用户名: 密码: 验证码:
聚酯多元醇PEA连续制备过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酯多元醇是生产聚酯型聚氨酯主要原料之一,现有的聚酯多元醇工业生产均为间歇搅拌釜合成工艺,虽然其生产产品种类灵活,但产品质量不稳定,影响了后续聚氨酯产品的生产加工,同时由于传质传热受限,反应时间长,如合成己二酸系列聚酯多元醇产品需要20多小时。采用连续工艺合成聚酯多元醇,特别是聚己二酸乙二醇酯(Poly ethylene adipate, PEA)等产能较大的聚酯多元醇品种,一方面可使生产过程和产品质量更加稳定,另一方面通过匹配高效的传质传热设备可以显著提高过程能效。为此本研究构建了新型的连续塔式反应器-6级串联鼓泡反应精馏塔(Bubble Reaction Distillation Tower, BRDT),成功实现了制备分子量2000左右PEA的连续酯化过程和连续缩聚过程,总反应时间只需6小时。
     本文从PEA制备过程的反应动力学、新型反应器BRDT的构建及其流体力学性能、BRDT中PEA酯化和缩聚过程的连续化模试实验研究、连续酯化过程和连续缩聚过程的建模及优化、连续反应过程全流程模拟等方面开展了较系统的实验和模拟计算研究,为PEA连续化制备提供了关键技术和系统数据:
     1、采用间歇实验考察分析了反应温度、醇酸摩尔配比、反应压力、催化剂种类及添加量等对PEA酯化过程和缩聚过程影响,在乙二醇(EG)和己二酸(AA)醇酸配比1.2、常压、160~230℃温度范围研究了不外加催化剂的PEA酯化过程反应动力学,综合考虑了酯化反应和缩聚反应及其逆反应水解反应和醇解反应,基于AA和EG酯化过程中酯化反应催化机理的不同,分别建立了二级、变级数、三级等3个酯化过程反应动力学模型。在真空、160~230℃温度范围研究了25ppm钛酸异丙酯(TPT)催化的PEA缩聚过程反应动力学,基于有外加催化剂存在下酯化和缩聚反应均为二级反应建立了动力学模型。同时通过动力学模型检验和辨识,发现无论是酯化过程还是缩聚过程,二级反应动力学模型均可很好地表征PEA反应过程。
     2、基于PEA制备过程反应特征和物系特性认识,构建了新型的连续塔式反应器-6级串联鼓泡塔,耦合了酯化/缩聚反应和移走可逆反应生成的小分子水的精馏过程。通过特殊设计的塔盘结构,实现反应器内气液流动、停留时间、压降等可控。流体力学实验验证了常压和真空条件下液体于塔式反应器中可以由上级塔盘溢流经降液管流至下一级塔盘,气体通过气管由下而上,与向下流动的液态物料逆向流动鼓泡向上,各个塔盘由于气体的剧烈鼓泡而达到充分混合,单个塔盘接近于全混,多个塔盘串联的整个反应器趋向平推流:气管的直径大小是反应器稳定操作的关键。
     3、实施了BRDT中制备低分子量PEA的连续酯化过程和连续缩聚过程模试,成功得到羧基浓度小于1mo·kg-1的酯化过程齐聚物和分子量2000左右、羧基浓度小于0.02mol·kg-1的缩聚过程PEA产品。建立了BRTD中PEA连续酯化过程和连续缩聚过程数学模型,实验值与模拟计算值平均相对偏差分别小于14%和19%。在模拟考察反应温度、反应压力、停留时间、醇酸摩尔配比、氮气流量等操作因素影响的基础上,结合模试实验确定了连续酯化和连续缩聚的最优工艺条件:对于连续酯化过程,常压且6个塔盘反应温度分布160℃、180℃、200℃、220℃、230℃、230℃,EG和AA摩尔配比1.2,塔底N2流量100ml·min-1,各塔盘停留时间35min;对于真空连续缩聚过程,塔顶压力2000Pa,6个塔盘反应温度分布220℃、230℃、230℃、230℃、230℃、230℃,塔底N2流量100ml·min-1,各塔盘停留时间30min。
     4、进行了聚酯多元醇PEA连续反应过程全流程模拟分析。考察了缩聚过程塔顶气相EG和水的循环对整个反应过程的影响,相比EG和水不循环及EG循环、水不循环过程,缩聚阶段EG和水同时循环过程最优,连续酯化阶段进料的醇酸配比可由1.2降低至1.095,酯化过程各塔盘停留时间由35min降低至30min,最终PEA缩聚产物分子量Mn为1960,羧基浓度为0.0181mol·kg-1,整个连续工艺流程更为简易和经济。
Polyester polyols are macroglycols prepared by the condensation of a glycol and a dicarboxylic acid or acid derivative, which can further react with isocyanates to produce polyurethane. Nowadays industrial technologies for the manufacture of polyester polyols all use batch stirred tanks, which are benefit to the flexibility of products, but reduce the stability of product quality. Moreover, due to the limited heat and mass transfer, the batch industrial reaction time of adpic acid series polyester polyols need more than20hours. A continuous process for the preparation of polyester polyols has been developed in this thesis. An innovational six-stage bubbling reactive distillation tower (BRDT) reactor has been constructed to perform both esterification process and polycondensation process, and the total residence time for the preparation of poly (ethylene adipate)(PEA) with average molecular weight (Mn)2000is significantly shortened to about6hours.
