用户名: 密码: 验证码:
基于PolyMUMPs技术的微机电变形镜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学技术在天文观测、强激光、光束合成、激光通讯和医学检测等领域有着广泛的应用前景。变形镜作为自适应光学系统的核心部件,其微型化是自适应光学系统微型化和集成化的关键。本文系统的分析了各种微小型变形镜的特点和制造技术,并对双压电片变形镜和薄膜变形镜的性能进行了仿真。相比其他变形镜,采用微机电技术加工的变形镜具有体积小、能耗低、成本低、响应快以及可与微电路集成等特点,已成为变形镜技术研究的重要方向。针对微机电变形镜的加工,系统地介绍了常用的加工手段和所使用的各种材料特性,并分析了两种常用的标准化表面微加工技术的特点,考虑成本和研究周期等因素,本文选择Poly Multi User MEMS Processes (PolyMUMPs)技术作为微变形镜的加工工艺。
     本文以设计大冲程的微反射镜为主要研究目标,以标准化工艺PolyMUMPs的技术特点和设计规则为基础。根据变形镜的设计要求,分析了刻蚀孔、表面粗糙度、透印效应以及材料残余的应力对于反射镜面性能的影响,基于平行板驱动器模型分析了PolyMUMPs工艺对提高冲程的局限性,首次提出了两种可以实现大冲程驱动器结构,同时在工艺允许的范围内尽量满足降低控制电压和提高镜面光学质量的要求,对分立镜面的微机电变形镜的驱动方式、镜体结构设计方法、静电驱动器及微镜的建模仿真和微镜性能测试等方面进行了系统的研究。
     设计了两种大冲程的微反射镜结构——悬臂梁式微镜和杠杆式微镜。针对悬臂梁式微镜,通过有限元方法分析材料的残余应力对于镜体和悬臂梁的影响,提出了镜体镜体和悬臂梁的最优化设计参数,并利用解析方法求出悬臂梁的提升高度与有限元方法得到的结果进行了对比,同时对微镜的各项性能参数进行了仿真;针对杠杆式微镜,为了减小残余应力引起的镜面形变设计了边缘加固的镜体,采用版图平整化方法设计了特殊形状的杠杆驱动器,通过有限元模拟不同结构参数对杠杆提升高度和拉入电压的影响,得到了杠杆各部分的最优化设计参数。
     设计了一种多通道高压控制电路,并对电路的放大效果进行了测试。利用Polytec微系统分析仪、Wyko光学轮廓仪和伏安测量仪等仪器对加工得到的两种微镜进行了测试,得到的各种性能参数均与仿真结果比较接近,说明了采用PolyMUMPs工艺能够实现大冲程驱动器的设计,而工艺对镜面质量和填充率的限制,可以结合其他工艺来改善,为未来设计和开发高性能微机电变形镜提出了有益的建议。
Adaptive Optics (AO) has potential applications in many fields such as astronomical telescope, high energy laser, light beam combination, laser communication and medical ophthalmic detection. Miniaturized deformable mirror (DM) plays a key role in adaptive optics miniaturization and integration, as DM is one of key conponents in an AO system. This dissertation analysises the properties and fabrication techniques of various small DMs, and simulates the performances of bimorph DM and membrane DM. Compared with the others, the DMs fabricated with Micro Electro Mechanical System (MEMS) technology have the advatages of small volume, low power consume, low cost, fast response and integrated with microcircuit, as they have been deeply investigated. The fabrication technique and the preparation and performance of the materials commonly used in MEMS DMs fabrication are introduced in detail. With comparasion of the two commercial standard surface micromachining technologies, Poly Multi User MEMS Processes (PolyMUMPs) is chosen to be the fabrication technique of our MEMS DMs in the consideration of cost and research period.
     This dissertation mainly focuses on large stroke micro-mirrors based on technical characters and design principles of standard PolyMUMPs process. The influences of eching holes, surface roughness, print-through effect and residual stresses of different materials on mirror surface quality are investigated with the DM design requirements. Based on parallel plate actuator model, restrict of PolyMUMPs for achieving large stroke is discussed. Two designs of large stroke actuators are put forwarded originatively and low driving voltages and high mirror surface qualities are also considered in the permission of fabrication process. The actuated styles, mirror structure design method, simulations of electrostactic actuators and micro-mirrror, mirror performance test are also discussed in details.
