用户名: 密码: 验证码:
拟除虫菊酯类农药免疫快速检测方法及其定量构效模型的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拟除虫菊酯作为一类重要的杀虫剂,广泛地用于农业和卫生业。毒理学研究表明,拟除虫菊酯对环境和人类具有潜在危害,故迫切需要建立拟除虫菊酯的各种检测技术。免疫分析法用于检测拟除虫菊酯具有快速、高通量、多残留和现场检测的优势,因此,现已发展成为拟除虫菊酯残留检测的研究热点之一。
     本文设计了6种拟除虫菊酯的群选性半抗原,借助计算机软件Discovery Studio2.5和Gaussian04对半抗原和菊酯的结构进行空间模拟和原子电荷计算,选择与菊酯空间结构和电荷分布最匹配的半抗原1为免疫半抗原,选择二者差异较大的为包被半抗原。根据模拟和计算结果,选择并合成了半抗原1,3,4,5。此外,本文还设计并合成了针对氯氟氰菊酯的2种特异性半抗原。
     将合成的半抗原与载体蛋白(血蓝蛋白、牛血清白蛋白和卵清蛋白)偶联,采用紫外法鉴定后,免疫BALB/c小鼠,四免后,测定抗血清的效价和抑制,选择效价高并且抑制好的小鼠进行融合。通过细胞融合和筛选,获得拟除虫菊酯的群选性单克隆抗体和抗氯氟氰菊酯的特异性单克隆抗体。测得拟除虫菊酯群选性单克隆抗体的亲和常数为3.0108L/mol,抗体重链和轻链的亚型分别为IgG1和Kappa链。测得氯氟氰菊酯特异性单克隆抗体的亲和常数为2.8106L/mol,抗体重链和轻链的亚型分别为IgG2b和Kappa链。
     试验优化了包被原的种类和浓度、缓冲液的离子强度、pH、有机溶剂的种类和含量。利用酶联免疫分析法在最适条件下,测得抗体交叉反应较高六种菊酯的IC50分别为:氯氰菊酯1.660.76ng/mL、甲氰菊酯14.031.68ng/mL、顺氰戊菊酯45.764.07ng/mL、联苯菊酯191.811.2ng/mL、溴氰菊酯199.610.75ng/mL、氰戊菊酯298.515.08ng/mL。该法用于水样的添加回收,三种菊酯(氯氰菊酯、甲氰菊酯和顺氰戊菊酯)平均回收率在77.3%-111.3%之间,变异系数小于15%。
     对影响Au体系稳定性和试纸条灵敏度的因素(pH、抗体用量及包被原浓度)进行了优化,接着将菊酯群选性抗体标记到金纳米粒子上,通过组装,制备了检测拟除虫菊酯多残留的金标免疫层析试纸条。该试纸条借助便携式的读卡器,对氯氰菊酯的检测限达到了12.86ng/mL;该试纸条对氯氰菊酯、甲氰菊酯和顺氰戊菊酯的肉眼检测限分别为60ng/mL、200ng/mL和400ng/mL。
     在优化的色谱条件下,利用高效硅胶柱和Sino-Chiral OD手性柱经过二次拆分制备了8个氯氰菊酯单体、4个氰戊菊酯单体和2个甲氰菊酯单体。此外,利用Sino-Chiral OD手性柱并结合文献,确定了单体的构型和纯度。通过测定氯氰菊酯、氰戊菊酯和甲氰菊酯共14个单体的抑制曲线来研究菊酯群选性单克隆抗体的立体选择性。结果表明,抗体只能识别氯氰菊酯的单体6(CP6,1S3S S)和单体7(CP7,1S3S R)、甲氰的单体2(FP2, S型)以及氰戊菊酯的单体1(FV1, S S),而且CP7比CP6灵敏度要高很多。
     基于菊酯群选性单克隆抗体交叉反应的结果,构建了三种定量构效模型(QSAR)即二维定量构效模型(2D-QSAR)、全息定量构效模型(HQSAR)和虚拟定量构效模型(topomer QSAR)。由2D-QSAR模型得出,抗体活性和菊酯的疏水性有很大的相关性,而且疏水性越小,越容易被抗体识别。HQSAR模型从亚结构水平分析得出,在免疫反应中暴露比较少的片断,对抗体活性也有一定的影响。2D-QSAR模型和HQSAR模型的交叉验证系数q2=0.92,表明这两个模型具有很好的预测能力。构建topomer QSAR模型通过计算分子特定片段(R2)的空间场和静电场的等高势,来解释拟除虫菊酯群选性抗体的交叉反应。
     优化了包被原的种类和浓度、封闭剂的种类、缓冲液的离子强度、pH和甲醇含量。在最适条件下,采用酶联免疫法测得单克隆抗体对氯氟氰菊酯的IC50为13.261.23ng/mL,检测限为1.83ng/mL。测得抗体只对氟胺氰菊酯和苯醚氰菊酯有低于5%的交叉反应。三种水样(河水、自来水和饮用水)的添加回收率均高于75%,变异系数小于12%。
As an important pesticide, synthetic pyrethroids are widely applied in agriculture andhygiene industry. Many toxicological studies indicate that synthetic pyrethroids are potentiallyharmful to environment and human health. Therefore, it is highly necessary to establishvarious detection techniques of synthetic pyrethroids. Immunoassays for pyrethroiddetermination have many advantages including rapid, high-throughput, multi-residues andon-site detection. Therefore, immunoassay has attracted increasing attention in the field ofsynthetic pyrethroid detection.