     Many aspects including the reaction kinetics of PEA esterification process and polycondensation process, the principle for the construction of BRDT and the hydrodynamics of BRDT, hot model experiments for PEA continuous esterification and polycondensation process in BRDT, the modelling and simulation optimization for polyester polyols continuous synthetic process in BRDT have been studied, which provide the key technologies and basic data as well as strategies for the development and optimization of PEA continuous process.
     First, the effects of different parameters (including reaction temperature, feed ratio of alcohol and acid, reaction pressure, different kinds of catalyst, the catalyst dosage, et al.) on PEA esterification and polycondensation process were investigated. Under the conditions of temperature range160~230℃and feed ratio of1.2at atmospheric pressure, the second-order, shift-order and third-order reaction kinetic models for the direct esterification process between AA and EG without additional catalyst had been developed on the basis of different catalytic mechanisms of esterification reactions. Under the conditions of temperature range160-230℃, pressure2kPa and in the present of additional25ppm catalyst of tetraisopropyl titanate (TPT), the second-order kinetic model for PEA polycondensation process had been developed. Model identification results showed that the second-order model could well express the kinetic feature of both esterification and polycondensation process.
     Second, an innovational six-stage BRDT was constructed to perform PEA esterification and polycondensation process, which coupled reaction with distillation to remove by-products efficiently. In this tower reactor, the liquid/gas flow, residence time and pressure drop could be manipulated using special tray structure with liquid downflow and gas upflow pipes. The visual cold model experiments showed that the liquid flowed through each tray from the top to the bottom, and was discharged from the bottom of the column, while gas passed the trays from the bottom to the top. The flowing fluid on the column trays had little dead zone due to the intensive bubbling effect of the gas, ensuring there optimum intermixing. Each column tray acted as a CSTR, and the fluid through multi-stages tended to be plug flow. The diameter of gas pipe in column tray was the key factor for stable operation of this kind reactor.
     Third, a bench scale BRDT was built to carry out the continuous esterification and polycondensation process respectively to prepare low-molecular-weight PEA. The esterification oligomers with carboxyl groups less than1mol·kg-1and polycondensation products with Mn about2000as well as carboxyl groups less than0.02mol·kg-1had been obtained successfully. A comprehensive mathematical model for PEA continuous esterification and continuous polycondensation process in BRDT was developed; the calculated results were in good agreement with experimental data. The influence of the major operating conditions on reactor performance was further simulated, it was found that the optimal operating conditions as following:the temperature distribution was160,180,200,220,230,230℃, residence time for each column tray35min, feed ratio1.2, reaction pressure1atm, nitrogen flow rate100ml min-1for continuous esterification process; and the temperature distribution was220,230,230,230,230,230℃, residence time for each column tray30min, reaction pressure2kPa, nitrogen flow rate100ml min-1for continuous polycondensation process; these optimal conditions were also verified experimentally.
     Fourth, the whole flow sheet of PEA continuous process was simulated. The influence of the circulation of water and EG from polycondensation process was calculated, compared with no water and EG circulation and only EG circulation, after both water and EG generated in polycondensation process were recycled to the esterification process, the feed ratio could be decreased from1.2to1.095and the residence time of each column tray could be decreased from35min to30min in esterification process, therefore the whole process became more simple and economical.
