].北京:科学出版社,2007:74
    [119] Hartstein A., Ning T.H., and Fowler A.B.. Electron Scattering in Silicon Inversion Layers by Oxide and Surface Roughness [J]. Surface Science, 1976, 58:178-181
    [120] Cho A.Y.. Growth of periodic structure by the molecular-beam method [J]. Applied Physics Letters, 1971, 19:467-468
    [121] Dingle R., Stormer H.L., Gossard A.C., and Wiegmann W.. Electron Mobilities in Modulation-doped Semiconductor Heterojunction Superlattices [J]. Applied Physics Letters, 1978, 33:665-667
    [122] Tsui D.C., Stormer H.L., and Gossard A.C.. Two-dimensional Magneto- transport in the Extreme Quantum Limit [J]. Physical Review Letters, 1982, 48:1559-1562
    [123] Sonoda T., Ito M., Kobiki M., Hayashi K. Takamiya S., and Mitsui S.. Ultra-high Throughput of GaAs and (AlGa)As Layers Grown by MBE with a Specially Designed MBE System [J]. Journal of Crystal Growth, 1989,95:317-321
    [124] T.J. Wieting and M. Schlüter. Electrons and Phonons in Layered Crystal Structures [M]. Dordrecht, Holland, 1979
    [125] Tesanovic Z., Jaric M.V., and Maekawa S.. Quantum Transport and Surface Scattering [J]. Physical Review Letter, 1986, 57:2760-2763
    [126] Tellier C.R., and Tosser A.J.. Size Effects in Thin Films [M]. Elsevier Scientific, New York, 1982
    [127] Chen X.. Gas Dynamics and Its Application in Flow and Heat Transfer [M].北京:清华出版社, 1996
    [128] Siegel R. and Howell J.R.. Thermal Radiation Heat Transfer [M]. Hemisphere, Washington, 1992
    [129]薛增泉,吴全德,李洁.薄膜物理[M].北京:电子工业出版社,1991:279-291
    [130]邱瑞易,简瑞兴.薄膜式热电致冷器之性能探讨[C].台湾:能源与冷冻空调学术研讨会,2004,4.1.1-4.1.7
    [131]王增福,吴秉羽,杨太平.实用镀膜技术[M].北京:电子工业出版社.2008:1
    [132]褚君浩.窄禁带半导体物理学[M].北京:科学出版社,2005:71-102
    [133]沈海军,穆先才.纳米薄膜的分类、特性、制备方法与应用[J].纳米材料与结构,2005(11):506-510
    [134]王学华,薛亦渝.薄膜制备新技术及其应用研究[J].真空电子技术,2003(5):65-70
    [135]李洪林,苟立,冉均国.纳米Bi2Te3基热电材料最新研究进展[J].现代技术陶瓷,2005,104(2):16-20
    [136] S. Teichert, S. Schwendler, D.K. Sarkkar, et al. Growth of MnSi1.7 on Si (001) by MBE [J]. J Cryst Growth,2001,227-228:882-887
    [137] J.L. Liu, K.L. Wang, C.D. Moore, et al. Experimental study of a surfactant-assisted SiGe graded Layer and a symmetrically strained Si/Ge superlattices for thermoelectric applications[J].Thin Solid Film,2000, 369:121-125
    [138] A. Giani, A. Al Bayaz, A. Foucaran, et al. Fabrication of Bi2Se3 by metalorganic chemical vapour deposition [J]. J Cryst Growth,2002,236: 217-220
    [139]姚素薇,赵瑾,王宏智等.超晶格多层膜的电化学制备、表征及其GMR特性的研究[J].物理化学学报,2003,19(10):892-895
    [140]朱文,杨君友,郜鲜辉等.电化学原子层外延法制备碲化铋薄膜[J].应用化学,2005,22(11):1167-1171
    [141] B.R. Sankapal, R.S. Mane, C.D. Lokhande. Preparation and characterization of Bi2Se3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method [J]. Mater Chem Phys,2000,63:230-234
    [142] B.R. Sankapal, C.D. Lokhande. Photoelectrochemical characterization of Bi2Se3 thin films deposited by SILAR technique [J]. Mater Chem Phys, 2002,73:151-155