     In this paper, six general haptens for synthetic pyrethroids were designed. ThenDiscovery Studio2.5and Gaussian04software were empolyed to evaluate the theoreticalgeometries and electronic distributions of pyrethroids and haptens. Hapten1that had matchedgeometries and electronic properties with the analytes was chosen as an immunizing hapten.Other haptens were selected as coating haptens. In addition, two specific haptens forcyhalothrin were designed and synthesized in the present study.
     All haptens were conjugated with various carrier proteins containing keyhole limpethemocyanin, bovine serum albumin and ovalbumin to prepare antigens. Then these conjugateswere characterized with a UV-visible spectrometer and used to inject BALB/c mice. Ten daysafter the last immunization, the titre and inhibition of antisera were tested by indirectcompetitive enzyme-linked immunosorbent assay. Finally, the mouse producing antisera withthe highest titer and the lowest50%inhibition concentration was sacrificed for monoclonalantibody preparation. The process of cell fusion and screening referred to the classic measure.The chosen hybridomas which could steadily secrete anti-pyrethroids (or anti-cyhalothrin)antibody were obtained successfully and ascites were produced using in vivo induction. Theaffinity constant of broad-specificity monoclonal antibody3E9against pyrethroids wascalculated to be3.0108L/mol. The isotype of antibody3E9based on the commercial kitindicated that the heavy chain belongs to IgG1while the light chain is Kappa. The affinityconstant of monoclonal antibody2C8against cyhalothrin was calculated to be2.8106L/mol.The subtype of antibody2C8was characterized that the heavy chain is IgG2bwhile the lightchain is Kappa.
     Several important parameters that influenced assay performance were optimizedincluding coating antigens and their concentration, ionic strength, pH, organic solvents andtheir contents in assay buffer. Under the optimized conditions, six pyrethroids were highercross-reactivity with ascites3E9and their inhibition curves were plotted with IC50value of1.660.76ng/mL for cypermethrin,14.031.68ng/mL for fenpropathrin,45.764.07ng/mLfor esfenvalerate,191.811.2ng/mL for bifenthrin,199.610.75ng/mL for deltamethrin,298.515.08ng/mL for fenvalerate. In the spiked recoveries, the average recoveries were77.3%-111.3%for the fortified samples. The coefficient of variation values were less than15%.
     Several key factors that affected system stability and the sensitivity of test strip wereoptimised such as pH, antibody amount and the concentration of coating antigen. Based on the obtained anti-pyrethroids monoclonal antibody, the immunochromatographic test strip formulti-pyrethroids analysis was prepared using gold nanoparticals as a detector probe, and thetest strip for cypermethrin is with the detection limit of12.86ng/mL by aid of the portablereader, And the detection limits are of60ng/mL for cypermethrin,200ng/mL forfenpropathrin and400ng/mL for esfenvalerate with naked eyes.
     Under the optimized chromatographic conditions, the diastereomers of cypermethrin andfenvalerate have firstly been resolved on an HP silica column, and then injection of separateddiastereomers onto Sino-Chiral OD column were ultimately separated completely withreasonable retention times (60min). The order of elution was established and eachconfiguration was identified by comparison with the related literatures. Under the sameconditions, injection of fenpropathrin onto the Sino-Chiral OD chiral system achievedexcellent separation of the two enantiomers. The stereoselectivity of antibody3E9wasdetermined by comparing standard inhibition curves of fourteen isomers from cypermethrin,fenvalerate and fenpropathrin. Results demonstrated that only two of cypermethrin isomer6(CP6,1S3S S) and isomer7(CP7,1S3S R), one of fenpropathrin isomer2(FP2, S) andfenvalerate isomer1(FV1, S S) were detected, respectively and the general monoclonalantibody aganist CP7was higher sensitive than CP6.
     Based on cross-reactivity results of anti-pyrethroid monoclonal antibody, threequantitative structure-activity relationship (QSAR) models were constructed including2D-QSAR (two dimensional QSAR) model, HQSAR (hologram QSAR) model and topomerQSAR model. According to the2D-QSAR model, there was a significant correlation betweenantibody activity and pyrethroid hydrophobicity, specifically, synthetic pyrethroids could berecognized more easily when the hydrophobicity was weaker. From the substructure levelanalysis using HQSAR model, fragments of hapten linked with carrier protein could play animportant role on antibody recognition. Both of models showed highly predictive abilitieswith cross-validation coefficient q2values of0.92, respectively. According to topomer QSARmodel, the cross-reactivity of antibody3E9can be explained by calculating the steric andelectrostatic contours of fragments R2.
     To establish the enzyme-linked immunosorbent assay for cyhalothrin, coating antigensand their concentrations, blocking agent, ionic strength, pH value and the content of organicsolvent in assay buffer were optimized. Under the optimized conditions, an inhibitionstandard curve for cyhalothrin was plotted with the IC50value13.261.23ng/mL and with thedetection limit of1.83ng/mL. The monoclonal antibody2C8manifested good specificity tocyhalothrin with little cross-reactivity (<5%) only to tau-fluvalinate or cyphenothrin. Therecoveries were more than75%and the coefficient of variation value was less than12%.
