用户名: 密码: 验证码:
锂离子电池5V正极材料LiNi_(0.5)Mn_(1.5)O_4的制备及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
5V正极材料LiNi_(0.5)Mn_(1.5)O)_4具有较高容量和4.7V高电压放电平台,不仅可以满足个人电子消费品和大型电动设备对新一代电源的需求,而且可兼容工作电压较高的负极材料,从而提高电池的安全性能,使其成为下一代先进锂离子电池最受瞩目的正极材料之一。
     本研究针对LiNi_(0.5)Mn_(1.5)O)_4存在循环稳定性和倍率放电性能亟待改善和提高这一关键问题,开展制备和改性研究。考察制备工艺对材料物理化学性质和电化学性能的影响,探索LiNi_(0.5)Mn_(1.5)O)_4的生长规律及材料的结构和形貌与电化学性能间的联系。通过对材料循环前后物理化学性质和电化学性能的比较,探讨了造成容量衰减的原因,并以此为依据,分别采用双掺杂、碳包覆和扩渗改性的新方法提升LiNi_(0.5)Mn_(1.5)O)_4材料的电化学性能。
     锂盐的选择会导致LiNi_(0.5)Mn_(1.5)O)_4材料物理化学性质和电化学性能产生差异。乙酸锂制备的材料粒径较小,结晶度较差;氢氧化锂制备的正极材料具有较高的结晶度,进而表现出更优的电化学性能。随煅烧温度的升高或煅烧时间的延长,产物粒径尺寸呈增大趋势,结晶度提高,Mn~(3+)离子含量增多。研究发现高结晶度的材料具有优异的循环性能;小粒径材料具有更高的初始放电容量,但容量衰减严重;Mn~(3+)离子含量高的材料表现出更佳的倍率性能。研究发现过高的煅烧温度或过长的煅烧时间会导致LiNi_(0.5)Mn_(1.5)O)_4材料分解的新现象,经深入的探讨,提出了分解机制。
     提出Fe~(3+)和F-离子双掺杂的方式对LiNi_(0.5)Mn_(1.5)O)_4材料进行改性。除制备了LiNi_(0.4)Mn_(1.5)Fe_(0.1)O_(3.95)F_(0.05)和LiNi_(0.475)Mn_(1.425)Fe_(0.1)O_(3.95)F_(0.05)材料,尝试了锰离子被取代(LiNi_(0.5)Mn_(1.4)Fe_(0.1)O_(3.95)F_(0.05))和引入空位(LiNi_(0.325)Mn_(1.5)Fe_(0.1)O_(3.95)F_(0.05))的改性新策略。双掺杂改性不会改变LiNi_(0.5)Mn_(1.5)O)_4材料的结构类型,能提高材料结构稳定性和产物纯度。研究发现双掺杂改性可不同程度地提升LiNi_(0.5)Mn_(1.5)O)_4正极材料的容量保持率和倍率性能。Fe~(3+)和F-离子的取代会导致材料中Mn~(3+)离子含量的改变。Mn~(3+)离子一方面可提高材料的电导率,利于提高材料的电化学反应活性;但同时也加剧材料与电解液的副反应,促进固体电解质界面(SEI)膜的形成和增厚,从而抑制电子和离子的传输。故材料电化学性能的改性效果是上述综合作用的结果。总体而言,使得材料中Mn~(3+)离子含量减少的改性方式,更利于提高容量保持率;而使材料中Mn~(3+)离子含量增多的改性方式,则更利于提高倍率性能。LiNi_(0.5)Mn_(1.4)Fe_(0.1)O_(3.95)F_(0.05)具有最佳的循环稳定性,100次循环后的容量保持率高达95.1% ; LiNi_(0.4)Mn_(1.5)_Fe_(0.1)O_(3.95)F_(0.05) 5C放电倍率下的容量为110.4mAh g~(-1) ;LiNi_(0.475)Mn_(1.425)Fe_(0.1)O_(3.95)F_(0.05)呈现出优异的综合性能,100次循环后的容量保持率为92.0%,而5C放电倍率下的容量为111.4mAh g~(-1)。研究发现空位的存在可提高锂离子在材料体相中的扩散速率和Mn~(3+)离子含量,从而该改性材料呈现出最佳的倍率性能。LiNi_(0.325)Mn_(1.5)Fe_(0.1)O_(3.95)F_(0.05) 10C放电倍率下的容量高达125mAh g~(-1), 40次循环后的容量保持率为90.7%。
     采用蔗糖分解碳包覆的方法对LiNi_(0.5)Mn_(1.5)O)_4材料进行改性,系统地考察不同蔗糖使用量对材料物理化学性质和电化学性能的影响。研究发现,碳包覆改性未改变材料的结构,也不会还原Mn~(4+)离子。蔗糖使用量的增加会增多改性材料中的碳含量、增厚碳包覆层、提高电子和锂离子的传递速率以及增大颗粒的团聚程度。碳包覆改性未影响材料的放电行为,但显著提升循环和倍率性能。蔗糖使用量为1mass%的改性材料具有最佳的电化学性能,其1C倍率下的放电容量为129.8mAh g~(-1),100次循环后的容量保持率高达92.8%;5C放电倍率下的容量达114.2mAh g~(-1)。采用EIS表征分析了改性材料电化学性能提升的原因,其是由正极材料和电解液间副反应的显著抑制以及电子和锂离子动力学性质的提高所致;不同碳含量包覆改性提升电化学性能的差异是由不同的电导率和锂离子扩散能力的提高程度以及不同的颗粒团聚程度所致。
     提出扩渗的方法对LiNi_(0.5)Mn_(1.5)O)_4材料进行改性。扩渗改性使氧化铬进入材料晶格中,并使Cr~(3+)离子富集在材料表面,形成LiNi0.5-xMn1.5-yCrx+yO4固溶体,从而增强表面结构稳定性。研究结果证实虽然氧化铬的使用量很少,但扩渗改性可显著地提升材料的循环和倍率稳定性。扩渗改性材料0.2C倍率下的放电容量为130.6mAh g~(-1),100次循环后容量保持率高达96.2%;经一系列不同倍率放电测试后,其0.2C、0.5C、1C、3C和5C倍率下的放电容量仍可达其首次对应容量的100%、99.8%、100%、99.7%和99.6%。采用EIS表征对电化学性能提升的机制进行了探讨,结果显示扩渗改性能有效地抑制SEI膜电阻,说明显著提高的电化学稳定性是由材料和电解液界面反应活性的降低所致。
5V cathode material LiNi_(0.5)Mn_(1.5)O)_4 is considered as one of the most promising cathode materials for next generation of advanced lithium ion battery due to its large capacity and high discharge plateau at 4.7V. These distinctive characters can not only meet the demands of novel power sources from individual electronic consumer products and large-scale power-driven devices, but also accommodate the anode materials with high working voltage for enhancing the safety property of batteries. The key problems which are desiderated to be solved for LiNi_(0.5)Mn_(1.5)O)_4 are to
     improve the cycling stability and the rate capability. Therefore, this study is focused on preparation and modification of LiNi_(0.5)Mn_(1.5)O)_4. Through investigating the influence of preparation technologies on the physicochemical properties and electrochemical performances of the as-prepared material, the growth of LiNi_(0.5)Mn_(1.5)O)_4 and the relationship between the structure and morphology of material and its electrochemical performances are explored. By the comparisons on physicochemical properties and electrochemical performances of the materials before and after cycling, the reasons of capacity fading are discussed. Besides, the electrochemical performances of the LiNi_(0.5)Mn_(1.5)O)_4 cathode material are enhanced by the new methods of co-doping, carbon coating and diffusion modifications, respectively.
     The selection of lithium source can give rise to the differences in physicochemical and electrochemical performances of LiNi_(0.5)Mn_(1.5)O)_4 material. The product prepared by lithium acetate has smaller particle size and lower crystallinity. In contrast, the cathode material prepared by lithium hydroxide possesses higher crystallinity and better electrochemical performance. Raising the calcination temperature or prolonging holding time results in the increasing tendency of particle size, the enhancement in crystallinity and the increment of Mn~(3+) ion. The results show that the material with high crystallinity has good cyclability, the material with small particle size delivers larger initial discharge capacity while its capacity fading is serious, and the material with higher Mn~(3+) content presents better rate capability. However, it is found that over-high calcination temperature or overlong calcination time results in the new observation of LiNi_(0.5)Mn_(1.5)O)_4 decomposition. A decomposition mechanism is proposed.