     Two designs micro-mirror with large stoke—micro-mirror with cantilevers and micro-mirror with lever actuators are proposed. According to micro-mirror with cantilevers, the influences of residual stresses on the properties of mirror plate and cantilever are analyzed with finite element method and the optimized structure parameters of mirror plate and cantilevers are obtained. The elevated height of cantilever is calculated with analysis method and the results are compared with FEM. The static and dynamic characteristics of micro-mirror with cantilevers are analyzed. According to micro-mirror with lever actuators, minimized mirror plate with edge strengthing is designed to reduce the mirror plate deformation induced by residual stresses. Lever actuators with special shapes are also designed with layout smoothing method to reduce the print-through effect.
     The elevated heights and pull-in voltages with different constants of lever structures are simulated with FEM software Comsol, as a result, the dimensions of some important components of lever strucure are optimized.
     A multi channel high voltage control circuit is proposed and its amplification results are tested in lab envirement. Two design fabricated micro-mirrors are measured and analyzed with Polytec microsystem analyzer, Wyko optical profiler and I-V curve analyzer. The results of static and dynamic characteriscs of two designed micro-mirrrors show close consistency with simulation results, which prove that large stroke actuators can be achieved by PolyMUMPs process, but both high quality mirror surface and high fill-in factor are restricted which can be improved by combining with other porcesses. Some constructive proposals are put forward for designing and developing high performance MEMS deformable mirrors in the future.
引文
[1] Tyson R K. Principles of adaptive optics [M]. Boston: Academic Press, 1991.
    [2] Babcock H W. The possibility of compensating astronomical seeing [J]. Publ. Astron. Soc. Pacific, 1953, (65): 229~236.
    [3]周仁忠.自适应光学[M].北京:国防工业出版社, 1996
    [4]姜文汉.自适应光学与能动光学[J].物理, 1997, (26): 73-79
    [5] Hardy J W. Adaptive Optics [J]. Scientific American, 1994: 40~43
    [6] Fugate R Q, Ellerbroek B L, Higgins C H, Jelonek M P, Lange W J, Slavin A C, Wild W J, Winker D M, Wynia J M, Spinhirne J M ,Boeke B R, Ruane R E, Moroney J F, Oliker M D, Swindle D W and Cleis R A. Two generations of laser-guide-star adaptive-optics experiments at the Star fire Optical Range [J]. J. Opt. Soc. Am. A, 1994, (11): 310~324.
    [7] Max C E, Olivier S S, Friedman H W, An J, Avicola K, Beeman B V, Bissinger H D, Brase J M, Erbert G V, Gavel D T, Kanz K, Liu M C, Macintosh B, Neeb K P, Patience J and Waltjen K. Image improvement from a sodium-layer laser guide star adaptive optics system [J]. Science, 1997, (277): 1649~1652
    [8] Zacharias R, Bliss E, Feldman M, Grey A, Henesian M, Koch J, Lawson J, Sacks R, Salmon T, Toeppen J, Van Atta L, Winters S, Woods B, LaFiandra C and Bruns D. National Ignition Facility (NIF) wavefront control system [C]. Proc. of SPIE, 1999, (3492): 678~692
    [9] Liang J, Williams D R and Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics [J]. J. Opt. Soc. Am. A, 1997, (14): 2884~2892
    [10] Rigaut F, Rousset G, Kern P, Fontanella J C, Gaffard J P, Merkle F and Lena P. Adaptive Optics on a 3.6 m telescope: Results and performance [J]. Astrom. and Astrophys, 1991, (250): 280~290
    [11] Lena P. J. Astrophysical results with the Come-on adaptive optics system [C]. Proc. of SPIE, 1994, (2201): 1099~1109.