引文
1.Matsuo T, Itaya N, Mizutani T, et al.3-Phenoxy-alpha-cyano-benzyl esters, the most potentsynthetic pyrethroids. Agricultural and Biological Chemistry,1976,40:247-249
    2.Katsuda Y. Development of and future prospects for pyrethroid chemistry. Pesticide Science,1999,55(8):775-782
    3.Elliott M, Farnham A, Janes N, et al. Synthetic insecticide with a new order of activity. Nature,1974,248:710-711
    4.Elliott M, Farnham A, Janes N, et al. A photostable pyrethroid.1973,246:169-170
    5.Ohno N, Fujimoto K, Okuno Y, et al. A new class of pyrethroidal insecticides alpha-substitutedphenylacetic acid esters. Agricultural and Biological Chemistry,1974,38:881-883
    6.Chen Z-M, Wang Y-H. Chromatographic methods for the determination of pyrethrin and pyrethroidpesticide residues in crops, foods and environmental samples. Journal of Chromatography A,1996,754(1):367-395
    7.Tan B, Luo G, Qi X, et al. Enantioselective extraction of d-l-tryptophan by a new chiral selector:Complex formation with di (2-ethylhexyl) phosphoric acid and O, O′-dibenzoyl-(2R,3R)-tartaric acid.Separation and Purification Technology,2006,49(2):186-191
    8.Hunter W, Yang Y, Reichenberg F, et al. Measuring pyrethroids in sediment pore water usingmatrix-solid phase microextraction. Environmental Toxicology and Chemistry,2009,28(1):36-43
    9.Haya K. Toxicity of pyrethroid insecticides to fish. Environmental Toxicology and Chemistry,1989,8(5):381-391
    10. Wang W, Cai D, Shan Z, et al. Comparison of the acute toxicity for gamma-cyhalothrin andlambda-cyhalothrin to zebra fish and shrimp. Regulatory Toxicology and Pharmacology,2007,47(2):184-188
    11. Godin S J, Crow J A, Scollon E J, et al. Identification of rat and human cytochrome P450isoformsand a rat serum esterase that metabolize the pyrethroid insecticides deltamethrin and esfenvalerate.Drug Metabolism and Disposition,2007,35(9):1664-1671
    12. Kao L, Motoyama N, Dauterman W. Multiple forms of esterases in mouse, rat, and rabbit liver,and their role in hydrolysis of organophosphorus and pyrethroid insecticides. Pesticide Biochemistryand Physiology,1985,23(1):66-73
    13. Suzuki T, Miyamoto J. Purification and properties of pyrethroid carboxyesterase in rat livermicrosome. Pesticide Biochemistry and Physiology,1978,8(2):186-198
    14. Ross M K, Borazjani A, Edwards C C, et al. Hydrolytic metabolism of pyrethroids by human andother mammalian carboxylesterases. Biochemical Pharmacology,2006,71(5):657-669
    15. De Weille J R, Brown L D, Narahashi T. Pyrethriod modifications of the activation andinactivation kinetics of the sodium channels in squid giant axons. Brain Research,1990,512(1):26-32
    16. Narahashi T. Nerve membrane ion channels as the target site of insecticides. Mini Reviews inMedicinal Chemistry,2002,2(4):419-432
    17. Forshaw P, Lister T, Ray D. The role of voltage-gated chloride channels in type II pyrethroidinsecticide poisoning. Toxicology and Applied Pharmacology,2000,163(1):1-8
    18. Eshleman A J, Murray T. Pyrethroid insecticides indirectly inhibit GABA-dependent36Cl influx insynaptoneurosomes from the trout brain. Neuropharmacology,1991,30(12):1333-1341
    19. Symington S B, Frisbie R K, Lu K D, et al. Action of cismethrin and deltamethrin on functionalattributes of isolated presynaptic nerve terminals from rat brain. Pesticide Biochemistry andPhysiology,2007,87(2):172-181
    20. Xiao H, Zhang X C, Zhang L, et al. Fenvalerate modifies T-type Ca2+channels in mousespermatogenic cells. Reproductive Toxicology,2006,21(1):48-53
    21. Tian Y T, Liu Z W, Yao Y, et al. Effects of alpha-and theta-cypermethrin insecticide on transientoutward potassium current in rat hippocampal CA3neurons. Pesticide Biochemistry and Physiology,2008,90(1):1-7
    22. Nasuti C, Gabbianelli R, Falcioni M L, et al. Dopaminergic system modulation, behavioralchanges, and oxidative stress after neonatal administration of pyrethroids. Toxicology,2007,229(3):194-205
    23. Symington S B, Frisbie R K, Clark J M. Characterization of11commercial pyrethroids on thefunctional attributes of rat brain synaptosomes. Pesticide Biochemistry and Physiology,2008,92(2):61-69
    24. Wang C, Chen F, Zhang Q, et al. Chronic toxicity and cytotoxicity of synthetic pyrethroidinsecticide cis-bifenthrin. Journal of Environmental Sciences,2009,21(12):1710-1715
    25. Luconi M, Bonaccorsi L, Forti G, et al. Effects of estrogenic compounds on human spermatozoa:evidence for interaction with a nongenomic receptor for estrogen on human sperm membrane.Molecular and Cellular Endocrinology,2001,178(1):39-45
    26. Al-Sarar A S, Abobakr Y, Bayoumi A E, et al. Reproductive toxicity and histopathological changesinduced by lambda-cyhalothrin in male mice. Environmental Toxicology,2012, DOI:
    10.1002/tox.21802
    27. Farag A T, Goda N F, Shaaban N A, et al. Effects of oral exposure of synthetic pyrethroid,cypermethrin on the behavior of F1-progeny in mice. Reproductive Toxicology,2007,23(4):560-567
    28. El-Sayed Y S, Saad T T, El-Bahr S M. Acute intoxication of deltamethrin in monosex Nile tilapia,Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects.Environmental Toxicology and Pharmacology,2007,24(3):212-217