     The method of Fe~(3+) and F- ions co-doping is used to modify the LiNi_(0.5)Mn_(1.5)O)_4 cathode material. Not only the LiNi_(0.4)Mn_(1.5)Fe_(0.1)O_(3.95)F_(0.05) and LiNi_(0.475)Mn_(1.425)Fe_(0.1)O_(3.95)F_(0.05) materials are prepared, but also the new modification strategies by the syntheses of the Mn-substituted LiNi0.5Mn_(1.4)Fe_(0.1)O_(3.95)F_(0.05) and deficiency-introduced LiNi_(0.325)Mn_(1.5)Fe_(0.1)O_(3.95)F_(0.05) modified materials are attempted. The co-doping modifications do not change the crystal structure type of LiNi_(0.5)Mn_(1.5)O)_4, but can improve the structural stability and the purity of products. The results show that the co-doping modifications can enhance the capacity retention and rate capability of LiNi_(0.5)Mn_(1.5)O)_4 cathode material more or less. The substitutes with Fe~(3+) and F- ions result in the changes of Mn~(3+) content. On the one hand, the Mn~(3+) ion can raise the electronic conductivity, which facilitates the enhancement in electrochemical reactivity of material. On the other hand, the Mn~(3+) ion aggravates the side reaction between the cathode material and the electrolyte, which stimulates the formation and development of the solid electrolyte interfacial (SEI) film as well as consequently hinders the electronic and ionic transfers. Therefore, the modification effect on electrochemical performance of material is attributed to the combination of above two factors. Overall, the modification pattern resulting in the decrease of Mn~(3+) ion in material facilitates the enhancement of capacity retention, and the modification pattern resulting in the increase of Mn~(3+) ion in material facilitates the enhancement of rate capability. LiNi0.5Mn_(1.4)Fe_(0.1)O_(3.95)F_(0.05) has the best cycling stability, and its capacity retention is as high as 95.1% after 100 cycles. The discharge capacity at 5C rate of LiNi0.4Mn1.5Fe0.1O_(3.95)F_(0.05) is 110.4mAh g~(-1). The LiNi0.475Mn1.425Fe0.1O_(3.95)F_(0.05) presents the outstanding combination property, its capacity retention is 92% after 100 cycles and the discharge capacity at 5C rate is 111.4mAh g~(-1). Besides, it is found that the existence of deficiency can increase the diffusion rate of lithium ion in bulk material and the Mn~(3+) ion amount, therefore the material with deficiency displays the best rate capability. LiNi_(0.325)Mn_(1.5)Fe_(0.1)O_(3.95)F_(0.05) can deliver a high discharge capacity of 125mAh g~(-1) at 10C rate with the capacity retention of 90.7% after 40 cycles.
     The carbon coating method is applied to modify the LiNi_(0.5)Mn_(1.5)O)_4 cathode material through the thermal decomposition of sucrose, and the influence of sucrose amount on physicochemical property and electrochemical performance of material is systematically investigated for LiNi_(0.5)Mn_(1.5)O)_4. It is found that the carbon coating modification does not change the structure of materials and cause the reduction of Mn~(4+) ion. The increment of sucrose increases the carbon amount in modified materials, thickens the carbon layer, accelerates the transfer rate of electron and ion as well as increases the agglomeration degree of particle. The carbon coating modification can significantly enhance the cycling and rate performances of cathode material without the adverse effect on discharge behavior. The modified material by 1mass% sucrose exhibits the best electrochemical performance, the discharge capacity of 129.8mAh g~(-1) at 1C rate with high capacity retention of 92.8% after 100 cycles and the discharge capacity of 114.2mAh g~(-1) at 5C rate are obtained. Through the analysis of EIS characterization, the enhanced electrochemical performance of the modified material is caused by the remarkable suppression of side reactions between the cathode material and the electrolyte as well as the enhancements of electronic kinetics and lithium ion kinetics. The differences of electrochemical improvement originated from the carbon coating with different carbon contents are attributed to the different improvement degrees of the electronic conductivity and the lithium diffusion capacity as well as the different agglomeration degrees of particles.
     The diffusion method is proposed to modify the LiNi_(0.5)Mn_(1.5)O)_4 material. It is found that the diffusion modification allows the chromium oxide to enter into the lattice of material and causes the enrichment of Cr~(3+) ion at the surface of material to form the LiNi0.5-xMn1.5-yCrx+yO4 solid solution. Therefore, the surface structural stability is enhanced. The results confirm that the diffusion modification can significantly promote the cycling and rate stabilities of material, even though the application amount of Cr2O3 is quite low. The diffusion modified material delivers a discharge capacity of 130.6mAh g~(-1) at 0.2C rate with high capacity retention of 96.2% after 100 cycles. In addition, after a series of discharge tests at different rates, this modified material can still exhibits 100%, 99.8%, 100%, 99.7% and 99.6% of its initial capacities at corresponding 0.2C, 0.5C, 1C, 3C and 5C rates, respectively. The mechanism of the enhancement in electrochemical performance is investigated through the EIS characterization. Results show that the diffusion modification effectively suppresses the SEI film resistance, indicating that the dramatically improved electrochemical stability is caused by the reduction of reactivity at the interface of active material and the electrolyte
引文
[1] Teki R, Datta M K, Krishnan R, et al. Nanostructured Silicon Anodes for Lithium Ion Rechargeable Batteries[J]. Small, 2009, 5(20): 2236-2242.
    [2]任众. PVDF-HFP基聚合物电解质的制备与性能研究[D].哈尔滨:哈尔滨工业大学, 2009: 1.
    [3] Hassoun J, Panero S, Reale P, et al. A New, Safe, High-rate and High-energy Polymer Lithium-ion Battery[J]. Advanced Materials, 2009, 21(47): 4807-4810.
    [4] Scrosati B, Garche J. Lithium Batteries: Status, Prospects and Future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
    [5] Cabana J, Monconduit L, Larcher D, et al. Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting through Conversion Reactions[J]. Advanced Materials, 2010, 22(35): E170-E192.
    [6] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
    [7]郭炳焜,徐徽,王先友,等.锂离子电池[M].长沙:中南大学出版社. 2002: 6-7.
    [8]程新群.化学电源[M].北京:化学工业出版社. 2008: 160-163.
    [9] Mizushima K, Jones P C, Wiseman P J,et a1. LixCoO2(0    [10] Whitingham M S. Lithium Batteries and Cathode Materials[J]. Chemical Reviews, 2004, 104(10), 4271-4301.
    [11]雷圣辉,陈海清,刘军,等.锂电池正极材料钴酸锂的改性研究进展[J].湖南有色金属, 2009, 25(5): 37-42.
    [12] Peng Z S, Wan C R, Jiang C Y. Synthesis by Sol-gel Process and Characterization of LiCoO2 Cathode Materials[J]. Journal of Power Sources, 1998, 72(2): 215-220.
    [13]唐新村,何莉萍,陈宗璋,等.低热固相反应法制备锂离子电池正极材料LiCoO2[J].功能材料, 2002, 33(2): 190-192.
    [14]章福平.酒石酸法合成的LiCoO2的结构及其二次锂电池行为研究[J].电化学, 1995, 1(3): 342-347.
    [15] Konstantinov K, Wang G X, Yao J, et al. Stoichiometry-controlled High-performance LiCoO2 Electrode Materials Prepared by a Spray Solution Technique[J]. Journal of Power Soures, 2003, 119-121(1): 195-200.
    [16] Chiang Y M, Jiang Y I, Wang H F, et al. Synthesis of LiCoO2 by Decomposition and Intercalation of Hydroxides[J]. Journal of the Electrochemical Society, 1998, 145(3): 887-891.