引文
[1]李绍雄,刘益军.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002,5:70-84
    [2]Vairo G, et al. WO 02008037400 [P],2008
    [3]蒋剑春,李科,许彬,陈洁.CN 202450018[P],2012
    [4]蒋剑春,李科,许彬,陈洁.CN 102532500[P],2012
    [5]Henry C, Uwe L, Hiroaki M. Polyester polyols [R]. CEH Report:October 2012. Abstract
    [6]Thomas A B, et al. US 2006069175 [P],2006
    [7]Thomas A B, et al. CN 1668668 [P],2003
    [8]Nefzger H, et al. DE 102006048288 [P],2006
    [9]Nefzger H, et al. CN 101168592 [P],2007
    [10]Wamiti A, et al. DE 10223055 [P],2003
    [11]Warniti A, et al. CN 1656140 [P],2003
    [12]村山公一等.CN 1339516[P],2002
    [13]叶龙财.CN 201343512[P],2009
    [14]姚志洪,邢益辉.芳香族聚酯多元醇的合成与应用[J].聚氨酯工业.2005,20(6):24-27
    [15]娄兆文,陈福和,孙东成,程珍贤.鞋用聚氨酯胶粘剂聚酯生产工艺的研究[J].湖北化工.1997,(4):14-15
    [16]烟台华大己二酸系聚酯多元醇生产指令
    [17]孙晴卿,段正康,李立南.基于二聚酸/已二酸聚酯多元醇的合成及表征[J].聚氨酯工业.2010,25(4):24-27
    [18-]王颖,王康,崔力.聚己二酸乙二醇酯的合成[J].化学工业与工程.2003,20(2):32-36.116-117
    [19]王化举.聚酯多元醇合成试验研究[J].黎明化工.1996,(4):32-36
    [20]晁国库,郭武学,赵亚娟,薛合微.聚酯多元醇合成方法研究[J].长春工业大学学报(自然科学版).2007,28(1):17-21
    [21]陈建福,周俊峰.己二酸系聚酯多元醇的合成[J].聚氨酯工业.2009,24(4):37-39
    [22]曹祺风,朱长春,宋文生,唐亚夫.聚酯多元醇合成中催化剂的应用研究[J].中国胶粘剂.2008,17(5):9-14
    [23]华道本.聚酯催化剂研究的进展[J].聚酯工业.2001,14(1):11-14
    [24]Hoechst C C. US 5008230 [P],1991
    [25]Hoechst C C. EP 0399742 [P],1990
    [26]Hoechst D G. EP 0864596 [P],1998
    [27]张天骄,武荣瑞,王继光.稀土催化体系催化酯交换和缩聚反应[J].合成纤维工业.2001,24(3):5-8
    [28]Arunachalam T R, Brett Z B, Diane M C. US 5041525 [P],1991
    [29]Kevin C C, Sri R S. US 4356299 [P],1982
    [30]Hara A, Fujimura K, Mizushima K, Eto Y. JP 2001247661 [P],2001
    [31]陆龙.PET钛系催化剂的应用进展[J].合成技术及应用.2005,20(4):40-43
    [32]Tomita K. Studies on the formation of poly(ethylene terephthalate):6. Catalytic activity of metal compounds in polycondensation of bis(2-hydroxyethyl) terephthalate [J]. Polym.1976,17(3):221-224
    [33]石铮.聚酯生产中Ti系催化剂开发的新进展[J].聚酯工业.2003,16(5):1-4
    [34]Alan B, Thomas H S, Kingsport T. US 3463742 [P],1969
    [35]王国德,边树昌.新型高活性聚酯催化剂C-94[J].聚酯工业.2001,14(6):9-11
    [36]黄兴山.PET非锑缩聚催化剂的现状和前景[J].合成技术及应用.2004,3,28-31
    [37]Lustig S R, Burch R R. US 5981690 [P],1999
    [38]Steven R L, Robert R B. US 6034203 [P],2000
    [39]Zhu Q Z, Zhang C, Feng S Y, Chen J H. Effects of the o-aromatic ring in the molecular chain on the properties of polyester polyols [J]. J Appl Polym Sci.2002,83(7): 1617-1624
    [40]张留城,李佐邦等编.缩合聚合[M].北京:化学工业出版社,1986,36
    [41]沈瀛坪,赵玲.聚酯(PET)反应过程研究.I对苯二甲酸和乙二醇直接酯化反应过程分析及主反应化学平衡研究[J].化学反应工程与工艺.2007,13(2):173-178
    [42]Yamada T, Imamura Y. Simulation of continuous direct esterification process between terephthalic acid and ethylene glycol [J]. Polym Plast Technol Eng.1989,28:811-876
    [43]Ravindranath K, Mashelkar R A. Modeling of poly (ethylene terephthalate) reactors:4. A continuous esterification process [J]. Polym Eng Sci.1982,22(10):610-618
    [44]Scheirs J, Long T E. Modern polyesters-chemistry and technology of polyesters and copolyesters [M]. England:John Wiley & Sons,2005,11:31-116
    [45]Reimschuessel H K. Polyethylene terephthalate formation. Machenistic and kinetic aspect of the direct esterification process [J]. Ind Eng Prod Res Dev.1980,19:117-125
    [46]Challa G. The formation of polyethylene terephthalate by ester interchange:I. The polycondensation equilibrium [J]. Macromol Chem Phys.1960,38:105-122