    29. Pimp o C T, Zampronio A R, Silva de Assis H C. Exposure of Ancistrus multispinis (Regan,1912,Pisces, Teleostei) to deltamethrin: Effects on cellular immunity. Fish&Shellfish Immunology,2008,25(5):528-532
    30. Righi D, Xavier F, Palermo-Neto J. Effects of type II pyrethroid cyhalothrin on rat innateimmunity: a flow cytometric study. International Immunopharmacology,2009,9(1):148-152
    31. Liu J, Yang Y, Yang Y, et al. Disrupting effects of bifenthrin on ovulatory gene expression andprostaglandin synthesis in rat ovarian granulosa cells. Toxicology,2011,282(1):47-55
    32. Du G, Shen O, Sun H, et al. Assessing hormone receptor activities of pyrethroid insecticides andtheir metabolites in reporter gene assays. Toxicological Sciences,2010,116(1):58-66
    33. Deguchi Y, Yamada T, Hirose Y, et al. Mode of action analysis for the synthetic pyrethroidmetofluthrin-induced rat liver tumors: evidence for hepatic CYP2B induction and hepatocyteproliferation. Toxicological Sciences,2009,108(1):69-80
    34. Rao G V, Jagannatha Rao K S. Modulation in acetylcholinesterase of rat brain by pyrethroids invivo and an in vitro kinetic study. Journal of Neurochemistry,1995,65(5):2259-2266
    35. Rao G V, Rao K J. Inhibition of monoamine oxidase-A of rat brain by pyrethroids—anin vitrokinetic study. Molecular and Cellular Biochemistry,1993,124(2):107-114
    36. Kakko I, Toimela T, T hti H. The synaptosomal membrane bound ATPase as a target for theneurotoxic effects of pyrethroids, permethrin and cypermethrin. Chemosphere,2003,51(6):475-480
    37. El-Demerdash F M. Lipid peroxidation, oxidative stress and acetylcholinesterase in rat brainexposed to organophosphate and pyrethroid insecticides. Food and Chemical Toxicology,2011,49(6):1346-1352
    38. Tiwari M N, Singh A K, Ahmad I, et al. Effects of cypermethrin on monoamine transporters,xenobiotic metabolizing enzymes and lipid peroxidation in the rat nigrostriatal system. Free RadicalResearch,2010,44(12):1416-1424
    39. Martínez Galera M, Barranco Martínez D, Parrilla Vázquez P, et al. Online trace enrichment todetermine pyrethroids in river water by HPLC with column switching and photochemical inducedfluorescence detection. Journal of Separation Science,2005,28(17):2259-2267
    40. Sharif Z, Man Y B C, Hamid N S A, et al. Determination of organochlorine and pyrethroidpesticides in fruit and vegetables using solid phase extraction clean-up cartridges. Journal ofChromatography A,2006,1127(1):254-261
    41. Esteve-Turrillas F A, Pastor A, Guardia M d l. Determination of pyrethroid insecticide residues invegetable oils by using combined solid-phases extraction and tandem mass spectrometry detection.Analytica Chimica Acta,2005,553(1):50-57
    42. Casas V, Llompart M, García-Jares C, et al. Multivariate optimization of the factors influencingthe solid-phase microextraction of pyrethroid pesticides in water. Journal of Chromatography A,2006,1124(1-2):148
    43. Vázquez P P, Mughari A R, Galera M M. Solid-phase microextraction (SPME) for thedetermination of pyrethroids in cucumber and watermelon using liquid chromatography combinedwith post-column photochemically induced fluorimetry derivatization and fluorescence detection.Analytica Chimica Acta,2008,607(1):74-82
    44. Esteve-Turrillas F, Aman C, Pastor A, et al. Microwave-assisted extraction of pyrethroidinsecticides from soil. Analytica Chimica Acta,2004,522(1):73-78
    45. Rissato S R, Galhiane M S, Apon B M, et al. Multiresidue analysis of pesticides in soil bysupercritical fluid extraction/gas chromatography with electron-capture detection and confirmation bygas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry,2005,53(1):62-69
    46. Khan S U. Supercritical fluid extraction of bound pesticide residues from soil and foodcommodities. Journal of Agricultural and Food Chemistry,1995,43(6):1718-1723
    47. Ali M A, Baugh P J. Sorption–desorption studies of six pyrethroids and mirex on soils usingGC/MS-NICI. Intern. J. Environ. Anal. Chem.,2003,83(11):923-933
    48. You J, Weston D P, Lydy M J. A sonication extraction method for the analysis of pyrethroid,organophosphate, and organochlorine pesticides from sediment by gas chromatography withelectron-capture detection. Archives of Environmental Contamination and Toxicology,2004,47(2):141-147
    49. Kuang H, Miao H, Wu Y, et al. Enantioselective determination of cypermethrin in pig muscletissue by immunoaffinity extraction and high performance liquid chromatography. InternationalJournal of Food Science&Technology,2010,45(4):656-660
    50. Feo M, Eljarrat E, Barcelo D. Performance of gas chromatography/tandem mass spectrometry inthe analysis of pyrethroid insecticides in environmental and food samples. Rapid Communications inMass Spectrometry,2011,25(7):869-876
    51. Raeppel C, Nief M, Fabritius M, et al. Simultaneous analysis of pesticides from differentchemical classes by using a derivatisation step and gas chromatography–mass spectrometry. Journalof Chromatography A,2011,1218(44):8123-8129
    52. San Román I, Alonso M, Bartolomé L, et al. Hollow fiber-based liquid-phase microextractiontechnique combined with gas chromatography-mass spectrometry for the determination of pyrethroidinsecticides in water samples. Talanta,2012:246-253