    [12] Nelson J E. Design concepts for the California Extremely Large Telescope (CELT) [C]. Proc. of SPIE, 2000, (4004): 282~289
    [13] Segurson A, Angeli G. Computationally efficient performance simulations for a Thirty Meter Telescope (TMT) point design,Proc.SPIE, 2004, (5497):329.
    [14] Zhong J J, Leyva D Gil, Corbett A D, Diaz-Santana L, and Wilkinson T D. Mirror-Mode Sensing with a Holographic Modal Wavefront Sensor [C]. Proc. of SPIE, 2005, (6018): 60181I
    [15] Ghebremichael F, Andersen G P, Gurley K S. Holography-based wavefrontsensing [J]. Appl. Opt., 2008, 47(4): A62-A70
    [16] Douglas G M. Local, hierarchic, and iterative reconstructors for adaptive optics [J]. J. Opt. Soc. Am. A, 2003, (20): 1084~1093.
    [17] Ellerbroek B L, Rhoadarmer T A. Adaptive Wavefront Control Algorithms for Closed Loop Adaptive Optics [J]. Mathematical and Computer Modelling, 2001, (33): 145~158.
    [18] Aksenov Valerii P, Izmailov Igor V, and Kanev Feodor Yu. Algorithms of a Singular Wavefront Reconstruction [C]. Proc. of SPIE, 2005, (6018): 6018B
    [19] Horsley D A, Park Hyunkyu, Laut S P and Werner J S. Characterization of a bimorph deformable mirror using stroboscopic phase-shifting interferometry [J]. Sensors and Actuators A: Physical, 2007, 134(1): 221~230
    [20] Vuelban E M, Bhattacharya N, and Braat J J M. Liquid deformable mirror for high-order wavefront correction [J]. Optics Letters, 2006, 31(11): 1717~1719
    [21] Bifano T G, Perreault J, Krishnamoorthy Mali R, Horenstein M N. Microelectromechanical deformable mirrors [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(1): 83~89.
    [22] Sacks R. Application of adaptive optics for controlling the NIF laser performance and spot size [C]. Proc. of SPIE, 1998, (3492): 344
    [23] Zacharias R, Bliss E. The National Ignition Facility (NIF) Wavefront Control System [C]. Proc. of SPIE, 1998, (3492): 678
    [24] Sadao NAKAI. Progress of Laser Fusion Research with GEKKO XII Glass Laser and KONGHO Project for Breakeven [J]. Journal of Nuclear Science and Technology, 1989, (26): 209~212
    [25] Spreen D E and Hogge C B. Characterizing high-altitude horizontal path optical propagation [C]. Proc. of SPIE, 1994, (2120): 2
    [26] Steiner T D, Merritt P H edited. Airborne laser advanced technology II [C]. Proc. of SPIE, 1999, (3706)
    [27]胡绍云,钟鸣等.自适应光学在固体战术激光武器中的应用[J].激光与光电子学进展, 2006, 43(2): 25
    [28]张志伟,马骏,俞信.微小型自适应光学系统及其在星载光学遥感器上的应用[J].红外与激光, 2000, 29(1): 49~54
    [29]姜文汉.高分辨率自适应望远镜[R].国家高技术计划信息领域信息获取与处理技术十周年汇报——自适应光学望远镜技术, 1996, 1
    [30]杨振刚.内腔自适应光学系统补偿激光畸变研究[D].武汉:华中科技大学, 2007
    [31]侯静.自适应光学波前探测新概念研究[D].长沙:国防科学技术大学, 2002
    [32] Salmon J T. Real time wavefront correction system using a zonal deformable mirror and a Hartmann sensor [C]. Proc. of SPIE, 1991, (1542): 459
    [33] Kudryashov A V, Samarkin V V. Control of high power C02 laser beam by adaptive optical elements [J]. Optics Communications,1995,(118): 317
    [34]张强.氧碘化学激光器光束净化[D].成都:四川大学,1999