    [47]Yamada T. Effect of diantimony trioxide on direct esterification between terephthalic acid and ethylene glycol [J]. J Appl Polym Sci.1989,37:1821-1835
    [48]Flory P. Kinetics of condensation polymerization:the reaction of ethylene glycol with succinic acid [J]. J Am Chem Soc.1937,59(3):466-470
    [49]Flory P. Kinetics of polyesterification:a study of the effects of molecular weight and viscosity on reaction rate [J]. J Am Chem Soc.1939,61(12):3334-3340
    [50]Vancso S I. Investigations on polyesterification reactions [J]. Eur Polym J.1969,5(1): 155-161
    [51]Otton J, Ratton S. Investigation of the Formation of Poly (ethylene terephthalate) with Model Molecules:Kinetics and Mechanism of the Catalytic Esterification and Alcoholysis Reactions. I. Carboxylic Acid Catalysis (Monofunctional Reactants) [J]. J Polym Sci.1988,26(8):2183-2197
    [52]Chen C L, Kuo H H. The kinetics of polyesterification. Ⅰ. Adipic acid and ethylene glycol [J]. J Appl Polym Sci.1977,21(10):2711-2719
    [53]Chen C L, Ping C Y. The kinetics of polyesterification. Ⅱ. Succinic acid and ethylene glycol [J]. J Polym Sci.1978,16(5):1005-1016
    [54]Chen C L, Ping C Y. The kinetics of polyesterification. Ⅲ. A mathematical model for quantitative prediction of the apparent rate constants [J]. J Appl Polym Sci.1978, 22(7):1797-1803
    [55]Yu T, Chang H B, Lai W P, Chen X F. Computational study of esterification between succinic acid and ethylene glycol in the absence of foreign catalyst and solvent [J]. Polym Chem.2001, (2):892-896
    [56]Tang A C, Yao K S. Mechanism of hydrogen ion catalysis in esterification. Ⅱ. Studies on the kinetics of polyesterification reactions between dibasic acids and glycols [J]. J Polym Sci.1959,35(128):219-233
    [57]Salmi T, Paatero E, Nyholm P. Kinetic model for the increase of reaction order during polyesterification [J]. Chem Eng Process.2004,43(12):1487-1493
    [58]Kuo C T, Chen S A. Kinetics of polyesterification:Adipic acid with ethylene glycol, 1,4-butanediol, and 1,6-hexanediol [J]. J Polym Sci Part A:Polym Chem.1989,27(8): 2793-2803
    [59]Chegolya A S, Shevchenko V V, Mikhailov G D. The formation of polyethylene terephthalate in the presence of dicarboxylic acids [J]. J Polym Sci.1979,17(3): 889-904
    [60]Yamada T, Imamura Y, Makimura O, Kamatani H. A mathematical model for computer simulation of a direct continuous esterification process between terephthalic acid and ethylene glycol:Part Ⅱ. Reaction rate constants [J]. Polym Eng Sci.1986,26(10): 708-716
    [61]Paul J F. A comparison of esterification and ester interchange kinetics [J]. J Am Chem Soc.1940,62(9):2261-2264
    [62]Yamada T, Imamura Y. A mathematical model for computer simulation of a direct continuous esterification process between terephthalic acid and ethylene glycol [J]. Polym Eng Sci.1988,28(6):385-392
    [63]Otton J, Ratton S. Investigation of the Formation of Poly (ethylene terephthalate) with Model Molecules:Kinetics and Mechanism of the Catalytic Esterification and Alcoholysis Reactions. I. Carboxylic Acid Catalysis (Monofunctional Reactants) [J]. J Polym Sci.1988,26(8):2183-2197
    [64]Ohba H, Nakamura M. JP 714977 [P],1983
    [65]Bacaloglu R, Fisch M, Biesiada K. Kinetics of polyesterification of adipic acid with 1,3-butanediol [J]. Polym Eng Sci.1998,38(6):1014-1022