    [17] Yan H W, Huang X J, Lu Z H, et al. Microwave Synthesis of LiCoO2 Cathode Materials[J]. Journal of Power Source, 1997, 68(2): 530-532.
    [18] Yoon W S, Lee K K, Kim K B. X-Ray Absorption Spectroscopic Study of LiAlyCo1-yO2 Cathode for Li Rechargeable Batteries[J]. Journal of the Electrochemical Society, 2002, 149(2): A146-A151.
    [19] Madhavi S, Rao G V S, Chowdari B V R, et al. Effect of Cr Dopant on the Cathodic Behavior of LiCoO2[J]. Electrochimica Acta, 2002, 48(3): 219-226.
    [20]邓斌,阎杰,张朝帅. LiCoO2掺杂稀土元素研究[J].电池, 2003, 33(2): 74-76.
    [21] Julien C, Nazri G A, Rougier A. Electrochemical Performances of Layered LiM1-yMy′O2(M=Ni, Co; M′=Mg, Al, B) Oxides in Lithium Batteries[J]. Solid State Ionics, 2000, 135(1-4): 121-130.
    [22]周健,戴秀珍. B元素对正极材料LiCoO2结构及性能的影响[J].安徽大学学报(自然科学版), 2007, 31(2): 67-70.
    [23]王洪,祝纶宇,陈鸣才.锂离子电池正极材料LiCoO2的包覆改性[J].应用化学, 2007, 24(5): 556-560.
    [24]廖文明,戴永年,姚耀春,等. 4种正极材料对锂离子电池性能的影响及其发展趋势[J].材料导报,2008, 22(10): 45-52.
    [25]唐致远,李建刚,薛建军,等. LiNiO2的制备与改性的探讨[J].电池, 2001, 31(1): 10-13.
    [26] Croguennee L, Pouillerie C, Delmas C. NiO2 Obtained by Electrochemical Lithium Deintercalation from Lithium Nickelate: Structural Modifications[J]. Journal of The Electrochemical Society, 2000, 147(4): 1314-1321.
    [27] Arai H, Okada S, Sakurai Y, et al. Thermal Behavior of Li1?yNiO2 and the Decomposition Mechanism[J]. Solid State Ionics, 1998, 109(3-4): 295-302.
    [28] Arai H, Okada S, Sakurai Y, et al. Electrochemical and Thermal Behavior of LiNi1-zMzO2 (M = Co, Mn, Ti)[J]. Journal of The Electrochemical Society, 1997, 144(9): 3117-3125.
    [29] Zhu X J, Zhan H, Liu H X, et al. Synthesis and Characterization of LiNi0.95-xCoxAl0.05O2 for Lithium-ion Batteries[J]. Rare Metals, 2006, 25(4): 303-308.
    [30] Liu H S, Zhang Z R, Gong Z L, et al. A Comparative Study of LiNi0.8Co0.2O2 Cathode Materials Modified by Lattice-doping and Surface-coating[J]. Solid State Ionics, 2004, 166(3-4): 317-325.
    [31] Belharouak I, Sun Y K, Liu J, et al. LiCo1/3Ni1/3Mn1/3O2 as a Suitable Cathode for High Power Application[J]. Journal of Power Sources, 2003, 123(2): 247-252.
    [32] Shaju K M, Rao G V S, Chowdari B V R. Performance of Layered LiNi1/3Co1/3Mn1/3O2 as Cathode for Li-ion Batteries[J]. Electrochimica Acta, 2002, 48(2): 145-151.
    [33] Ngala J K, Chernova N A, Whittingham M S, et al. The Synthesis, Characterization and Electrochemical Behavior of the Layered LiNi0.4Mn0.4Co0.2O2 Compound[J]. Journal of Materials Chemistry, 2004, 14(2): 214-220.
    [34] Cho T H, Park S M, Yoshio M, et al. Effect of Synthesis Condition on the Structural and Electrochemical Properties of Li[Ni1/3Co1/3Mn1/3]O2 Prepared by Carbonate Co-precipitation Method[J]. Journal of Power Sources, 2005, 142(1-2): 306-312.
    [35] Li D C, Takahisa M, Zhang L Q, et al. Effect of Synthesis Method on the Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2[J]. Journal of Power Sources, 2004, 132(1-2): 150-155.
    [36] Patoux S, Doeff M M. Direct Synthesis of LiNi1/3Mn1/3Co1/3O2 from Nitrate Precursors[J]. Electrochemistry Communications, 2004, 6(8): 767-772.
    [37] Liu D, Wang Z X, Chen L Q. Comparison of Structure and Electrochemistry of Al-and Fe-doped LiNi1/3Mn1/3Co1/3O2[J]. Electrochimica Acta, 2006, 51(20): 4199-4203.
    [38] Kageyama M, Li D C, Kobayakawa K, et al. Structural and Electrochemical Properties of LiNi1/3Mn1/3Co1/3O2-xFx Prepared by Solid State Reaction[J]. Journal of Power Sources, 2006, 157(1): 494-500.
    [39] Hu S K, Cheng G H, Cheng M Y, et al. Cycle Life Improvement of ZrO2-coated Spherical LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium Ion Batteries[J]. Journal of Power Sources, 2009, 188(2): 564-569.
    [40] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
    [41] Andersson A S, Thomas J O. The Source of First-cycle Capacity Loss in LiFePO4[J]. Journal of Power Sources, 2001, 97-98: 498-502.
    [42] Chiu K F, Chen P Y. Structural Evolution and Electrochemical Performance of LiFePO4/C Thin Films Deposited by Ionized Magnetron Sputtering[J]. Surface and Coatings Technology, 2008, 203(5-7): 872-875.
    [43] Jin E M, Jin B, Jun D K , et al. A Study on the Electrochemical Characteristics of LiFePO4 Cathode for Lithium Polymer Batteries by Hydrothermal Method[J].Journal of Power Sources, 2008, 178 (2): 801-806.
    [44] Liu J L, Jiang R R, Wang X Y, et al. The Defect Chemistry of LiFePO4 Prepared by Hydrothermal Method at Different pH Values[J]. Journal of Power Sources, 2009, 194(1): 536-540.
    [45] Liu Y Y, Cao C B, Li J. Enhanced Electrochemical Performance of Carbon Nanospheres-LiFePO4 Composite by PEG Based Sol-gel Synthesis[J]. Electrochimica Acta, 2010, 55(12): 3921-3926.
    [46] Hsu K F, Tsay S Y, Hwang B J. Synthesis and Characterization of Nano-sized LiFePO4 Cathode Materials Prepared by a Citric Acid-based Sol-gel Route[J]. Journal of Materials Chemistry, 2004, 14(17): 2690-2695.
    [47] Arnold G, Garche J, Hemmer R, et a1. Fine-particle Lithium iron Phosphate LiFePO4 Synthesized by a New Low-cost Aqueous Precipitation Technique[J]. Journal of Power Sources, 2003, 119-121: 247-251.
    [48] Yu F, Zhang J J, Yang Y F, et al. Reaction Mechanism and Electrochemical Performance of LiFePO4/C Cathode Materials Synthesized by Carbothermal Method[J]. Electrochimica Acta, 2009, 54 (28): 7389-7395.
    [49] Mi C H, Cao G S, Zhao X B. Low-cost, One-step Process for Synthesis of Carbon-coated LiFePO4 Cathode[J]. Materials Letters, 2005, 59(1): 127-130.
    [50] Xi X L, Chen G L, Nie Z R, et al. Preparation and Performance of LiFePO4 and LiFePO4/C Cathodes by Freeze-drying[J]. Journal of Alloys and Compounds, 2010, 497(1-2): 377-379.
    [51] Konarova M, Taniguchi I. Synthesis of Carbon-coated LiFePO4 Nanoparticles with High Rate Performance in Lithium Secondary Batteries[J]. Journal of Power Sources, 2010, 195(11): 3661-3667.
    [52] Prosini P P, Zane D, Pasquali M. Improved Electrochemical Performance of a LiFePO4-based Composite Cathode[J]. Electrochimica Acta, 2001, 46(23): 3517-3523.