    [35] Greiner U J, Klingenberg H H.Thermal lens correction of a diode-pumped Nd:YAG laser of high TEM00 power by an adjustable—curvature mirror [J]. Optics Letters, 1994, 19(16): 1207
    [36] Cherezova T Yu, Kaptsov L N. Cw industrial rod YAG:Nd3+ Laser with an intracavity active bimorph mirror[J]. Applied Optics, 1996, 35(15): 2554
    [37] Druon F, Cheriaux G. Wave-front correction of femtosecond terawatt lasers by deformable mirrors [J]. Optics Letters, 1998, 23(13): 1043
    [38] Armstrong M R, Plachta E. Versatile 7-fs optical parametric pulse generation and compression by use of adaptive optics [J]. Optics Letters, 2001, 26(15): 1152
    [39] Charles A T, Willks S C, Brase J M, Richard A Y, Gary W J, Anthony J R. Horizontal Path Laser Communications Employing MEMS Adaptive Optics Correction [C]. Proc. of SPIE, 2002, (4494): 89~95
    [40] Willks S C, Morris J R, Brase J M, Olivier S S, Henderson J R, Anthony J R. Modeling of Adaptive Optics-based free-space communications systems [C]. Proc. of SPIE, 2002, (4821): 121~128
    [41] Li J, Chen H Q, Yan G P, Liu Y, Wu P. Improve space laser communication using adaptive optics system based on MEMS technology [C]. Proc. of SPIE, 2005, (5985): 89851R
    [42] Liang J, Grimm B, Goelz S et al. Objective measurement of wave aberration of the human eye with the use of a Shack-Hartmann sensor [J]. J. Opt. Soc. Am. A,1994, (11):1949~1957
    [43] Liang J, Williams D R. Supermormal vision and high-resolution retinal imaging through adaptive optics [J]. J. Opt. Soc. Am. A., 1997, 14(11): 2884
    [44] Bartsch. D, Zhu L et al. Retinal imaging with a low-cost micromachined membrane deformable mirror [J]. J. Biomed. Opt, 2002, 7(3): 451~456
    [45] Femndez E J, Iglesias I, Artal P. Closed-loop adaptive optics in the human eye [J]. Optics Letters, 200 1, 26(10): 746
    [46]俞信.自适应光学进展及展望[J].光学技术, 1993, 3~2
    [47]姜文汉等.爬山法自适应光学波前校正系统[J].中国激光,1986, (15): 17~21.
    [48] Jiang W H, Ling N. Hartmann-Shack wavefront sensing and wavefront control algorithm [C]. Proc. of SPIE, 1990, (1271): 82~93.
    [49] Rao C, Jiang W H. Performance on the 61-element upgraded adaptive optical system for 1. 2 m telescope of the Yunnan Observatory [C]. Proc. of SPIE 2004, (5639): 11~20.
    [50]凌宁等.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报, 2004, (24): 1153~1158
    [51] Ling N, Zhang Y D, et a1. High resolution mosaic image of capillaries of human retina by adaptive optics [J]. Chinese Optics Letters, 2005, 3(4): 225
    [52] Ling N, Zhang Y D, et a1. Measurement and correction in time of high order aberrations [C]. Optics and Optical Engineering-Prcoessing of Congratulation for Wang Daheng Academician’s 90 Birthday, Publishing House of Science, 2005, 73
    [53] Jiang W H, Ling N, et a1. 61-element adaptive optical system for 1.2m telescope of Yunnan Observatory [C]. Proc. of SPIE, 1998, (3353): 696
    [54] Tang G M, Rao C H, et a1. Performance and test results of a 61-element adaptive optics system on the 1.2m telescope of Yunan Observatory [C]. Proc. of SPIE, 2002, 4926: 13