    53. Cheng J,Liu M,Yu Y, et al. Determination of pyrethroids in porcine tissues by matrix solid-phasedispersion extraction and high-performance liquid chromatography. Meat Science,2009,82(4):407-412
    54. Bagheri H,Ghanbarnejad H, Khalilian F. Immersed sol‐gel based amino‐functionalized SPMEfiber and HPLC combined with post‐column photochemically induced fluorimetry derivatizationand fluorescence detection of pyrethroid insecticides from water samples. Journal of SeparationScience,2009,32(17):2912-2918
    55. Chung S W, Lam C. Development and validation of a method for determination of residues of15pyrethroids and two metabolites of dithiocarbamates in foods by ultra-performance liquidchromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry,2012,403(3):885-896
    56. Ye F, Xie Z, Wong K Y. Monolithic silica columns with mixed mode of hydrophilic interactionand weak anion‐exchange stationary phase for pressurized capillary electrochromatography.Electrophoresis,2006,27(17):3373-3380
    57. Stanker L H, Bigbee C, Van Emon J, et al. An immunoassay for pyrethroids: detection ofpermethrin in meat. Journal of Agricultural and Food Chemistry,1989,37(3):834-839
    58. Skerritt J H, Hill A S, McAdam D P, et al. Analysis of the synthetic pyrethroids, permethrin and1(R)-phenothrin, in grain using a monoclonal antibody-based test. Journal of Agricultural and FoodChemistry,1992,40(7):1287-1292
    59. Shan G, Leeman W R, Stoutamire D W, et al. Enzyme-linked immunosorbent assay for thepyrethroid permethrin. Journal of Agricultural and Food Chemistry,2000,48(9):4032-4040
    60. Pullen S, Hock B. Development of Enzyme Immunoassays for the Detection of PyrethroidInsecticides:1. Monoclonal Antibodies for Allethrin. Analytical Letters,1995,28(5):765-779
    61. Kaware M, Bronshtein A, Safi J, et al. Enzyme-linked immunosorbent assay (ELISA) andsol-gel-based immunoaffinity purification (IAP) of the pyrethroid bioallethrin in food andenvironmental samples. Journal of Agricultural and Food Chemistry,2006,54(18):6482-6492
    62. Cao M, Li M, Yan X, et al. Stereoselectivity of an enzyme-linked, immunosorbent assay forS-bioallethrin. Analytical Methods,2012,4(2):534-538
    63. Wengatz I, Stoutamire D W, Gee S J, et al. Development of an enzyme-linked immunosorbentassay for the detection of the pyrethroid insecticide fenpropathrin. Journal of Agricultural and FoodChemistry,1998,46(6):2211-2221
    64. Shi H-Y, Zhang B-H, Ye Y-H, et al. Development of an enzyme-linked immunosorbent assay forthe pyrethroid fenpropathrin. Food and Agricultural Immunology,2011,22(1):69-76
    65. Gao H, Ling Y, Xu T, et al. Development of an enzyme-linked immunosorbent assay for thepyrethroid insecticide cyhalothrin. Journal of Agricultural and Food Chemistry,2006,54(15):5284-5291
    66. Bo L, Hai-Yan S, Ming-Hua W. An Enzyme-linked Immunosorbent Assay for the Detection ofBifenthrin. Chinese Journal of Analytical Chemistry,2008,36(1):34-38
    67. Nichkova M, Fu X, Yang Z, et al. Immunochemical screening of pesticides (simazine andcypermethrin) in orange oil. Journal of Agricultural and Food Chemistry,2009,57(13):5673-5679
    68. Park E-K, Kim J-H, Gee S J, et al. Determination of pyrethroid residues in agricultural productsby an enzyme-linked immunosorbent assay. Journal of Agricultural and Food Chemistry,2004,52(18):5572-5576
    69. Kong Y, Zhang Q, Zhang W, et al. Development of a monoclonal antibody-based enzymeimmunoassay for the pyrethroid insecticide deltamethrin. Journal of Agricultural and Food Chemistry,2010,58(14):8189-8195
    70. Lee H-J, Shan G, Watanabe T, et al. Enzyme-linked immunosorbent assay for the pyrethroiddeltamethrin. Journal of Agricultural and Food Chemistry,2002,50(20):5526-5532
    71. Queffelec A L, Nodet P, Haelters J P, et al. Hapten synthesis for a monoclonal antibody basedELISA for deltamethrin. Journal of Agricultural and Food Chemistry,1998,46(4):1670-1676
    72. Jiang J, Zhang D, Zhang W, et al. Preparation, identification, and preliminary application ofmonoclonal antibody against pyrethroid insecticide fenvalerate. Analytical Letters,2010,43(17):2773-2789
    73. Song Y, Lu Y, Liu B, et al. A sensitivity‐improved enzyme‐linked immunosorbent assay forfenvalerate: a new approach for hapten synthesis and application to tea samples. Journal of theScience of Food and Agriculture,2011,91(12):2210-2216
    74. Lu X-Q, Zhang B-H, Shi H-Y, et al. The research on enzyme-linked immunosorbent assay forfenvalerate. Food and Agricultural Immunology,2009,20(2):147-154
    75. Shan G, Stoutamire D W, Wengatz I, et al. Development of an immunoassay for the pyrethroidinsecticide esfenvalerate. Journal of Agricultural and Food Chemistry,1999,47(5):2145-2155
    76. Nakata M, Fukushima A, Ohkawa H. A monoclonal antibody‐based ELISA for the analysis ofthe insecticide flucythrinate in environmental and crop samples. Pest Management Science,2001,57(3):269-277
    77. Watanabe T, Shan G, Stoutamire D W, et al. Development of a class-specific immunoassay for thetype I pyrethroid insecticides. Analytica Chimica Acta,2001,444(1):119-129