    [53] Croce F, Epifanio A D, Hassoun J, et al. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode[J]. Electrochemical and Solid-State Letters, 2002, 5(3): 47-50.
    [54] Chung S Y, Bloking J T, Chiang Y M. Electronically Conductive Phospho-olivines as Lithium Storage Electrodes[J]. Nature Materials, 2002, 1(2): 123-128.
    [55] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as the Cathode Material for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2001, 97-98: 508-511.
    [56] Lee S B, Cho S H, Cho S J, et a1. Synthesis of LiFePO4 Material with ImprovedCycling Performance under Harsh Conditions[J]. Electrochemistry Communications, 2008, 10(9): 1219-1221.
    [57] Morgan D, Ceder G, Saidi M Y, et al. Experimental and Computational Study of the Structure and Electrochemical Properties of LixM2(PO4)3 Compounds with the Monoclinic and Rhombo-hedral Structure[J]. Chemistry of Materials, 2002, 14(1): 4684-4693.
    [58] Yin S C, Strobel P S, Grondey H, et al. Li2.5V2(PO4)3: A Room-temperature Analogue to the Fast-ion Conducting High-temperatureγ-phase of Li3V2(PO4)3[J]. Chemistry of Materials, 2004, 16(8): 1456-1465.
    [59] Fu P, Zhao Y M, Dong Y Z. Synthesis of Li3V2(PO4)3 with High Performance by Optimized Solid-state Synthesis Routine[J]. Journal of Power Sources, 2006, 162(1): 651-657.
    [60] Li Y Z, Liu X, Yan J, et al. Study on Synthesis Routes and Their Influences on Chemical and Electrochemical Performances of Li3V2(PO4)3/carbon[J]. Electrochimica Acta, 2007, 53(2): 474-479.
    [61] Chen Q Q, Wang J M, Tang Z, et al. Electrochemical Performance of the Carbon Coated Li3V2(PO4)3 Cathode Material Synthesized by a Sol-gel Method[J]. Electrochimica Acta, 2007, 52(16): 5251-5257.
    [62] Zhu X J, Liu Y X, Geng L M, et al. Synthesis and Characteristics of Li3V2(PO4)3 as Cathode Materials for Lithium-ion Batteries[J]. Solid State Ionics, 2008, 179(27-32): 1679-1682.
    [63] Chang C X, Xiang J F, Shi X X, et al. Rheological Phase Reaction Synthesis and Electrochemical Performance of Li3V2(PO4)3/carbon Cathode for Lithium Ion Batteries[J]. Electrochimica Acta, 2008, 53(5): 2232-2237.
    [64]应皆荣,姜长印,唐昌平,等.微波碳热还原法制备Li3V2(PO4)3及其性能研究[J].稀有金属材料与工程, 2006, 35(11): 1792-1796.
    [65] Ren M, Zhou Z, Li Y Z, et al. Preparation and Electrochemical Studies of Fe-doped Li3V2(PO4)3 Cathode Materials for Lithium-ion Batteries[J]. Journal of Power Sources, 2006, 162(2): 1357-1362.
    [66] Sato M, Ohkawa H, Yoshida K, et al. Enhancement of Discharge Capacity of Li3V2(PO4)3 by Stabilizing the Orthorhombic Phase at Room Temperature[J]. Solid State Ionics, 2000, 135(1-4): 137-142.
    [67] Zhang X F, Zheng H H, Battaglia V, et al. Electrochemical Performance of Spinel LiMn2O4 Cathode Materials Made by Flame-assisted Spray Technology[J]. Journal of Power Sources, 2011, 196(7): 3640-3645.
    [68] Tarascon J M, Mckinnon W R, Coowar F, et al. Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4[J]. Journalof The Electrochemical Society, 1994, 141(6): 1421-1431.
    [69] Gummow R J, Kock A D, Thackeray M M. Improved Capacity Retention in Rechargeable 4 V Lithium/lithium-manganese Oxide (Spinel) Cells[J]. Silid State Ionics, 1994, 69(1): 59-67.
    [70] Xia Y Y, Zhou Y H, Yoshio M. Capacity Fading on Cycling of 4 V Li/LiMn2O4 Cells[J]. Journal of The Electrochemical Society, 1997, 144(8): 2593-2600.
    [71]姚耀春,戴永年,杨斌,等.锂离子电池正极材料LiCrxMn2-xO4的合成及性能研究[J].无机材料学报, 2005, 20(5): 1127-1131.
    [72] Li J G, He X M, Zhao R S. Electrochemical Performance of SrF2-coated LiMn2O4 Cathode Material for Li-ion Batteries[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1324-1327.
    [73]唐致远,胡冉,王雷. 5V锂离子电池正极材料LiNi0.5Mn1.5O4的研究进展[J].化工进展, 2006, 25(1): 31-34.
    [74]范未峰,刘兴泉.锂离子二次电池5V正极材料的研究进展[J].化工科技, 2007, 15(6): 52-57.
    [75] Fey G T K, Dahn J R, Zhang M J, et al. The Effects of the Stoichiometry and Synthesis Temperature on the Preparation of the Inverse Spinel LiNiVO4 and Its Performance as a New High Voltage Cathode Material[J]. Journal of power Sources, 1997, 68(2): 549-552.
    [76] Bakenov Z, Taniguchi I. Electrochemical Performance of Nanocomposite LiMnPO4/C Cathode Materials for Lithium Batteries[J]. Electrochemistry Communications, 2010, 12(1): 75-78.
    [77] Okada S, Sawa S, Egashira M, et al. Cathode Properties of Phospho-olivine LiMPO4 for Lithium Secondary Batteries[J]. Journal of Power Sources, 2001, 97-98: 430-432.
    [78] Tan L, Luo Z, Liu H, et al. Synthesis of Novel High-voltage Cathode Material LiCoPO4 via Rheological Phase Method[J]. Journal of Alloys and Compounds, 2010, 502(2): 407-410.
    [79] Kawai H, Nagata M, Kageyama H, et al. 5 V Lithium Cathodes Based on Spinel Solid Solutions Li2Co1+XMn3?XO8: -1≤X≤1[J]. Electrochimica Acta, 1999, 45(1-2): 315-327.
    [80] Sigala C, Guyomard D, Verbaere A, et al. Positive Electrode Materials with High Operating Voltage for Lithium Batteries: LiCryMn2 ? yO4 (0≤y≤1)[J]. Solid State Ionics, 1995, 81(3-4): 167-170.
    [81] Zhong Q M, Bonakdarpour A, Zhang M J, et al. Synthesis and Electrochemistry of LiNixMn2-xO4[J]. Journal of The Electrochemical Society, 1997, 144(1): 205-213.
    [82] Shigemura H, Sakaebe H, Kageyama H, et al. Structure and Electrochemical Properties of LiFexMn2-xO4 (0≤x≤0.5) Spinel as 5 V Electrode Material for Lithium Batteries[J]. Journal of The Electrochemical Society, 2001, 148(7): A730-A736.
    [83] Ein-Eli Y, Howard W F, Lu S H, et al. LiMn2-xCuxO4 Spinels (0.1≤x≤0.5): a New Class of 5 V Cathode Materials for Li Batteries. Part I. Electrochemical, Structural, and Spectroscopic Studies[J]. Journal of the Electrochemical Society, 1998, 145(4): 1238-1244.
    [84] Bhaskar A, Bramnik N N, Senyshyn A, et al. Synthesis, Characterization, and Comparison of Electrochemical Properties of LiM0.5Mn1.5O4 (M = Fe, Co, Ni) at Different Temperatures[J]. Journal of The Electrochemical Society, 2010, 157(6): A689-A695.
    [85] Takahashi K, Saitoh M, Sano M, et al. Electrochemical and Structural Properties of a 4.7 V-class LiNi0.5Mn1.5O4 Positive Electrode Material Prepared with a Self-reaction Method[J]. Journal of The Electrochemical Society, 2004, 151(1): A173-A177.
    [86] Lee B W. Preparation and Characterization of Spinel LiCoxMn2?xO4 by Oxalate Precipitation[J]. Journal of Power Sources, 2002, 109(1): 220-226.