    [143] C.D. Lokhande, B.R. Sankapal, S.D. Sartale, et al. A novel method for the deposition of nanocrystalline Bi2Se3, Sb2Se3and Bi2Se3-Sb2Se3 thin films-SILAR [J]. Appl Surf Sci, 2001,182:413-417
    [144] B.R. Sankapal, C.D. Lokhande. Studies on photoelectrochemical cell formed with SILAR deposited Bi2Se3-Sb2Se3 multilayer thin films [J]. Solar Energy Materials & Solar Cells, 2001,69:43-52
    [145] B.R. Sankapal, C.D. Lokhande. Effect of annealing on chemically deposited Bi2Se3-Sb2Se3 composite thin films [J]. Mater Chem Phys, 2002,74:126-133
    [146] A. Hemrich, H. Griessmann, G. Behr, et al.Thermoelectric properties ofβ-FeSi2 single crystals and polycrystallineβ-FeSi2 thin film[J].Thin Solid Films, 2001,381:287-295
    [147] G.M. Beensh-Marchwicka, W. Mielcarek, E. Prociów. Evaluation of pulse magnetron sputtered Ge films doped with antimony for sensors application [J]. Sensor and Actuators B,2001,76:361-365
    [148]陈立东,蒋俊,柏胜强.碲化铋基热电材料的制备方法[P].中国专利,ZL03150425.6,2003
    [149]张素英,严义埙,张凤山等.一种富碲碲化铅材料的制备方法[P].中国专利, CN1136092A,1996
    [150] Dike P.H.. Thermoelectric Thermometry [M]. Philadelphia: Lecds and Northrup, 1954
    [151] Stuckes A.D., Chasmar R. P.: Report on the Meeting on Semiconductors [M]. London: Physical Society, 1956:119
    [152] Ioffe A.V., Ioffe A.F.. Sov. Phys. Tech. Phys, 1958(3):2163
    [153] Angstrom A.J.. New Method of Determining the Thermal Conductivity of Bodies [J]. Philosophical Magazine, 1863, 25(1):130-142
    [154]唐祯安,黄正兴,顾毓沁.MEMS中薄膜热物性测试方法研究[J].仪表技术与传感器, 2003, 1(2):6-11
    [155] Jackson W.B., Amer N.M., Boccara A.C., et al. Photo-thermal deflection spectroscopy and detection [J]. Applied Optics, 1981, 20(8):1333-1344
    [156] Bertolotti M., Voti R.L., Liakhou G., et al. On the photo-deflection methodapplied to low thermal diffusivity measurements [J]. Review of Scientific Instruments, 1993, 64(6):1576-1583
    [157]顾长志,金曾孙,吕宪义等.高导热金刚石薄膜的研究[J].物理学报, 1997, 46(10):1984-1989
    [158]张国斌,石军岩,施朝淑等.光声技术在固体材料热扩散率测量中的应用[J].物理, 2000, 29(7):416-419
    [159] Rosencwaig A., Gersho A.. Theory of the photoacoustic effect with solids [J]. Journal of Applied Physics, 1976, 47(1):64-69
    [160] Swimm R.T.. Photoacoustic determination of thin-film thermal properties [J]. Applied Physics Letters, 1983, 42(11):955-957
    [161] Kading O.W., Skurk H., Goodson K.E.. Thermal conduction in metallized silicon-dioxide layers on silicon [J]. Applied Physics Letters, 1994, 65(13):1629-1631
    [162] Kato R., Hatta I.. Thermal conductivity measurement of fused-Silica films deposited on the silicon wafer by using a thermo-Reflectance technique [C]. The Fifteenth Symposium on Thermophysical Properties, 2003, Boulder
    [163] Harata A., Sawada T.. Transient Reflecting Gratings for the Investigation of Photothermal and Photoacoustic Phenomena Localized near Surfaces and Interfaces [J]. Trac-Trends in Analytical Chemistry, 1995, 14(10):504-511