    [66]Hovenkamp S G. Kinetic aspects of catalyzed reactions in the formation of poly (ethylene terephthalate) [J]. Polym Eng Sci.1971,9(12):3617-3625
    [67]Yokoyama H, Sano T, Chijiiwa T, Kajiya R. Polycondensation rate of poly(ethylene terephthalate) at reduced pressure [J]. J Japan Petrol Inst.1978,21(1):58-62
    [68]Maerov S B. Influence of antimony catalysts with hydroxyethoxy ligands on polyester polymerization [J]. J Polym Sci.1979,17(12):4033-4040
    [69]Siling M I, Laricheva T N. Titanium compounds as catalysts for esterification and transesterification [J]. Russ Chem Rev.1996,65(3):279-286
    [70]张连山等.聚酯生产工[M].北京:化学工业出版社,2005,9:47-55
    [71]Tomita K. Studies on the formation of poly(ethylene terephthalate):6. Catalytic activity of metal compounds in polycondensation of bis(2-hydroxyethyl) terephthalate [J]. Polymer.1976,17(3):221-224
    [72]Tomita K, Ida H. Studies on the formation of poly(ethylene terephthalate):3. Catalytic activity of metal compounds in transesterification of dimethyl terephthalate with ethylene glycol [J]. Polymer.1975,16(3):185-190
    [73]Ravindranath K, Mashelkar R A. Modeling of poly (ethylene terephthalate) reactors:5 a continuous prepolymerization process [J]. Polym Eng Sci,1982,22(10),619-627
    [74]Fletcher R, Powell M J D. A rapidly convergent descent method for minimization [J]. Comp J.1963,6(3):163-168
    [75]Roberto B. First-and second-order methods for learning:between steepest descent and newton's method [J]. Neural Comput.1992,4(2):141-166
    [76]Nelder J A, Mead R. A simplex method for function minimization [J]. Comp J.1965, 7(4):308-313
    [77]Philip W. The simplex method for quadratic programming [J]. Econometrica,1959, 27(3):382-398
    [78]Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivatives [J]. Comp J.1964,7(2):155-162
    [79]Masahiro O, Taisuke N, Shuichiro O, Daisuke T. Nonlinear numerical optimization with use of a hybrid genetic algorithm incorporating the modified Powell method [J]. Appl Math Comput.1998,91(1):63-72
    [80]Balland L, Estel L, Cosmao J M, Mouhab N. A genetic algorithm with decimal coding for the estimation of kinetic and energetic parameters [J]. Chemometr Intell Lab.2000, 50(1):121-135
    [81]Feng G Z, Li F S, et al. A hybrid genetic algorithm for the estimation of polyesterification kinetic parameters [J]. Chem Eng Technol.2006,29(6):740-743
    [82]Han R F, Yang Y L. Optimization of parameters of the chemic kinetic model by improved genetic algorithms [C].2010 6th International Conference on Natural Computation, ICNC 2010,4143-4146
    [83]Elliott L, Ingham D B, et al. Genetic algorithms for optimisation of chemical kinetics reaction mechanisms [J]. Prog Energ Combust.2004,30(3):297-328
    [84]Feng G Z, Qu H, Cui Y D, et al. Synthesis and kinetic studies on dimer fatty acid/polyethylene glycol polyester [J]. J Polym Res.2007,14(2):115-119
    [85]Majumdar S, Mitra K, Sardar G. Kinetic analysis and optimization for the catalytic esterification step of PPT polymerization [J]. Macromol Theor Simul.2005,14(1): 49-59
    [86]Edwards K, Edgar T F, Manousiouthakis V I. Kinetic model reduction using genetic algorithms [J]. Comput Chem Eng.1998,22(1&2):239-246