    [55] Rao C H, Jiang W H, et a1. Upgrade on 61-element adaptive optical system for 1.2m telescope of Yunan Observatory [C]. Proc. of SPIE, 2004, 5490: 943
    [56]饶长辉,姜文汉.云南天文台1.2米望远镜61单元自适应光学系统[J].量子电子学报, 2006, 23(3): 295
    [57] Zhang Y D, Ling N, et a1. An adaptive optics system for ICF application [C]. Proc. of SPIE, 2002, 4494: 96
    [58]姜文汉,杨泽平,官春林等.自适应光学技术在惯性约束聚变领域应用的新进展[J].中国激光, 2009, 36(7): 1625~1634
    [59]阎吉祥,俞信等.分层校正自适应光学系统相位层析技术[J].光学技术,1996,5:5
    [60]卢新然,张洪涛等,分层共轭自适应光学系统扩大校正视场的方法研究,长春理工大学学报,2006,29(1):32
    [61]杨华峰.用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术研究[D].长沙:国防科学技术大学, 2008
    [62]虞益挺,苑伟政等.分立活塞式MEMS微变形镜的系统级设计,传感器技术学报,2006,19(5):1761
    [63]习锋杰.光栅型曲率传感器的设计与应用研究[D].长沙:国防科学技术大学, 2008
    [64]宁禹.双压电片变形反射镜的性能分析与应用研究[D].长沙:国防科学技术大学, 2008
    [65]靳冬欢.基于随机并行梯度下降算法的波前校正技术研究[D].长沙:国防科学技术大学, 2006
    [66]龙学军.基于像质评价函数最优化的自适应波前控制技术研究[D].长沙:国防科学技术大学, 2006
    [67]蔡冬梅,液晶空间光相位调制器特性研究及在自适应光学中的应用[D].成都:中国科学院光电技术研究所, 2008
    [68]杨振刚,陈海清等.内腔自适应光学系统校正激光器畸变[J].光学学报, 2007, 27(12): 2205
    [69]余洪斌,陈海清等.星载自适应光学系统新型可变反射镜的研究[J].压电与声光, 2005, 27(4): 352
    [70]叶嘉雄,余永林著.自适应光学[M].武汉,华中理工大学出版社, 1992
    [71]周仁忠,阎吉祥著.自适应光学理论[M].北京,北京理工大学出版社, 1996
    [72] Feynman R P. There's Plenty of Room at the Bottom [C]. in Miniaturization, H.D. Gilbert, Ed. New York: Reinhold, 1961: 282~296.
    [73]张威,张大成,王阳元. MEMS概况及发展趋势[J].微纳电子技术, 2002, 1: 22~27
    [74] Judy J W. Microelectromechanical systems (MEMS): fabrication, design and applications [J]. J. Micromech. Microeng, 2001, 10: 1115~1134
    [75] Muller R S. Microsensors[M]. IEEE. New York, 1991
    [76] Waggner H A. Electrochemically controlled thinning of silicon [J]. Bell Systems. Technical Journal,1970, 49(3): 473~475
    [77] Bean K E. Anisotropic Etchjng of Silicon [J]. IEEE Trans. Election Devices, 1978, 25: 1185
    [78] Petersen K E. Silicon as a Mechanical Material [J]. Proceedings of IEEE, 1982, 70: 420.
    [79] Kovacs G T A, Maluf N I and Petersen K E. Bulk Micromachining of Silicon [C]. Proc. IEEE, 1998, (86): 1536~1551.
    [80] Feynman R P. Infinitesimal Machinery [J]. Journal of MEM System, 1993, 2(1): 4.
    [81] Bustillo J M, Howe R T and Muller R S. Surface Micromachining for Microelectromechanical Systems [C]. Proc. IEEE, 1998, (86): 1552~1574
    [82] Maluf N. An Introduction to MicroelectromechanicaI Systems Engineering [C]. London, Artech House, 2000, 1
    [83] Fan L S, Tai Y C and Muller R S. Tech.Digest IEEE Int. Electron Devices Meeting, San Fransisco, Dec.1988: 666
    [84] Gabriel K. J.,etal. Small Machines, Large opportunities. A report on Emerging Field of Microdynamics [R]. National Science Foundation, 1988
    [85] Bryzek J. Impact of MEMS technology on society [J]. Sensors and Actuators, 1996, A56: 1~9
    [86] Laermer F, Schilp A, Funk k, et.a1. Bosch deep silicon etching: Improvinguniformity and etch rate for advanced MEMS applications [C]. IEEE MEMS’99, 1999, 17
    [87] David A K, Ramaswamy Mahadevan, Alex Shishkoff and Karen W M. MUMPs Design Handbook [S]. MEMS Technology Applications Center, MCNC,1996.