    [164] Shen Q., Harata A., Sawada T.. Analysis of the Thermal and Acoustic Properties of Ion-Implanted Diamond-Like Carbon-Films Using the Transient Reflecting Grating Technique [J]. Journal of Applied Physics, 1995, 77(4):1488-1491
    [165]顾毓沁,晋宏师,孙晓毅等.用扫描热显微镜测量微小区域热导性质的探讨[J].工程热物理学报, 2000, 21(4):456-460
    [166] Callard S., Tallarida G., Borghesi A. et al. Thermal conductivity of SiO2 films by scanning thermal microscopy [J]. Journal of Non-Crystalline Solids, 1999, 245:203-209
    [167] Florescu D.I., Asnin V.M., Pollak F.H. et al. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy [J]. Applied Physics Letters, 2000, 77(10): 1464-1466
    [168] Lahmar A., Nguyen T.P., Sakami D. et al. Experimental investigation on the thermal contact resistance between gold coating and ceramic substrates [J]. Thin Solid Films, 2001, 389(1-2):167-172
    [169] Orain S., Scudeller Y., Brousse T.. Thermal conductivity of ZrO2 thin films [J]. International Journal of Thermal Sciences, 2000, 39(4):537-543
    [170] Popescu B., Sculdeller Y., Brousse T. et al. Thermal characterization ofdielectric thin films using an improved genetic algorithm [J]. Superlattices and Microstructures, 2004, 35(3-6):239-252
    [171] Costescu R.M., Wall M.A., Cahill D.G.. Thermal conductance of epitaxial interfaces [J]. Physical Review B, 2003, 67:054302-054306
    [172] Costescu R.M., Cahill D.G., Fabreguette F.H. et al. Ultra-low thermal conductivity in W/Al203 nanolaminates [J]. Science, 2004, 303(5660): 989-990
    [173] Cahill D.G., Ford W.K., Goodson K.E. et al. Nanoscale thermal transport [J]. Journal of Applied Physics, 2003, 93(2):793-818
    [174] Hatta I., Sasuga Y., Kato R. Et al. Thermal diffusivity measurements of thin films by means of an AC calorimetric method [J]. Review of Scientific Instruments, 1985, 56(8):1643-1647
    [175] Gu Y., Liao F., Hatta I.. Correction of edge effect in AC calorimetric method for measuring thermal diffusivity of CVD diamond films [J]. International Journal of Thermophysics, 2000, 21(2):487-493
    [176] Liao F., Gu Y.. Analysis of two-dimensional effect in the measurement of thermal diffusivity of thin films with an AC calorimetric method [J]. International Journal of Thermophysics, 2000, 21(2):525-534
    [177] Parker W.J., Jenkins R.J., Butler C.P. et al. Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity [J]. Journal of Applied Physics, 1961, 32(9):1679-1684
    [178] Maillet D., Moyne C., Remy B.. Effect of a thin layer on the measurement of the thermal diffusivity of a material by a flash method [J]. International Journal of Heat and Mass Transfer, 2000, 43(21):4057-4060
    [179] He G.H., Guo J.D., Zhang Y.Y. et al. Measurement of thermal diffusivity of thermal control coatings by the flash method using two-layer composite sample [J]. International Journal of Thermophysics, 2000, 21(2):535-542
    [180] Okuda M., Ohkubo S.. A novel method for measuring the thermal conductivity of submicrometre thick dielectric films [J]. Thin Solid Films, 1992, 213(2)