    78. Mak S K, Shan G, Lee H-J, et al. Development of a class selective immunoassay for the type IIpyrethroid insecticides. Analytica Chimica Acta,2005,534(1):109-120
    79. Hao X, Kuang H, Li Y, et al. Development of an enzyme-linked immunosorbent assay for theα-cyano pyrethroids multiresidue in Tai lake water. Journal of Agricultural and Food Chemistry,2009,57(8):3033-3039
    80. Liang X, Xie R, Wang C, et al. Development of a broad-selective immunoassay for multi-residuedetermination of type II pyrethroids in West Lake water. Food and Agricultural Immunology,2011,(ahead-of-print):1-20
    81. Lu Y, Xu N, Zhang Y, et al. Development of general immunoassays for pyrethroids: a newapproach for hapten synthesis using pyrethroid metabolite analogue and application to food samples.Food and Agricultural Immunology,2010,21(1):27-45
    82. Kuang H, Wu Y, Hou X, et al. Synthesis of derivatives and production of antiserum for classspecific detection of pyrethroids by indirect ELISA. International Journal of Environmental andAnalytical Chemistry,2009,89(6):423-437
    83. Wang J, Yu G, Sheng W, et al. Development of an enzyme-linked immunosorbent assay based amonoclonal antibody for the detection of pyrethroids with phenoxybenzene multiresidue in riverwater. Journal of Agricultural and Food Chemistry,2011,59(7):2997-3003
    84. Zhang Q, Zhang W, Wang X, et al. Immunoassay development for the class-specific assay fortypes I and II pyrethroid insecticides in water samples. Molecules,2010,15(1):164-177
    85. Liu J, Zhang Q, Zhang W, et al. Development of a fluorescence-linked immunoassay based onquantum dots for fenvalerate. Food and Agricultural Immunology,2013,DOI:10.1080/09540105.2012.749220
    86. Wang M, Kang H, Xu D, et al. Label-free Impedimetric Immunosensor for Sensitive Detectionof Fenvalerate in Tea. Food Chemistry,2013,141(1):84-90
    87. Kranthi K, Davis M, Mayee C, et al. Development of a colloidal-gold based lateral-flowimmunoassay kit for ‘quality-control’assessment of pyrethroid and endosulfan formulations in a novelsingle strip format. Crop Protection,2009,28(5):428-434
    88. Li Y, Cui Z, Li D, et al. Colorimetric determination of pyrethroids based on core–shell Ag@SiO2nanoparticles. Sensors and Actuators B: Chemical,2011,155(2):878-883
    89. Li H, Li Y, Cheng J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots forhighly selective and sensitive optosensing of pyrethroids. Chemistry of Materials,2010,22(8):2451-2457
    90. Sundari P A, Manisankar P. Development of ultrasensitive surfactants doped poly (3,4-ethylenedioxythiophene)/multiwalled carbon nanotube sensor for the detection of pyrethroids andan organochlorine pesticide. Journal of Applied Electrochemistry,2011,41(1):29-37
    91. Zhao P, Yu J, Liu S, et al. One novel chemiluminescence sensor for determination offenpropathrin based on molecularly imprinted porous hollow microspheres. Sensors and Actuators B:Chemical,2012,162(1):166-172
    92. Pirkle W H, Finn J M. Chiral high-pressure liquid chromatographic stationary phases.3. Generalresolution of arylalkylcarbinols. The Journal of Organic Chemistry,1981,46(14):2935-2938
    93. Lisseter S G, Hambling S G. Chiral high-performance liquid chromatography of syntheticpyrethroid insecticides. Journal of Chromatography A,1991,539(1):207-210
    94. i N, Kitahara H, Kira R. Enantiomer separation of pyrethroid insecticides by high-performanceliquid chromatography with chiral stationary phases. Journal of Chromatography A,1990,515:441-450
    95. Liu W, Gan J, Lee S, et al. Isomer selectivity in aquatic toxicity and biodegradation of bifenthrinand permethrin. Environmental Toxicology and Chemistry,2005,24(8):1861-1866
    96. Ye J, Wu J, Liu W. Enantioselective separation and analysis of chiral pesticides byhigh-performance liquid chromatography. TrAC Trends in Analytical Chemistry,2009,28(10):1148-1163
    97. Li Z, Zhang Z, Zhang L, et al. Isomer-and enantioselective degradation and chiral stability offenpropathrin and fenvalerate in soils. Chemosphere,2009,76(4):509-516
    98. Xu C, Tu W, Lou C, et al. Enantioselective separation and zebrafish embryo toxicity of insecticidebeta-cypermethrin. Journal of Environmental Sciences,2010,22(5):738-743
    99. Edwards D P, Ford M G. Separation and analysis of the diastereomers and enantiomers ofcypermethrin and related compounds. Journal of Chromatography A,1997,777(2):363-369
    100. Kim B H, Lee S U, Kim K T, et al. Enantiomeric discrimination of pyrethroic acid esters onpolysaccharide derived chiral stationary phases. Chirality,2003,15(3):276-283
    101. Faraoni M, Messina A, Polcaro C M, et al. Chiral Separation of Pesticides by Coupled‐ColumnLiquid Chromatography Application to the Stereoselective Degradation of Fenvalerate in Soil.Journal of Liquid Chromatography&Related Technologies,2005,27(6):995-1012
    102. Ma Y, Chen L, Lu X, et al. Enantioselectivity in aquatic toxicity of synthetic pyrethroidinsecticide fenvalerate. Ecotoxicology and Environmental Safety,2009,72(7):1913-1918
    103. Shishovska M, Trajkovska V. HPLC‐method for determination of permethrin enantiomersusing chiral β‐cyclodextrin‐based stationary phase. Chirality,2010,22(5):527-533