    [87]Kim J Y, Kim H Y, et al. Identification of kinetics of direct esterification reactions for PET synthesis based on a genetic algorithm [J]. Korean J Chem Eng.2001,18(4): 432-441
    [88]Kang C K, Lee B C. Modeling of semibatch direct esterification reactor for poly (ethylene terephthalate) synthesis [J]. J Appl Polym Sci.1996,60:2007-2015
    [89]Kang C K, Lee B C. A simulation study on continuous direct esterification process for polyethylene terephthalate) synthesis [J]. J Appl Polym Sci.1997,63:163-172
    [90]Yamada T, Imamura Y, Makimura O. A mathematical model for computer simulation of a direct continuous esterification process between terephthalic acid and ethylene glycol:Part I. Model development [J]. Polym Eng Sci.1985,25(12):788-795
    [91]吴舒颖.聚酯系统的过程模拟[D].北京:北京化工大学,2009
    [92]Samant K D, Ng K M. Synthesis of prepolymerization stage in polycondensation process [J]. AIChE J.1999,45(8):1808-1829
    [93]Vrentas J S, Duda J L, Hsieh S T. Thermodynamic properties of some amorphous polymer-solvent systems [J]. Ind Eng Chem Prod Res Dev.1983,22(2):326-330
    [94]Yamada T. Effect of titanium dioxide on direct esterification between terephthalic acid and ethylene glycol [J]. J Appl Polym Sci.1992,45(5):765-781
    [95]Yamada T. A mathematical model for a continuous esterification process with recycle between terephthalic acid and ethylene glycol [J]. J Appl Polym Sci.1992, 45(11):1919-1936
    [96]Ravindranath K, Mashelkar R A. Modeling of poly(ethylene terephthalate) reactors:6. A continuous process for final stages of polycondensation [J]. Polym Eng Sci.1982, 22(10):628-638
    [97]Ravindranath K, Mashelkar R A. Modeling of polyethylene terephthalate reactors:7. MWD considerations [J]. Polym Eng Sci.1984,24(1):30-41
    [98]沈瀛坪,赵玲.聚酯(PET)反应过程研究:Ⅲ.酯化反应过程中传质研究[J].化学反 应工程与工艺.1997,13(3):251-256
    [99]沈瀛坪,赵玲.聚酯(PET)反应过程研究:IV.酯化反应过程数学模拟[J].化学反应工程与工艺.1997,13(3):257-262
    [100]沈瀛坪,赵玲.聚酯(PET)反应过程研究:VI.预缩聚反应过程的数学模拟[J].化学反应工程与工艺.1997,13(4):383-388
    [101]沈瀛坪,赵玲.聚酯(PET)反应过程研究:VII.后缩聚反应过程研究和数学模拟[J].化学反应工程与工艺.1997,13(4):389-394
    [102]沈瀛坪,赵玲.聚酯(PET)反应过程研究:II.酯化反应过程动力学研究[J].化学反应工程与工艺.1997,13(2):189-183
    [103]蒋峰.反应精馏在酯化反应中的应用研究[D].南京:南京理工大学,2004
    [104]Harmsen G J. Reactive distillation:the front-runner of industrial process intensificati-on:a full review of commercial applications, research, scale-up, design and operation [J]. Chem Eng Process.2007,46(9):774-780
    [105]赵国胜,杨伯伦,殷小波.直接酯化合成聚对苯二甲酸乙二醇酯单体的反应精馏工艺模拟[J].石油化工.2004,33(5):432-436
    [106]李新,崔德珠,陈振新.聚酯酯交换塔的数学模型-反应精馏塔的模拟计算[J].化学工业与工程.1997,14(3):26-29
    [107]Taylor R, Krishna R. Modelling reactive distillation [J]. Chem Eng Sci.2000,55: 5183-5229
    [108]漆志文,孙海军,施军民,张瑞生,于遵宏.反应分离过程模拟-I.反应精馏过程[J].华东理工大学学报.1999,25(1):19-23
    [109]Bhatt K, Patel N M. Generalized modeling and simulation of reactive distillation Esterification [J]. Adv Appl Sci Res.2012,3(3):1346-1352
    [110]卢晶,屈一新,陈振新,汪少朋.反应精馏发合成聚酯单体的工艺模拟[J].北京化工大学学报.2002,29(6):13-17
    [111]Smejkal Q, Hanika J, Kolena J.2-Methylpropylacetate synthesis in a equilibrium reactor and reactive distillation column [J]. Chem Eng Sci.2001,56(2):365-370
    [112]Stitt E H. Reactive distillation for toluene disproportionation:a technical and economic evaluation [J]. Chem Eng Sci.2002,57(9):1537-1543