    [181]谢华清,王锦昌,奚同庚等.薄膜材料导热行为及其测试和预测[J].材料科学与工艺, 2001, 9(1):104-112
    [182] Brotzen F.R., Loos P.J., Brady D.P.. Thermal conductivity of thin SiO2 films [J]. Thin Solid Films, 1992, 207(1-2):197-201
    [183] Goodson K.E., Flik M.I., Su L.T. et al. Annealing-temperature dependence of the thermal conductivity of LPCVD silicon-dioxide layers [J]. IEEE Electron Device Letters, 1993, 14(10):490-492
    [184] Zhang X., Grigoropoulos C.P.. Thermal conductivity and diffusivity offree-standing silicon nitride thin films [J]. Review of Scientific Instruments, 1995, 66(2):1115-1120
    [185] Irace A., Sarro P.M.. Measurement of thermal conductivity and diffusivity of single and multilayer menbranes [J]. Sensors and Actuators A-Physical, 1999, 76(1-3):323-328
    [186] Lambropoulos J.C., Jolly M.R., Amsden .A. et al. Thermal conductivity of dielectric thin films [J]. Journal of Applied Physics, 1989, 66(9):4230-4242
    [187] Cahill D.G.. Thermal conductivity measurement from 30 to 750K: the 3 omega method [J]. Review of Scientific Instruments, 1990, 61(2):802-808
    [188] Lee S.M., Cahill D.G.. Heat Transport in thin dielectric films [J]. Journal of Applied Physics, 1997, 81(6):2590-2595
    [189] Cahill D.G., Katiyar M., Abelson J.R.. Thermal conductivity of a-Si:H thin films [J]. Physical Review B, 1994, 50(9):6077-6081
    [190]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社, 1994:301-308
    [191]程守洙,江之永.普通物理学[M] .北京:高等教育出版社,1994:213-217
    [192]万雄,何兴道.一种材料霍尔系数测试系统的设计[J].江西科学, 2000, 18(4):238-240
    [193]冯文修,刘剑,陈蒲生等.P型半导体霍尔系数极值新结论的理论与实验验证[J].华南理工大学学报(自然科学版), 2000, 28(11):119-124
    [194] F.M. Penning. The spark discharge in low pressure between coaxial cylinders in an axial magnet field [J]. Physica. 1936, 3:873
    [195] E. Kay. Magnetic Field Effects on an Abnormal Truncated Glow Discharge and Their Relation to Sputtered Thin-Film Growth [J]. J Appl Phys. 1963, 34:760-763
    [196] S.D. Gill and E. Kay. Efficient Low Pressure Sputtering in a Large Inverted Magnetron Suitable for Film Synthesis [J]. Rev Sci Instrum. 1965, 36:277
    [197] K Wasa, S Hayakawa. Low Pressure sputtering System of the Magnetron Type [J]. Rev Sci Instrum. 1969, 40(5):693
    [198] P.V. Kashtana, B. M. Smmirnov, and R. Hippler. Magnetron plasma and nanotechnology [J]. PHYS-USP, 2007, 50(5):455-488
    [199] E.Kay and A.P.Poenisch. Magnetic Control of Film Deposition [P]. U.S.Patent 3,282,815(1966)
    [200] R. K. Waits. Evolution of integrated-circuit vacuum processed: 1959-1975 [J]. J. Vac. Sci. Technol. 2000, 18(4):1736-1745
    [201] G. H. Rue and H. K. Kim. A two-inch dc/rf circular magnetron sputtering gun chamber for a in situ experiment [J]. Review of Scientific Instruments.1998, 69(4):1616
    [202] F.A.Green and B.N.Chapman. Electron effects in magnetron sputtering [J]. J. Vac. Sci. Technol. 1976,13:165-168
    [203] Ansari Z.A., Taegyung G. Ko, Jae-Hee Oh. CO-Sensing Properties of In2O3-Doped SnO2 Thick-Film Sensors: Effect of Doping Concertration and Grain Size [J]. IEEE SENSORS JOURNAL, 2005,5(10):817-824