    [87] Wu C, Wu F, Chen L Q, et al. X-ray Diffraction and X-ray Photoelectron Spectroscopy Analysis of Cr-doped Spinel LiMn2O4 for Lithium Ion Batteries[J]. Solid State Ionics, 2002, 152-153: 335-339.
    [88] Kim B H, Choi Y K, Choa Y H. Synthesis of LiFexMn2?xO4 Cathode Materials by Emulsion Method and Their Electrochemical Properties[J]. Solid State Ionics, 2003, 158(3-4): 281-285.
    [89] Ein-Eli Y, Vaughey J T, Thackeray M M, et al. LiNixCu0.5-xMn1.5O4 Spinel Electrodes, Superior High-potential Cathode Materials for Li Batteries - I. Electrochemical and Structural Studies[J]. Journal of The Electrochemical Society, 1999, 146(3): 908-913.
    [90] Kim J H, Myung S T, Sun Y K. Molten Salt Synthesis of LiNi0.5Mn1.5O4 Spinel for 5 V Class Cathode Material of Li-ion Secondary Battery[J]. Electrochimica Acta, 2004, 49(2): 219-227.
    [91] Park S H, Sun Y K. Synthesis and Electrochemical Properties of 5 V Spinel LiNi0.5Mn1.5O4 Cathode Materials Prepared by Ultrasonic Spray Pyrolysis Method[J]. Electrochimica Acta, 2004, 50(2-3): 434-439.
    [92] Ohzuku T, Takeda S, Iwanaga M. Solid-state Redox Potentials for Li[Me1/2Mn3/2]O4 (Me: 3d-transition Metal) Having Spinel-framework Structures: a Series of 5 Volt Materials for Advanced Lithium-ion Batteries[J]. Journal ofPower Sources, 1999, 81-82: 90-94.
    [93] Ma X H, Kang B, Ceder G. High Rate Micron-sized Ordered LiNi0.5Mn1.5O4[J]. Journal of The Electrochemical Society, 2010, 157(8): A925-A931.
    [94] Liu J, Manthiram A. Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification[J]. Journal of The Electrochemical Society, 2009, 156(1): A66-A72.
    [95] Ariyoshi K, Iwakoshi Y, Nakayama N, et al. Topotactic Two-phase Reactions of Li[Ni1/2Mn3/2]O4 (P4332) in Nonaqueous Lithium Cells[J]. Journal of the Electrochemical Society, 2004, 151(2): A296-A303.
    [96] Amdouni N, Zaghib K, Gendron F, et al. Magnetic Properties of LiNi0.5Mn1.5O4 Spinels Prepared by Wet Chemical Methods[J]. Journal of Magnetism and Magnetic Materials, 2007, 309(1): 100-105.
    [97] Xia H, Meng Y S, Lu L, et al. Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4-σThin-film Electrodes Prepared by Pulsed Laser Deposition[J]. Journal of the Electrochemical Society, 2007, 154(8): A737-A743.
    [98] Mohamedi M, Makino A, Dokko K, et al. Electrochemical Investigation of LiNi0.5Mn1.5O4 Thin Film Intercalation Electrodes[J]. Electrochimica Acta, 2002, 48(1): 79-84.
    [99] Kim J H, Yoon C S, Myung S T, et al. Phase Transitions in Li1-σNi0.5Mn1.5O4 During Cycling at 5 V[J]. Electrochemical and Solid-State Letters, 2004, 7(7): A216-A220.
    [100] Arunkumar T A, Manthiram A. Influence of Chromium Doping on the Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.5O4[J]. Electrochimica Acta, 2005, 50(28): 5568-5572.
    [101] Okada M, Lee Y S, Yoshio M. Cycle Characterizations of LiMxMn2-xO4 (M = Co, Ni) Materials for Lithium Secondary Battery at Wide Voltage Region[J]. Journal of Power Sources, 2000, 90(2): 196-200.
    [102] Park S B, Eom W S, Cho W I, et al. Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode after Cr Doping[J]. Journal of Power Sources, 2006, 159(1): 679-684.
    [103] Markovsky B, Talyossef Y, Salitra G, et al. Cycling and Storage Performance at Elevated Temperatures of LiNi0.5Mn1.5O4 Positive Electrodes for Advanced 5 V Li-ion Batteries[J]. Electrochemistry Communications, 2004, 6(8): 821-826.
    [104] Li D, Ito A, Kobayakawa K, et al. Electrochemical Characteristics of LiNi0.5Mn1.5O4 Prepared by Spray Drying and Post-annealing[J]. Electrochimica Acta, 2007, 52(5): 1919-1924.
    [105] Pasero D, Reeves N, Pralong V, et al. Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4-σ[J]. Journal of The Electrochemical Society, 2008,155(4): A282-A291.
    [106] Kim J H, Myung S T, Yoon C S, et al. Comparative Study of LiNi0.5Mn1.5O4-σand LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914.
    [107] Wakihara M. Lithium Manganese Oxides with Spinel Structure and Their Cathode Properties for Lithium Ion Battery[J]. Electrochemistry (Tokyo, Jpn.), 2005, 73(5): 328-335.
    [108] Kunduraci M, Al-Sharab J F, Amatucci G G. High-power Nanostructured LiMn2-xNixO4 High-voltage Lithium-ion Battery Electrode Materials: Electrochemical Impact of Electronic Conductivity and Morphology[J]. Chemistry of Materials, 2006, 18(15): 3585-3592.
    [109] Kim J H, Myung S T, Yoon C S, et al. Effect of Ti Substitution for Mn on the Structure of LiNi0.5Mn1.5-xTixO4 and Their Electrochemical Properties as Lithium Insertion Material[J]. Journal of The Electrochemical Society, 2004, 151(11): A1911-A1918.
    [110] Kunduraci M, Amatucci G G. Synthesis and Characterization of Nanostructured 4.7 V LixMn1.5Ni0.5O4 Spinels for High-power Lithium-ion Batteries[J]. Journal of The Electrochimical Society, 2006, 153(7): A1345-A1352.
    [111] Ohzuku T, Brodd R J. An Overview of Positive-electrode Materials for Advanced Lithium-ion Batteries[J]. Journal of Power Sources, 2007, 174(2): 449-456.
    [112] Patoux S, Sannier L, Lignier H, et al. High Voltage Nickel Manganese Spinel Oxides for Li-ion Batteries[J]. Electrochimica Acta, 2008, 53(12): 4137-4145.
    [113] Molenda J, Marzec J, Swierczek K, et al. The Effect of 3d Substitutions in the Manganese Sublattice on the Electrical and Electrochemical Properties of Manganese Spinel[J]. Solid State Ionics, 2004, 175(1-4): 297-304.
    [114] Sun Q, Li X H, Wang Z X, et al. Synthesis and Electrochemical Performance of 5 V Spinel LiNi0.5Mn1.5O4 Prepared by Solid-state Reaction[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(1): 176-181.
    [115] Chen Z Y, Zhua H L, Ji S, et al. Performance of LiNi0.5Mn1.5O4 Prepared by Solid-state Reaction[J]. Journal of Power Sources, 2009, 189(1): 507-510.
    [116] Hwang B J, Wu Y W, Venkateswarlu M, et al. Influence of Synthesis Conditions on Electrochemical Properties of High-voltage Li1.02Ni0.5Mn1.5O4 Spinel Cathode Material[J]. Journal of Power Sources, 2009, 193(2): 828-833.
    [117] Du G D, NuLi Y N, Yang J, et al. Fluorine-doped LiNi0.5Mn1.5O4 for 5 V Cathode Materials of Lithium-ion Battery[J]. Materials Research Bulletin, 2008, 43(12): 3607-3613.
    [118] Yi T F, Li C Y, Zhu Y R, et al. Comparison of Structure and ElectrochemicalProperties for 5 V LiNi0.5Mn1.5O4 and LiNi0.4Cr0.2Mn1.4O4 Cathode Materials[J]. Journal of Solid State Electrochemistry, 2009, 13(6): 913-919.
    [119] Xu X X, Yang J, Wang Y Q, et al. LiNi0.5Mn1.5O3.975F0.05 as Novel 5 V Cathode Material[J]. Journal of Power Sources, 2007, 174(2): 1113-1116.