    [88] Samsell J B. An overview of the digital micromirror device (DMD) and its application to projection displays [C]. SID93, 1993: 1012
    [89] Neukemalls A, Ramaswani R. MEMS technology for optical networking applications [J]. IEEE Communications Magazine, 200l, 39(1): 62
    [90] Stephen Y C, Peter R K, Preston J R. Nanoimprint lithography [J]. J. Vac. Sci. Technol. B, l996, 14(6): 4129
    [91] Craighead H G. Nanoelectromechanical systems [J]. Science, 2000, 290: 1532
    [92] Dong H F, Jia Y B, Hao Y L, Shen S M. A novel out-of-plane MEMS tunneling accelerometer [J]. Sensors and Actuators A: Physical, 2005, 120(2): 360~364
    [93] Lu Y P, Wu X S, Zhang W P, Chen W Y, Cui F, Liu W. Optimization and analysis of novel piezoelectric solid micro-gyroscope with high resistance to shock [J]. Journal Microsystem Technologies, 2010, 16(4)
    [94] Lei Gu, Xinxin Li, Haifei Bao, Bin Liu, Yuelin Wang, Min Liu, Zunxian Yang, Baoluo Cheng. Single-Wafer-Processed Nano-Positioning XY-Stages with a Trench-Sidewall Micromachining Technology [J]. J. Micromech. Microeng., 2006, 16: 1349~1357.
    [95] Yang Z Q, Ding G F, Cai H G, Zhao X L. A MEMS Inertia Switch With Bridge-Type Elastic Fixed Electrode for Long Duration Contact [J]. Electron Devices, IEEE Transactions on, 2008, 55(9): 2492~2497.
    [96] Huang C J, Chen A L, Wang L, Guo M and Yu J. Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device [J]. Biomedical Microdevices, 2007, 9(3): 335~343
    [97] Xu Q X, Qian H, Han Z S, Lin G, Liu M, Chen B Q,Zhu C F,Wu D X. Characterization of 1.9nm and 1.4nm Ultra-thin Gate Oxynitride by Oxidation of Nitrogen-Implanted Silicon Substrate [J]. IEEE Transaction Electron Device, 2004, 51(1): 113~120.
    [98] Wang L D, Luo Y. Research and Development of MEMS in China[J]. Instrument Technique and Sensor, 2003,1
    [99]张冬至,胡国清,微机电系统关键技术及其研究进展[J].压电与声光, 2010, 32(3)
    [100] Nima Ghalichechian. Optical MEMS [C].“Optical Communication Systems”Term Paper ENEE 691, May 2003
    [101] Manouchehr E M.MOEMS [M].Bellingham,Washington USA:SPIE,2005: 457~461
    [102] Eric Mounier, Yann de Charentenay, Jean-Christophe Eloy. New applications for MOEMS [C]. Proc. of SPIE, 2006, 6114: 611405
    [103] Ming C W. Novel Applications of MOEMS Display and Imaging [C]. Proc. of SPIE, 2005, 5715: 1
    [104] Dana Dudley, Walter Duncan, John Slaughter. Emerging Digital Micromirror Device (DMD) Applications [C]. Proc. of SPIE, 2003, 4985: 14~19
    [105] Bitte F, Dussler G, Pfeifer T. 3D micro-inspection goes DMD [J]. Optics and Lasers in Engineering, 2001, 36(2): 155~167
    [106] Sarun Sumriddetchkajorn, Nabeel A. Riza. Fault-tolerant three-port fiber-optic attenuator using small tilt micromirror device [C]. Optics Communications, 2002, 205(15): 77~86
    [107] Hoonchul Ryoo, Dong Won Kang, Jae W. Hahn. Analysis of the effective reflectance of digital micromirror devices and process parameters for maskless photolithography [J]. Microelectronic Engineering, 2011, 88(3): 235~239
    [108] Joji Yamaguchi, Tomomi Sakata, Nobuhiro Shimoyama, Hiromu Ishii, Fusao Shimokawa, and Tsuyoshi Yamamoto. High-yield Fabrication Methods for MEMS Tilt Mirror Array for Optical Switches [J]. NTT Technical Review, 2007, 5 (10)
    [109] Lin L Y, Shen J L, Lee S S, and Wu M C. Realization of Novel Monolithic Free-Space Optical Disk Pickup Heads by Surface Micromachining [J]. Optics Letters, 1996, 21(2): 155~157.