    104. Hardt I H, Wolf C, Gehrcke B, et al. Gas chromatographic enantiomer separation ofagrochemicals and polychlorinated biphenyls (PCBs) using modified cyclodextrins. Journal of HighResolution Chromatography,1994,17(12):859-864
    105. Liu W, Gan J J, Lee S, et al. Isomer selectivity in aquatic toxicity and biodegradation ofcypermethrin. Journal of agricultural and food chemistry,2004,52(20):6233-6238
    106. Liu W, Gan J J. Separation and analysis of diastereomers and enantiomers of cypermethrin andcyfluthrin by gas chromatography. Journal of Agricultural and Food Chemistry,2004,52(4):755-761
    107. Kuang H, Miao H, Hou X, et al. Determination of enantiomeric fractions of cypermethrin and cis‐bifenthrin in Chinese teas by GC/ECD. Journal of the Science of Food and Agriculture,2010,90(8):1374-1379
    108. Shea D, Penmetsa K V, Leidy R B. Enantiomeric and isomeric separation of pesticides bycyclodextrin-modified micellar electrokinetic chromatography. Jouranl of AOAC International,1999,82:1550-1561
    109.Pérez‐Fernández V, García M á, Marina M L. Enantiomeric separation of cis‐bifenthrin byCD‐MEKC: Quantitative analysis in a commercial insecticide formulation. Electrophoresis,2010,31(9):1533-1539
    110. Galve R, Camps F, Sanchez-Baeza F, et al. Development of an immunochemical technique forthe analysis of trichlorophenols using theoretical models. Analytical Chemistry,2000,72(10):2237-2246
    111.Vass M, Diblikova I, Cernoch I, et al. ELISA for semicarbazide and its application for screeningin food contamination. Analytica Chimica Acta,2008,608(1):86-94
    112. Xu Z L, Shen Y D, Zheng W X, et al. Broad-specificity immunoassay for O, O-diethylorganophosphorus pesticides: application of molecular modeling to improve assay sensitivity andstudy antibody recognition. Analytical Chemistry,2010,82(22):9314-9321
    113. Pinacho D G, Sánchez-Baeza F, Marco M-P. Molecular Modeling Assisted Hapten Design ToProduce Broad Selectivity Antibodies for Fluoroquinolone Antibiotics. Analytical Chemistry,2012,84(10):4527-4534
    114. Wang Z, Zhu Y, Ding S, et al. Development of a monoclonal antibody-based broad-specificityELISA for fluoroquinolone antibiotics in foods and molecular modeling studies of cross-reactivecompounds. Analytical Chemistry,2007,79(12):4471-4483
    115. Zhang Y-F, Ma Y, Gao Z-X, et al. Predicting the cross-reactivities of polycyclic aromatichydrocarbons in ELISA by regression analysis and CoMFA methods. Analytical and BioanalyticalChemistry,2010,397(6):2551-2557
    116. Yuan M, Liu B, Liu E, et al. Immunoassay for Phenylurea Herbicides: Application of MolecularModeling and Quantitative Structure–Activity Relationship Analysis on an Antigen–AntibodyInteraction Study. Anal Chem,2011,83(12):4767-4774
    117. Wang Z, Luo P, Cheng L, et al. Hapten–antibody recognition studies in competitiveimmunoassay of α‐zearalanol analogs by computational chemistry and Pearson Correlation analysis.Journal of Molecular Recognition,2011,24(5):815-823
    118. Wang Z,Kai Z,Beier R C, et al. Investigation of antigen-antibody interactions of sulfonamideswith a monoclonal antibody in a fluorescence polarization immunoassay using3D-QSAR models.International Journal of Molecular Sciences,2012,13(5):6334-6351
    119. Zhang Y F, Zhang L, Gao Z X, et al. Investigating the Quantitative Structure-ActivityRelationships for Antibody Recognition of Two Immunoassays for Polycyclic AromaticHydrocarbons by Multiple Regression Methods. Sensors,2012,12(7):9363-9374
    120. Lee N, McAdam D P, Skerritt J H. Development of immunoassays for type II syntheticpyrethroids.1. Hapten design and application to heterologous and homologous assays. Journal ofagricultural and food chemistry,1998,46(2):520-534
    121. Shan G, Wengatz I, Stoutamire D W, et al. An enzyme-linked immunosorbent assay for thedetection of esfenvalerate metabolites in human urine. Chemical research in toxicology,1999,12(11):1033-1041
    122. Kondo M, Tsuzuki K, Hamada H, et al. Development of an Enzyme-Linked ImmunosorbentAssay (ELISA) for Residue Analysis of the Fungicide Azoxystrobin in Agricultural Products. Journalof Agricultural and Food Chemistry,2012,60(4):904-911
    123. Kuang H, Xu L, Cui G, et al. Development of determination of di-n-octyl phthalate (DOP)residue by an indirect enzyme-linked immunosorbent assay. Food and Agricultural Immunology,2010,21(3):265-277
    124. Lin F, Song S, Liu L, et al. Development of the detection of benzophenone in recycled paperpackaging materials by ELISA. Food and Agricultural Immunology,2011,22(1):39-46
    125. K hler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefinedspecificity. Nature,1975,256(5517):495-497
    126. Peng J, Meng X, Deng X, et al. Development of a monoclonal antibody-based sandwich ELISAfor the detection of ovalbumin in foods. Food and Agricultural Immunology,2012,DOI:10.1080/09540105.2012.716398
    127. Sun F, Liu L, Kuang H, et al. Development of ELISA for melamine detection in milk powder.Food and Agricultural Immunology,2013,24(1):79-86
    128. Song S, Lin F, Liu L, et al. Immunoaffinity removal and immunoassay for rhodamine B in chillipowder. International Journal of Food Science&Technology,2010,45(12):2589-2595