    [113]Venkataraman S, Chan W K, Boston J F. Reactive distillation using Aspen Plus [J]. Chem Eng Prog.1990,86(8):45-54
    [114]Shah M, Zondervan E, Oudshoorn M L, Haan A B. Development of a model for the synthesis of unsaturated polyester by reactive distillation [J]. Distil Absorp.2010, 774-780
    [115]Shah M, Zondervan E, Oudshoorn M L, Haan A B. Reactive distillation:an attractive alternative for the synthesis of unsaturated polyester [J]. Macromol Symp.2011, 302(1):46-55
    [116]罗娜,叶贞成,钟伟民,钱锋.聚酯装置酯化生产过程动态模拟[J].化工学报.2010,61(8):1933-1941
    [117]张栗红,雷依庆,李远庆,袁履冰.酸催化下乙二醇与某些二元酸聚酯化反应的动力学研究[J].高分子材料科学与工程.1991,7(6):34-38
    [118]Chen S A, Wu K C. Kinetics of polyesterification II. foreign acid-catalyzed dibasic acid and glycol systems [J]. J Polym Sci.1982,20(7):1819-1831
    [119]胡丽霞.脂肪-芳香族共聚酯合成过程的反应动力学研究[D].浙江:浙江大学,2010
    [120]Yamada T, Imamura Y. Simulation of continuous direct esterification process between terephthalic acid and ethylene glycol [J]. Polym Plast Technol Eng.1989,28(7&8): 811-876
    [121]Paatero E, Narhi K, Salmi T, et al. Kinetic model for main and side reactions in the polyesterification of dicarboxylic acids with diols [J]. Chem Eng Sci.1994,49(21): 3601-3616
    [122]Lehtonen J, Salmi T, Immonen K, et al. Kinetic model for the homogeneously catalyzed polyesterification of dicarboxylic acids with diols [J]. Ind Eng Chem Res. 1996,35 (11):3951-3963
    [123]Salmi T, Paaterob E, Nyholm P, et al. Kinetics of melt polymerization of maleic acid phthalic acids with propylene glycol [J]. Chem Eng Sci.1994,49(24):5053-5070
    [124]Zetterlundab P B, Weaverc W, Johnsonab A F. Kinetics of polyesterification: modelling of the condensation of maleic anhydride, phthalic anhydride, and 1, 2-propylene glycol [J]. Polym React Eng.2002,10(1&2):41-57
    [125]梁振明.丙二醇酯中游离丙二醇含量的直接测定[J].中国食品添加剂.2004,(4):160-162
    [126]孔凡滔等.CN 101220142[P],2008
    [127]孔凡滔等.CN 101671435[P],2010
    [128]赵玲,戴迎春,沈瀛坪,朱中南.聚酯工业生产中催化剂的作用[J].聚酯工业.1999,12(4):12-15
    [129]Yang J H, Xia Z X, Kong F T, Ma X S. The effect of metal catalyst on the discoloration of poly(ethylene terephthalate) in thermo-oxidative degradation [J]. Polym Degrad Stabil.2010,95:53-58
    [130]沈瀛坪,赵玲.聚酯酯化反应过程研究方法[J].聚酯工业.1998,(2):7-13
    [131]Aneja A P. Polyethylene terephthalate feed stock selection and process options [J], Chemical Age of India.1978,29(9):733-737
    [132]Yu T, Chang H B, Lai W P. Computational study of esterification between succinic acid and ethylene glycol in the absence of foreign catalyst and solvent [J]. Polym Chem.2011, (2):892-896
    [133]Mohsen M, Mehdi R, Vahid H. Synthesis and mathematical modeling of polyethylene terephthalate via direct esterification in a laboratory scale unit [J]. Iran Polym J.2007, 16(9):587-596
    [134]沈瀛坪,赵玲.聚酯(PET)反应过程研究:V预缩聚反应过程分析和反应动力学研究[J].化学反应工程与工艺.1997,13(4):377-382
    [135]Shah M, Zondvervan E, Haan A B. Modelling and simulation of an unsaturated polyester process [J]. J Appl Sci.2010,10(21):2551-2557
    [136]Floudasa C A, Akrotirianakisa I G, Caratzoulasa S, Meyera C A, Kallrathb J. Global optimization in the 21st century:advances and challenges [J]. Comput Chem Eng. 2005,29(6):1185-1202
    [137]Alejandro F V, John R, Federico M, Eva B C. Use of a generalized fisher equation for global optimization in chemical kinetics [J]. J Phys Chem A.2011,115(30): 8426-8436