    [110] Miller L M, Agronin M L, Bartman R K. Fabrication and characterization of a micromachined deformable mirror for adaptive optics applications [C]. Proc. of SPIE, 1993, 1945: 421~430.
    [111] Krishnamoorthy R, Bifano T G, Vandelli N, and Horenstein M. Development of MEMS deformable mirrors for phase modulation of light [J]. Optical Engineering,1997, 2(36): 542~548
    [112] Bifano T. Adaptive imaging: MEMS deformable mirrors [J]. Nature Photonics, 2010, 5: 21~23.
    [113] Helmbrecht M A. Micromirror arrays for adaptive optics [D]. Berkeley: University of California, 2002.
    [114] Michael A. Helmbrecht, Min He, Patrick Rhodes, et al. Preliminary results of large-actuator-count MEMS DM development [C]. Proc. of SPIE, 2010, 7595: 75950C.
    [115] Michael A. Helmbrecht, Min He, Carl J. Kempf, et al. MEMS DM development at Iris AO, Inc [C]. Proc. of SPIE, 2011, 7931: 793108
    [116] Shephered M J, Cobb R G, and Baker W P. Low-order actuator influence functions for piezoelectric in-plane acteated tensioned circular deformable mirrors [C]. Proc. of SPIE, 2006, 6166: 0E-12
    [117] Zhang J, Zhang Z, Lee Y C, Bright V M, Neff J,“Design and investigation of multi-level digitally positioned micromirror for open-loop controlled applications,”Sensors and Actuators, 2003, Vol. A-103, pp. 271~283.
    [118] Jung I W, Peter Y A, and Solgaard O. Single-crystal-silicon continuous membrane deformable mirror array for adaptive optics in space-based telescopes [J]. IEEE J. Selected Topics in Quantum Electronics, 2007, 13(2): 162~167
    [119] Miller M H, Perrault J A, Parker G G, Bettig B P and Bifano T G. Simple models for piston type micromirror behavior [J]. J. Micromechanics and Microengineering, 2006, 16(2): 303~313
    [120] Hyunkyu P and David A H. MEMS Deformable Mirrors for Adaptive Optics using Single Crystal PMN-PT [C]. IEEE , 2008, 90~91
    [121] Carr E, Olivier S, Solgaard O. Large-Stroke Self-Aligned Vertical Comb Drive Actuators for Adaptive Optics Applications [C]. Proc. of SPIE, 2006, 6113: 61130T
    [122] Natalie Clark and Paul Furth. Design And Performance Evaluation of a Silicon Eye using Micro-Mirrors [C]. Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, Lansing MI, Aug 8-11, 2000
    [123] Vodvin G and Sarro P M. Flexible mirror micromachined in silicon [J]. Appl. Opt, 1995,115: 170~178
    [124] L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, Y. Fainman. Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror [J]. Applied Optics, 1999, 38: 6019~6026
    [125] Jan Liesener, Werner Hupfer, Andreas Gehner, and Kotska Wallace. Test on Micro-Mirror Arrays for Adaptive Optics [C]. Proc. of SPIE, 2004, 5553: 319~329.
    [126] Huja M and Husak M. Micromirror Array Design And Simulation [C]. Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, 2000, 741~748
    [127] Buhler J. Deformable Micromirror Array by COMS Technology [D]. Zurich: ETH Zurich, 1997.