    [204]张鑫,刘静,李光强.XRD与TEM技术在分析纳米金属晶粒尺寸中的应用[J].南方金属,2006,150(6):15-17
    [205] Miller G.R., Li C.Y.. Evidence for the existence of antistructure defects in bismuth telluride by density measurements [J]. J. Phys. Chem. Solids, 1965, 26:173-177
    [206]吉晓华.纳米结构Bi2Te3基热电材料的合成与性能[D].浙江大学博士学位论文,2005:16
    [207] Charles M.Wolfe, Nick Holonyak, Jr., and Gregory E. Stillman. Physical Properties of Semiconductors [M]. Prentice-Hall, Inc. Englewood Cliffs, New Jersey, 1989:113-135
    [208]薛增泉,吴全德,李洁.薄膜物理[M].北京:电子工业出版社,1991:282-288
    [209]何宇亮,陈光华,张仿清.非晶态半导体物理学[M].北京:高等教育出版社,1989:212-228
    [210]黄昆.固体物理学[M].北京:高等教育出版社, 1988:328-333
    [211]刘恩科,朱秉升,罗晋生等.半导体物理学[M].北京:国防工业出版社,1994:100
    [212] Cusack M.A., Briddon P. R., Jaros M.. Electronic structure of InAs/GaAs self-assembled quantum dots [J]. Physical Review B, 1996, 54:R2300-R2303
    [213] Akimov B.A., Bgoyablenskiy V.A. Ryabova L.I. et al. High infrared sensitivity of n-PbTe(Ga) thin films [C]. V-th International Conference‘Materials Science and Properties for Infared Optoelectronics’, Editor Fiodor F. Sizov, Proceedings-Spie, 2001, V435:40-43
    [214] Klein M.V.. Phonons in Semiconductor Superlattices [J]. IEEE Journal of Quantum Electronics, 1986, 32:1760-1770
    [215] Narayanamurti V., Stormer H.L., Chin M.A., et al. Selective Transmission of High-frequency Phonons by A Superlattice: The‘Dielectric’Phonon Filter [J]. Physical Review Letter, 1979, 43:2012-2016
    [216] Colvard C., Merlin R., Klein M.V., and Gossard A.C.. Observation of folded acoustic phonon in a semiconductor superlattice [J]. Physical Review Letter, 1980, 45:298-301
    [217] Ren S.Y., and Dow J.D.. Thermal Conductivity of Superlattices [J]. Physical Review B, 1982, 25:3750-3755
    [218] Chen G., Zhou S.Q., Yao D.Y., Kim C.J. et al. Heat Conduction in Alloy-Based Superlattices [J]. In Proceedings of 17th International Thermoelectrics Conference, 1998:202-205
    [219] Lee S.M., Cahill D.G. and Venkatasubramanian R.. Thermal Conductivity of Si/Ge Superlattices [J]. Applied Physics Letter, 1997, 70:2957-2959
    [220] Borca-Tasciuc T., Liu W.L., Liu J.L. et al. Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices [J]. Superlattices and Microstructures, 2000, 28:199-206
    [221] Touzelbaev M.N., Zhou P., Venkatasubramanian R. et al. Thermal Characterization of Bi2Te3/Sb2Te3 Superlattices [J]. Journal of Applied Physics, 2001, 90:763-767
    [222] Borca-Tasciuc T., Achimov D., Liu W.L. et al. Thermal Conductivity of InAs/AlSb Superlattices [J]. Microscale Thermophysical Engineering, 2001, 5:225-231
    [223]黄昆.固体物理学[M].北京:高等教育出版社, 1988:143
    [224] Callaway J.. Model of Lattice Thermal Conductivity at Low Temperature [J]. Physical Review, 1959, 113:1046-1051
    [225] Holland M.G.. Analysis of Lattice Thermal Conductivity [J]. Physical Review, 1963, 132:2461-2471