    129. Karpinski K. Optimality assessment in the enzyme-linked immunosorbent assay (ELISA).Biometrics,1990,:381-390
    130. Elliott M, Janes N. Synthetic pyrethroids–a new class of insecticide. Chemical Society Reviews,1978,7(4):473-505
    131. Mekebri A, Crane D, Blondina G, et al. Extraction and analysis methods for the determination ofpyrethroid insecticides in surface water, sediments and biological tissues at environmentally relevantconcentrations. Bulletin of Environmental Contamination and Toxicology,2008,80(5):455-460
    132. Lao W, Maruya K A, Tsukada D. A two-component mass balance model for calibration ofsolid-phase microextraction fibers for pyrethroids in seawater. Analytical Chemistry,2012,84(21):9362-9369
    133. Liu L, Cheng J, Matsadiq G, et al. Application of DLLME to the determination of pyrethroids inaqueous samples. Chromatographia,2010,72(9-10):1017-1020
    134. Xie H, Ma W, Liu L, et al. Development and validation of an immunochromatographic assay forrapid multi-residues detection of cephems in milk. Analytica Chimica Acta,2009,634(1):129-133
    135. Sun F, Liu L, Ma W, et al. Rapid on-site determination of melamine in raw milk by animmunochromatographic strip. International Journal of Food Science&Technology,2012,47(7):1505-1510
    136. ArunKumar S, Basith S A, Gomathinayagam S. A comparative analysis on serum antibody levelsof sheep immunized with crude and thiol-purified excretory/secretory antigen of Haemonchuscontortus. Veterinary World,2012,5(5):279-284
    137. Datta M, Kavira A..Acute toxicity of the synthetic pyrethroid pesticide fenvalerate to some airbreathing fishes. Toxicological and Environmental Chemistry,2011,93(10):2034-2039\
    138. Beltran J, Peruga A, Pitarch E, et al. Application of solid-phase microextraction for thedetermination of pyrethroid residues in vegetable samples by GC-MS. Analytical and BioanalyticalChemistry,2003,376(4):502-511
    139. Qian S, Bau H H. Analysis of lateral flow biodetectors: competitive format. AnalyticalBiochemistry,2004,326(2):211-224
    140. Paek S-H, Lee S-H, Cho J-H, et al. Development of rapid one-step immunochromatographicassay. Methods,2000,22(1):53-60
    141. Verheijen R, Stouten P, Cazemier G, et al. Development of a one step strip test for the detectionof sulfadimidine residues. Analyst,1998,123(12):2437-2441
    142. Kuang H, Chen W, Yan W, et al. Crown ether assembly of gold nanoparticles: melamine sensor.Biosensors and Bioelectronics,2011,26(5):2032-2037
    143. Yuan Y, Zhang J, Zhang H, et al. Label-free colorimetric immunoassay for the simple andsensitive detection of neurogenin3using gold nanoparticles. Biosensors and Bioelectronics,2011,26(10):4245-4248
    144. Li X H, Dai L, Liu Y, et al. Ionic‐Liquid‐Doped Polyaniline Inverse Opals: Preparation,Characterization, and Application for the Electrochemical Impedance Immunoassay of Hepatitis BSurface Antigen. Advanced Functional Materials,2009,19(19):3120-3128
    145. Wang L, Zhu Y, Xu L, et al. Side‐by‐Side and End‐to‐End Gold Nanorod Assemblies forEnvironmental Toxin Sensing. Angewandte Chemie International Edition,2010,49(32):5472-5475
    146. Haiss W, Thanh N T, Aveyard J, et al. Determination of size and concentration of goldnanoparticles from UV-vis spectra. Analytical Chemistry,2007,79(11):4215-4221
    147. Raha P, Banerjee H, Das A K, et al. Persistence kinetics of endosulfan, fenvalerate, anddecamethrin in and on eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry,1993,41(6):923-928
    148. Jordan E G, Kaufman D D. Degradation of cis-and trans-permethrin in flooded soil. Journal ofAgricultural and Food Chemistry,1986,34(5):880-884
    149. Jiang B, Wang H, Fu Q M, et al. The chiral pyrethroid cycloprothrin: Stereoisomer synthesis andseparation and stereoselective insecticidal activity. Chirality,2008,20(2):96-102
    150. Pérez-Fernández V, García M á, Marina M L. Characteristics and enantiomeric analysis of chiralpyrethroids. Journal of Chromatography A,2010,1217(7):968-989
    151. Geva M, Izhaky D, Mickus D E, et al. Stereoselective Recognition of Monolayers of Cholesterol,ent-Cholesterol, and Epicholesterol by an Antibody. ChemBioChem,2001,2(4):265-271
    152. Hofstetter O, Hofstetter H, Wilchek M, et al. Chiral discrimination using an immunosensor.Nature Biotechnology,1999,17(4):371-374
    153. Izhaky D, Addadi L. Stereoselective interactions of a specialized antibody with cholesterol andepicholesterol monolayers. Chemistry-A European Journal,2000,6(5):869-874
    154. Liu W, Gan J J, Qin S. Separation and aquatic toxicity of enantiomers of synthetic pyrethroidinsecticides. Chirality,2005,17(S1): S127-S133
    155. Fetoui H, Garoui E M, Zeghal N. Lambda-cyhalothrin-induced biochemical andhistopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Experimental andToxicologic Pathology,2009,61(3):189-196
    156. Fetoui H, Makni M,Mouldi Garoui E, et al. Toxic effects of lambda-cyhalothrin, a syntheticpyrethroid pesticide, on the rat kidney: Involvement of oxidative stress and protective role of ascorbicacid. Experimental and Toxicologic Pathology,2010,62(6):593-599

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700