    [120] Lee Y S, Sun Y K, Ota S, et al. Preparation and Characterization of Nano-crystalline LiNi0.5Mn1.5O4 for 5 V Cathode Material by Composite Carbonate Process[J]. Electrochemistry Communications, 2002, 4(12): 989-994.
    [121] Sun Y Y, Yang Y F, Zhan H, et al. Synthesis of High Power Type LiMn1.5Ni0.5O4 by Optimizing Its Preparation Conditions[J]. Journal of Power Sources, 2010, 195(13): 4322-4326.
    [122] Sun Y K, Oh S W, Yoon C S, et al. Effect of Sulfur and Nickel Doping on Morphology and Electrochemical Performance of LiNi0.5Mn1.5O4-xSx Spinel Material in 3-V Region[J]. Journal of Power Sources, 2006, 161(1): 19-26.
    [123] Fang X, Ding N, Feng X Y, et al. Study of LiNi0.5Mn1.5O4 Synthesized via a Chloride-ammonia Co-precipitation Method: Electrochemical Performance, Diffusion Coefficient and Capacity Loss Mechanism[J]. Electrochimica Acta, 2009, 54(28): 7471-7475.
    [124] Fan Y K, Wang J M, Ye X B, et al. Physical Properties and Electrochemical Performance of LiNi0.5Mn1.5O4 Cathode Material Prepared by a Coprecipitation Method[J]. Journal of Materials Chemistry and Physics, 2007, 103(1): 19-23.
    [125] Arrebola J C, Caballero A, Cruz M, et al. Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer-Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries[J]. Advanced Functional Materials, 2006, 16(14): 1904-1912.
    [126] Xu H Y, Xie S, Ding N, et al. Improvement of Electrochemical Properties of LiNi0.5Mn1.5O4 Spinel Prepared by Radiated Polymer Gel Method[J]. Electrochimica Acta, 2006, 51(21): 4352-4357.
    [127] Myung S T, Komaba S, Kumagai N, et al. Nano-crystalline LiNi0.5Mn1.5O4 Synthesized by Emulsion Drying Method[J]. Electrochimica Acta, 2002, 47(15): 2543-2549.
    [128] Oh S H, Jeon S H, Cho W I, et al. Synthesis and Characterization of the Metal-doped High-voltage Spinel LiNi0.5Mn1.5O4 by Mechanochemical Process[J]. Journal of Alloys and Compounds, 2008, 452(2): 389-396.
    [129] Jeong W T, Lee K S. Synthesis and Structural Characteristics of LiCoO2 Powders Prepared by Mechanical Alloying of LiOH·H2O and Co(OH)2[J]. Journal of Alloys and Compounds, 2001, 322(1-2): 205-210.
    [130] Jeong W T, Joo J H, Lee K S. Improvement of Electrode Performances of SpinelLiMn2O4 Prepared by Mechanical Alloying and Subsequent Firing[J]. Journal of Power Sources, 2003, 119-121: 690-694.
    [131] Fang H S, Wang Z X, Zhang Bao, et al. High Performance LiNi0.5Mn1.5O4 Cathode Materials Synthesized by a Combinational Annealing Method[J]. Electrochemistry Communications, 2007, 9(5): 1077-1082.
    [132] Ooms F G B, Kelder E M, Schoonman J, et al. High-voltage LiMgδNi0.5?δMn1.5O4 Spinels for Li-ion Batteries[J]. Solid State Ionics, 2002, 152-153: 143-153.
    [133] Wu X L, Kim S B. Improvement of Electrochemical Properties of LiNi0.5Mn1.5O4 Spinel[J]. Journal of Power Sources, 2002, 109(1): 53-57.
    [134] Wen L, Lu Q, Xu G X. Molten Salt Synthesis of Spherical LiNi0.5Mn1.5O4 Cathode Materials[J]. Electrochimica Acta, 2006, 51(21): 4388-4392.
    [135] Zhang L, Lv X Y, Wen Y X, et al. Carbon Combustion Synthesis of LiNi0.5Mn1.5O4 and Its Use as a Cathode Material for Lithium Ion Batteries[J]. Journal of Alloys and Compounds, 2009, 480(2): 802-805.
    [136] Myung S T, Amine K, Sun Y K. Surface Modification of Cathode Materials from Nano- to Microscale for Rechargeable Lithium-ion Batteries[J]. Journal of Materials Chemistry, 2010, 20(34): 7074-7095.
    [137] Yang L, Takahashi M, Wang B F, A Study on Capacity Fading of Lithium-ion Battery with Manganese Spinel Positive Electrode during Cycling[J]. Electrochimica Acta, 2006, 51(16): 3228-3234.
    [138] Xu K. Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417.
    [139] He G, Zhang G F, Lu F T, et al. Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surface[J]. Chemistry of Materials, 2009, 21(8): 1494-1499.
    [140] Wu H M, Belharouak I, Abouimrane A, et al. Surface Modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for Lithium-ion Batteries[J]. Journal of Power Sources, 2010, 195(9): 2909-2913.
    [141] Kanamura K, Hoshikawa W, Umegaki T. Electrochemical Characteristics of LiNi0.5Mn1.5O4 Cathodes with Ti or Al Current Collectors[J]. Journal of The Electrochemical Society, 2002, 149(3): A339-A345.
    [142] Sun Y K, Hong K J, Prakash J, et al. Electrochemical Performance of Nano-sized ZnO-coated LiNi0.5Mn1.5O4 Spinel as 5 V Materials at Elevated Temperatures[J]. Electrochemistry Communications, 2002, 4(4): 344-348.
    [143] Sun Y K, Yoon C S, Oh I H. Surface Structure Change of ZnO-coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Materials at Elevated Temperatures[J]. Electrochimica Acta, 2003, 48(5): 503-506.
    [144] Alcántara R, Jaraba M, Lavela P, et al. X-ray Diffraction and Electrochemical Impedance Spectroscopy Study of Zinc Coated LiNi0.5Mn1.5O4 Electrodes[J]. Journal of Electroanalytical Chemistry, 2004, 566(1): 187-192.
    [145] Noguchi T, Yamazaki I, Numata T, et al. Effect of Bi Oxide Surface Treatment on 5 V Spinel LiNi0.5Mn1.5-xTixO4[J]. Journal of Power Sources, 2007, 174(2): 359-365.
    [146] Aurbach D, Markovsky B, Talyossef Y, et al. Study of Cycling Behavior, Ageing, and Interfacial Reactions of LiNi0.5Mn1.5O4 and Carbon Electrodes for Lithium-ion 5-V Cells[J]. Journal of Power Sources, 2006, 162(2): 780-789.
    [147] Talyosef Y, Markovsky B, Salitra G, et al. The Study of LiNi0.5Mn1.5O4 5-V Cathode for Li-ion Batteries[J]. Journal of Power Sources, 2005, 146(1-2): 664-669.
    [148] Arrebola J C, Caballero A, Hernan L, et al. A High Energy Li-ion Battery Based on Nanosized LiNi0.5Mn1.5O4 Cathode Material[J]. Journal of Power Sources, 2008, 183(1): 310-315.
    [149] Song S W, Zhuang G V, Ross P N. Surface Film Formatin on LiNi0.8Co0.15Al0.05O2 Cathodes Using Attenuated Total Reflection IR Spectroscopy[J]. Journal of The Electrochemical Society, 2004, 151(8): A1162-A1167.
    [150] Andersson A M, Abraham D P, Haasch R, et al. Surface Characterization of Electrodes from High Power Lithium-ion Batteries[J]. Journal of The Electrochemical Society, 2002, 149(10): A1358-A1369.
    [151] Wang Z X, Huang X J, Chen L Q. Characterization of Spontaneous Reactions of LiCoO2 with Electrolyte Solvent for Lithium-ion Batteries[J]. Journal of The Electrochemical Society, 2004, 151(10): A1641-A1652.
    [152] Liu J, Manthiram A. Understanding the Improvement in the Electrochemical Properties of Surface Modified 5 V LiMn1.42Ni0.42Co0.16O4 Spinel Cathodes in Lithium-ion Cells[J]. Chemistry of Materials, 2009, 21(8): 1695-1707.