    [226] Balandin A., and Wang K.L.. Significant Decrease of The Lattice Thermal Conductivity Due to Phonon Confinement in A Free-standing Semiconductor Quantum Well [J]. Physical Review B, 1998, 58:1544-1549
    [227] Cahill D.G., Fischer, H.E.., Klitsner, T. et al. Thermal Conductivity of Thin Films: Measurement and Understanding [J]. Journal of Vacuum Science and Technology, 1989, A7:1259-1266
    [228] Cahill D.G.. Thermal conductivity measurement from 30 to 750K: the 3 omega method [J]. Review of Scientific Instruments, 1990, 61(2):802-808
    [229]丰平,王太宏.3ω方法及其在纳米材料器件表征中的应用[J].物理学报, 2003,52(9):2249-2253
    [230]胡明雨.薄膜热物性实验研究[M].东南大学硕士学位论文,2005:20-27
    [231]蒋俊,许高洁,崔平等.TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响[J].物理学报,2006,55(9):4849-4853
    [232] A. Pattamatta, C.K. Madnia, Modeling heat transfer in Bi2Te3-Sb2Te3 nanostructures [J]. Int. J. Heat Mass Transfer (2008), doi:10.1016/j.ijheatmass -transfer.2008.09.004
    [233] Y. Benveniste. On the effective thermal conductivity of multiphasecomposites [J]. Z. Ang. Math. Phys. 1986,37:696-713
    [234] A.N. Norris. An examination of the Mori- Tanaka effective medium approximation for multiphase composites [J]. J. Appl. Mech. 1989, 56:83-85
    [235] R.L. Hamilton, O.K. Crosser. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1962,1:187-191
    [236] I. Sur and A. Casian. Electronic thermal conductivity and thermoelectric figure of merit of n-type PbTe/Pb1-xEuxTe quantum wells [J]. Physical Review B, 2004, 69: 035306-6
    [237] Y. Benveniste. Effective Thermal Conductivity of Composites with a Thermal Resistance between the Constituents: Non-Dilute Case [J]. J. Appl. Phys.1987, 61:2840-2843
    [238] Y. Benveniste and T. Miloh. On the Effective Conductivity of Coated Short Fiber Composites. J. Appl. Phys. 1991,69:1337-1344
    [239] Y.C. Chiew and E.D. Glandt. Effective Thermal Conductivity of Dispersions: The Effect or Resistance at the Particle Surfaces [J]. Chem. Eng. Sci. 1987, 42:2677-2685
    [240] C.W. Nan, X.P. Li, R. Birringer. Inverse Problem for Composites with Imperfect Interface: Determination of Interfacial Thermal Resistance, Thermal Conductivity of Constituents, and Microstructural Parameters [J]. J. Am. Ceram. Soc. 2000, 83:848-854
    [241] Y. Nakagiri, H. Gyoten and Y. Yamamoto. Development of Film-Shaped Thermoelectric Materials for Thermoelectric Modules [J]. Applied Energy, 1998, 59: 147-162
    [242] Il-Ho Kim. (Bi,Sb)2(Te,Se)3-based thin film thermoelectric generators [J]. Materials Letters, 2000, 43: 221-224
    [243]毕研顺,贾建援,王卫东.热电模块应用的几个相关问题分析[J].低温工程, 2005, 144(2):57-60
    [244]贾磊,陈则韶,胡芃,孙炜.半导体温差发电器件的热力学分析[J].中国科技大学学报,2004,34(6):684-687
    [245]屈健,李茂德,乐伟,林泉.半导体温差发电器的工作性能优化[J].低温工程,2005,144(2):20-23
    [246]陈衡.红外物理学[M].北京:国防工业出版社,1985:50~88
    [247]杨宜禾,岳敏,周维真.红外系统[M].北京:国防工业出版社,1995:220
    [248]王博,王自荣,孙晓泉.一种评价热红外涂层隐身效果的方法[J].航天电子对抗,2004(1):63~65
    [249]张天孙.传热学[M].北京:中国电力出版社,2006:22-110,192-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700