    [138]William R E, Christodoulos A F. Global optimization for the parameter estimation of differential-algebraic systems [J]. Ind Eng Chem Res.2000,39 (5):1291-1310
    [139]Zhang H B, Rangaiah G P, Adrian B P. Integrated differential evolution for global optimization and its performance for modeling vapor-liquid equilibrium data [J]. Ind Eng Chem Res.2011,50(17):10047-10061
    [140]David E G. Genetic algorithms in search, optimization, and machine learning [M]. Addison:Wesley Professional,1 edition,1989
    [141]于遵宏.化工过程开发[M].上海:华东理工大学出版社,1996,423-424
    [142]黄华江.实用化工计算机模拟[M].北京:化学工业出版社,2004,246-248
    [143]中国石化国际事业公司.聚酯树脂,纤维及薄膜考察报告[J].石油化工对外技术交流.1992,(4):1-5
    [144]Bruce R D. US 20040230025 [P],2004
    [145]Kamlesh K B. US 5849849 [P],1998
    [146]Goodley G R, Shiffler D A, Kinston N C. US 4146729[P],1979
    [147]徐晓颖.杜邦聚酯酯化釜快循环原因及处理[J].聚酯工业.2007,20(5):1-4
    [148]陈剑佩,王良生,赵玲,戴干策.热虹吸酯化反应器性能研究[J].聚酯工业.2005,18(1):18-20
    [149]孙静珉.聚酯工艺-引进聚酯装置技术资料汇编[M].北京:化学工业出版社,1985,6:579-629
    [150]罗文聆.100 kt/a邻苯二甲酸二辛酯生产装置国产化设计[J].化工设计.2005,15(1):11-14
    [151]杨始堃,陈玉君.关于聚酯树脂端羧基问题的讨论[J].聚酯工业.1998,(4):21-23
    [152]张濂,许志美,袁向前.化学反应工程原理[M].上海:华东理工大学出版社,2000,147-152
    [153]赵玲,奚桢浩,陈礼科,孙伟振.CN 102432846[P],2011
    [154]奚桢浩,赵玲,陈礼科,孙伟振.CN 102585191[P],2012
    [155]沈春银,蔡清白,戴干策.浅层气液两相鼓泡塔非线性混沌特征[J].华东理工大学学报(自然科学版).2008,34(4):461-490
    [156]蔡清白,戴干策.三相浅层鼓泡塔颗粒悬浮特性[J].过程工程学报.2011,11(6):902-906
    [157]Ravinath M, Kasat G R, Pandit A B. Mxing time in a short bubble column [J]. Can J Chem Eng.2003,81(2):185-195
    [158]Haque M W, Nigam K D P, Joshi J B. Optimum gas sparger design for bubble column with a low height-to-diameter ratio [J]. Chem Eng J.1986,33(2):63-69
    [159]Bahadori F, Rahimi R. Simulations of gas distributors in the design of Shallow bubble column reactors [J]. Chem Eng Technol,2007,30(4):443-447
    [160]Lau R, Mo R J, Shan W. Bubble characteristics in shallow bubble column reactors [J]. Chem Eng Res Des.2010,88(2):197-203
    [161]蔡清白,沈春银,戴干策.大直径浅层鼓泡塔的混合时间[J].化学反应工程与工艺.2009,25(1):23-29
    [162]Prokop A, Erickson L E, Fernandez J, Humphrey A E. Design and physical characteristics of a multistage, continuous tower fermentor [J]. Biotechnol Bioeng. 1969,11(5):945-966
    [163]Sauze N L, et al. The Residence Time distribution of the liquid phase in a bubble column and its effect on ozone transfer [J].Ozone Sci Eng.1992,14(3):245-262
    [164]刘建新,徐彦.精对苯二甲酸氧化反应器中气体停留时间分布[J].化学工程.2008,36(5):28-31
    [165]Thijert M P G, Oyevaar M H, Kuper W J. Residence time distribution of the gas phase in a mechanically agitated gas-liquid reactor [J]. Chem Eng Sci.1992,47(13&14): 3339-3346
    [166]Franz T, Axel G, Saif K, Klavs F J. Measurement of residence time distribution in microfluidic systems [J]. Chem Eng Sci.2005,60(21):5729-5737
    [167]John T A, Adeniyi L. Numerical and experimental studies of mixing characteristics in a T-junction microchannel using residence-time distribution [J]. Chem Eng Sci.2009, 64(10):2422-2432
    [168]Deckwer W D, Burckhart R, Zoll G. Mixing and mass transfer in tall bubble columns [J]. Chem Eng Sci.1974,29(11):2177-2188
    [169]Hughmark G A. Holdup and mass transfer in bubble column [J]. Ind Eng Chem Process Des Dev.1967,6(2):218-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700