    [153] Aklalouch M, Rojas R M, Rojo J M, et al. The Role of Particle Size on the Electrochemical Properties at 25 and at 55°C of the LiCr0.2Ni0.4Mn1.4O4 Spinel as 5 V-cathode Materials for Lithium-ion Batteries[J]. Electrochimica Acta, 2009, 54(28): 7542-7550.
    [154]刘伶. LiNi1/3Co1/3Mn1/3O2正极材料的制备与电化学性能研究[D].哈尔滨:哈尔滨工业大学, 2009: 13-14.
    [155] Arunkumar T A, Manthiram A. Influence of Lattice Parameter Differences on the Electrochemical Performance of the 5 V Spinel LiMn1.5-yNi0.5-zMy+zO4 (M = Li, Mg, Fe, Co and Zn)[J]. Electrochemical and Solid-State Letters, 2005, 8(8): A403-A405.
    [156] Lafont U, Locati C, Borghols W J H, et al. Nanosized High Voltage Cathode Material LiMg0.05Ni0.45Mn1.5O4: Structural, Electrochemical and in Situ Investigation[J]. Journal of Power Sources, 2009, 189(1): 179-184.
    [157] Hong K J, Sun Y K. Synthesis and Electrochemical Characteristics of LiCrxNi0.5-xMn1.5O4 Spinel as 5 V Cathode Materials for Lithium Secondary Batteries[J]. Journal of Power Sources, 2002, 109(2): 427-430.
    [158] Yi T F, Shu J, Zhu Y R, et al. Advanced Electrochemical Performance of LiMn1.4Cr0.2Ni0.4O4 as 5 V Cathode Material by Citric-acid-assisted Method[J]. Journal of Physics and Chemistry of Solids, 2009, 70(1): 153-158.
    [159] Katiyar R K, Singhal R, Asmar K, et al. High Voltage Spinel Cathode Materials for High Energy Density and High Rate Capability Li Ion Rechargeable Batteries[J]. Journal of Power Sources, 2009, 194(1): 526-530.
    [160] Aklalouch M, Amarilla J M, Rojas R M, et al. Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 Spinel as 5 V-cathode Material Exhibiting Huge Rate Capability at 25 and 55℃[J]. Electrochemistry Communications, 2010, 12(4): 548-552.
    [161] Ito A, Li D C, Lee Y, et al. Influence of Co Substitution for Ni and Mn on the Structural and Electrochemical Characteristics of LiNi0.5Mn1.5O4[J]. Journal of Power Sources, 2008, 185(2): 1429-1433.
    [162] Wu H M, Tu J P, Yuan Y F, et al. Effects of Abundant Co Doping on the Structure and Electrochemical Characteristics of LiMn1.5Ni0.5-xCoxO4[J]. Journal of Electroanalytical Chemistry, 2007, 608(1): 8-14.
    [163] Liu J, Manthiram A. Understanding the Improved Electrochemical Performances of Fe-Substituted 5 V Spinel Cathode LiMn1.5Ni0.5O4[J]. Journal of Physical Chemistry C, 2009, 113(33): 15073-15079.
    [164] Alcantara R, Jaraba M, Lavela P, et al. Synergistic Effects of Double Substitution in LiNi0.5-yFeyMn1.5O4 Spinel as 5 V Cathode Materials[J]. Journal of The Electrochemical Society, 2005, 152(1): A13-A18.
    [165] Alcantara R, Jaraba M, Lavela P, et al. Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials[J]. Chemistry of Materials, 2003, 15(12): 2376-2382.
    [166] Arrebola J, Caballero A, Hernán L, et al. Effects of Coating with Gold on the Performance of Nanosized LiNi0.5Mn1.5O4 for Lithium Batteries[J]. Journal of The Electrochemical Society, 2007, 154(3): A178-A184.
    [167] Arrebola J, Caballero A, Hernan L, et al. Adverse Effect of Ag Treatment on the Electrochemical Performance of the 5 V Nanometric Spinel LiNi0.5Mn1.5O4 in Lithium Cells[J]. Electrochemical and Solid State Letters, 2005, 8(6): A303-A307.
    [168] Sun Y K, Lee Y S, Yoshio M, et al. Synthesis and Electrochemical Properties of ZnO-coated LiNi0.5Mn1.5O4 Spinel as 5 V Cathode Material for Lithium Secondary Batteries[J]. Electrochemical and Solid State Letters, 2002, 5(5): A99-A102.
    [169] Fan Y k, Wang J M, Tang Z, et al. Effects of the Nanostructured SiO2 Coating on the Performance of LiNi0.5Mn1.5O4 Cathode Materials for High-voltage Li-ion Batteries[J]. Electrochimica Acta, 2007, 52(11): 3870-3875.
    [170] Liu J, Manthiram A. Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 before and after Surface Modifications[J]. Journal of The Electrochemical Society, 2009, 156(11): A833-A838.
    [171] Kobayashi Y, Miyashiro H, Takei K, et al. 5 V Class All-solid-state Composite Lithium Battery with Li3PO4 Coated LiNi0.5Mn1.5O4[J]. Journal of The Electrochemical Society, 2003, 150(12): A1577-A1582.
    [172] Shi J Y, Yi C W, Kim K. Improved Electrochemical Performance of AlPO4-coated LiMn1.5Ni0.5O4 Electrode for Lithium-ion Batteries[J]. Journal of Power Sources, 2010, 195(19): 6860-6866.
    [173] Kang H B, Myung S T, Amine K, et al. Improved Electrochemical Properties of BiOF-coated 5 V Spinel Li[Ni0.5Mn1.5]O4 for Rechargeable Lithium Batteries[J]. Journal of Power Sources, 2010, 195(7): 2023-2028.
    [174] Yi T F, Shu J, Zhu Y R, et al. Structure and Electrochemical Performance of Li4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4 Spinel as 5 V Materials[J]. Electrochemistry Communications, 2009, 11(1): 91-94.
    [175]黄剑锋.溶胶-凝胶原理与技术[M].北京:学工业出版社. 2009: 13.
    [176]许晶.聚阴离子型锂离子电池正极材料的制备及改性[D].哈尔滨:哈尔滨工业大学. 2010: 26.
    [177] Xiao L F, Zhao Y Q, Yang Y Y, et al. Electrochemical Properties of Nano-crystalline LiNi0.5Mn1.5O4 Synthesized by Polymer-pyrolysis Method[J]. Journal of Solid State Electrochemistry, 2008, 12(6): 687-691.
    [178] Fang X, Lu Y, Ding N, et al. Electrochemical Properties of Nano- and Micro-sized LiNi0.5Mn1.5O4 Synthesized via Thermal Decomposition of a Ternary Eutectic Li-Ni-Mn Acetate[J]. Electrochimica Acta, 2010, 55(3): 832-837.
    [179] Liu J J, Qiu W H, Yu L Y, et al. Synthesis and Electrochemical Characterization of Layered Li(Ni1/3Co1/3Mn1/3)O2 Cathode Materials by Low-temperature Solid-state[J]. Journal of Alloys and Compounds, 2008, 449(1-2): 326-330.
    [180] Hon Y M, Lin S P, Fung K Z, et al. Synthesis and Characterization of Nano-LiMn2O4 Powder by Tartaric Acid Gel Process[J]. Journal of European Ceramic Society, 2002, 22(5): 653-660.
    [181]赵九生,时其昌,马福善,等.催化剂生产原理[M].北京:科学出版社, 1986:64-72.
    [182] Fang H S, Li L P, Li G S. A Low-temperature Reaction Route to High Rate and High Capacity LiNi0.5Mn1.5O4[J]. Journal of Power Sources, 2007, 167(1): 223-227.
    [183] Raja M W, Mahanty S, Basu R N. Multi-faceted Highly Crystalline LiMn2O4 and LiNi0.5Mn1.5O4 Cathodes Synthesized by a Novel Carbon Exo-templating Method[J]. Solid State Ionics, 2009, 180(23-25): 1261-1266.
    [184] Arrebola J C, Caballero A, Hernan L, et al. Expanding the Rate Capabilities of the LiNi0.5Mn1.5O4 Spinel by Exploiting the Synergistic Effect between Nano and Microparticles[J]. Electrochemical and Solid State Letters, 2005, 8(12): A641-A645.
    [185] Takahashi Y, Sasaoka H, Kuzuo R, et al. A Low-temperature Synthetic Route and Electrochemical Properties of Micrometer-sized LiNi0.5Mn1.5O4 Single Crystals[J]. Electrochemical and Solid State Letters, 2006, 9(4): A203-A206.
    [186] Bao S J, Li C M, Li H L, et al. Morphology and Electrochemistry of LiMn2O4 Optimized by Using Different Mn-sources[J]. Journal of Power Sources, 2007, 164(2): 885-889.
    [187] Yi T F, Zhu Y R. Synthesis and Electrochemistry of 5 V LiNi0.4Mn1.6O4 Cathode Materials Synthesized by Different Methods[J]. Electrochimica Acta, 2008, 53(7): 3120-3126.
    [188] Aurbach D, Gamolsky K, Markovsky B, et al. The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into LixMOy Host Materials (M = Ni, Mn)[J]. Journal of The Electrochemical Society, 2000, 147(4): 1322-1331.
    [189] Rajakumar S, Thirunakaran R, Sivashanmugam A, et al. Electrochemical Behavior of LiM0.25Ni0.25Mn1.5O4 as 5 V Cathode Materials for Lithium Rechargeable Batteries[J]. Journal of The Electrochemical Society, 2009, 156(3): A246-A252.
    [190] Yang L, Jiao L F, Miao Y L, et al. Synthesis and Characterization of LiFe0.99Mn0.01(PO4)2.99/3F0.01/C as a Cathode Material for Lithium-ion Battery[J]. Journal of Solid State Electrochemistry, 2010, 14(6): 1001-1005.
    [191] Yi T F, Zhu Y R, Zhu R S, et al. Physicochemical Properties of LiAlxMn2-xO4 and LiAl0.05Mn1.95O4-yFy Cathode Material by the Citric Acid-assisted Sol-gel Method[J]. Ionics, 2009, 15(2): 177-182.
    [192] Kim G H, Myung S T, Bang H J, et al. Synthesis and Electrochemical Properties of Li[Ni1/3Co1/3Mn(1/3-x)Mgx]O2-yFy via Coprecipitation[J]. Electrochemical and Solid State Letters, 2004, 7(12): A477-A480.
    [193] Yoon Y K, Park C W, Ahn H Y, et al. Synthesis and Characterization of Spinel Type High-power Cathode Materials LiMxMn2-xO4 (M = Ni, Co, Cr)[J]. Journal ofPhysics and Chemistry of Solids, 2007, 68(5-6): 780-784.
    [194] Yamashita T, Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449.
    [195] Chikate R C, Jun K W, Rode C V. Nonaqueous Synthesis and Characterization of Cappedα-Fe2O3 Nanoparticles From Iron(III) Hydroxy-oleate Precursor[J]. Polyhedron, 2008, 27(3): 933-938.
    [196] Yi T F, Hu X G. Preparation and Characterization of Sub-micro LiNi0.5?xMn1.5+xO4 for 5 V Cathode Materials Synthesized by an Ultrasonic-assisted Co-precipitation Method[J]. Journal of Power Sources, 2007, 167(1): 185-191.
    [197] Oh S W, Park S H, Kim J H, et al. Improvement of Electrochemical Properties of LiNi0.5Mn1.5O4 Spinel Material by Fluorine Substitution[J]. Journal of Power Sources, 2006, 157(1): 464-470.
    [198] Zhang J S, Yu R C, E P, et al. Structural Stability and Electrical Properties of Sr2Fe1+xMo1?xO6?δunder High Pressure[J]. Journal of Alloys and Compounds, 2004, 384(1-2): 67-70.
    [199] Ohzuku T, Ariyoshi K, Takeda S, et al. Synthesis and Characterization of 5 V Insertion Material of Li[FeyMn2?y]O4 for Lithium-ion Batteries[J]. Electrochimica Acta, 2001, 46(15): 2327-2336.
    [200] Ohzuku T, Yamato R, Kawai T, et al. Steady-state Polarization Measurements of Lithium Insertion Electrodes for High-power Lithium-ion Batteries[J]. Journal of Solid State Electrochemistry, 2008, 12(7-8): 979-985.
    [201] Wang H L, Xia H, Lai M O, et al. Enhancements of Rate Capability and Cyclic Performance of Spinel LiNi0.5Mn1.5O4 by Trace Ru-doping[J]. Electrochemistry Communications, 2009, 11(7): 1539-1542.
    [202] Ge H, Li N, Li D Y, et al. Study on the Effect of Li Doping in Spinel Li4+xTi5?xO12 (0≤x≤0.2) Materials for Lithium-ion Batteries[J]. Electrochemistry Communications, 2008, 10(7): 1031-1034.
    [203] Lou X W, Li C M,Archer L A. Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage[J]. Advanced Materials, 2009, 21(24): 2536-2539.
    [204] Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior Storage Performance of a Si@SiOx/C Nanocomposite as Anode Material for Lithium-ion Batteries[J]. Angewandte Chemie International Edition, 2008, 47(9): 1645-1649.
    [205] Cao Q, Zhang H P, Wang G J, et al. A Novel Carbon-coated LiCoO2 as Cathode Material for Lithium Ion Battery[J]. Electrochemistry Communications, 2007, 9(5): 1228-1232.
    [206] Lin B, Wen Z Y, Wang X Y, et al. Preparation and Characterization ofCarbon-coated Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for Lithium-ion Batteries[J]. Journal of Solid State Electrochemistry, 2010, 14(10): 1807-1811.
    [207] Cheng F Q, Wan W, Tan Z, et al. High Power Performance of Nano-LiFePO4/C Cathode Material Synthesized via Lauric Acid-assisted Solid-state Reaction[J]. Electrochimica Acta, 2011, 56(8): 2999-3005.
    [208] Qiao Y Q, Tu J P, Xiang J Y, et al. Effects of Synthetic Route on Structure and Electrochemical Performance of Li3V2(PO4)3/C Cathode Materials. Electrochimica Acta, 2011, 56(11): 4139-4145.
    [209]何则强,熊利芝,梁凯,等.碳包覆对LiNi0.5Mn1.5O4电化学性能的影响[J].功能材料, 2009, 26(12): 1145-1148.
    [210] Rui X H, Ding N, Liu J, et al. Analysis of the Chemical Diffusion Coefficient of Lithium Ions in Li3V2(PO4)3 Cathode Material[J]. Electrochimica Acta, 2010, 55(7): 2384-2390.
    [211] Dokko K, Mohamedi M, Umeda M, et al. Kinetic Study of Li-ion Extraction and Insertion at LiMn2O4 Single Particle Electrodes Using Potential Step and Impedance Methods[J]. Journal of The Electrochemical Society, 2003, 150(4): A425-A429.
    [212] Tang S B, Lai M O, Lu L. Study on Li+-ion Diffusion in Nano-crystalline LiMn2O4 Thin Film Cathode Grown by Pulsed Laser Deposition Using CV, EIS and PITT Techniques[J]. Materials Chemistry and Physics, 2008, 111(1): 149-153.
    [213] Liu G Q, Wen L, Liu G Y, et al. Rate Capability of Spinel LiCr0.1Ni0.4Mn1.5O4[J]. Journal of Alloys and Compounds, 2010, 501(2): 233-235.
    [214] Fu X Z, Luo X X, Luo J L, et al. Ethane Dehydrogenation over Nano-Cr2O3 Anode Catalyst in Proton Ceramic Fuel Cell Reactors to Co-produce Ethylene and Electricity[J]. Journal of Power Sources, 2011, 196(3): 1036-1041.
    [215] Wei Y J, Nam K W, Kim K B. Spectroscopic Studies of the Structural Properties of Ni Substituted Spinel LiMn2O4[J]. Solid State Ionics, 2006, 177(1-2): 29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700