    [128] Frank Niklaus, Frank Niklaus, G?ran Stemme. Arrays of Monocrystalline Silicon Micromirror Fabricated Using CMOS Compatible Transfer Bonding [J]. Journal of Microelectromechanical systems, 2003, 12(4): 465~469
    [129] Isaku Kanno, Takaaki Kunisawa and Hidetoshi Kotera. Piezoelectric Deformable MEMS Mirror for Adaptive Optics Composed of PZT thin films [C]. IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, 2006, 156~157
    [130] Byung-Wook Yoo, Jae-Hyoung Park, I. H. Park, Jik Lee, Minsoo Kim, Joo-Young Jin, Jin-A Jeon, Sug-Whan Kim, and Yong-Kweon Kim. MEMS micromirror characterization in space environments [C]. Optics Express, 2009,17(5): 3370~3380
    [131] Zhou G Y, Logeeswaran V J, Francis E H Tay, and Fook Siong Chau. Digital Deflection Micromirrors for Adaptive Optics Applications [C]. TRANSDUCERS '03 The 121h International Conference on Solid Stale Senson, Actuators and Microsyslems
    [132] Po-Yu Lin, Hsin-Ta Hsieh, and Guo-Dung J. Su. Fabrication and simulation of large-scale MEMS deformable mirror for wave front active control [C]. Proc. of SPIE, 2010, 7816: 78160L
    [133] Jin-Chern Chiou,Chen-Chun Hung, Li-Jung Shieh, and Zhao-Long Tsai. Novel electrostatic MOEMS phase shifter array using CMOS-MEMS process [J]. J. Micro/Nanolith. MEMS MOEMS, 2010, 9: 013030
    [134]蒋军彪,微镜阵列的设计与制造技术研究[D].西安:西北工业大学, 2001
    [135]王丛舜,熊春阳,方竞等.一种新型静电驱动的单轴扭转微镜[J].微电子技术, 2003, 40(7):
    [136]王子旸,尤政,任大海等.基于体硅工艺的微反射镜的原理性实验[J].清华大学学报, 2004, 44(8)
    [137]乔大勇,基于MEMS技术的自适应光学微变形镜的设计与分析[D].西安:西北工业大学, 2003
    [138]饶伏波.基于MEMS技术的微自适应光学系统的建模及关键技术研究[D].兰州:西北工业大学, 2005
    [139]虞益挺,微机电变形镜设计及其薄膜残余应力控制研究[D].西安:西北工业大学, 2006.
    [140]余洪斌. MEMSDMs理论设计及工艺研究[D].武汉:华中科技大学, 2005
    [141]许晓慧.基于PZT厚膜的MEMS微变形镜[D].合肥:中国科学技术大学, 2008.
    [142] Yao J, Hu F R, Cai D M, Jiang W H. Design and Analysis of Repulsive Electrostatic Driven MEMS Actuators [C]. Proc. of SPIE, 2008, 7209: 72090K
    [143] Ren H, Tao F G, Wang W M, Yao J. An out-of-plane electrostatic actuator based on the lever principle [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21: 1~10
    [144]江月松,王森等.微型自适应光学系统闭环控制算法[J].光学技术, 2001, 27(3): 211~213
    [145]李俊.传输型详查相机微小自适应光学系统研究[D].武汉:华中科技大学, 2006
    [146] Zhang W, Lou D, Bai J, Ye H and Yang G G. Study of a deformable micromirror based on PZT films [J]. J. Opt. A: Pure Appl. Opt., 2007, 9: 1014~1018
    [147]阎传文.自适应微镜阵列的研究[D].杭州:浙江大学, 2008
    [148] Ehud Steinhaus and Lipson S G. Bimorph piezoelectric flexible mirror [J]. J. Opt. Soc. Am. 1979, 69: 478~481
    [149] Yang Q, Zhu J P, Cao G R. The optimization design of bimorph deformable mirror [J]. Acta Optica Sinica, 1999, 27(9): 1163~1169
    [150] Ronald P. Grosso and Martin Yellin. The membrane mirror as an adaptive optical element [J]. J. Opt. Soc. Am., 1977, 67(3): 399~406
    [151] Burley G S, Stilburn J R, and Gordon A H Walker. Membrane mirror and bias electronics [J]. APPLIED OPTICS, 1998, 37( 21 ): 4649~4655
    [152] Centamore R and Wirth A. High bias membrane mirror [C]. Proc. of SPIE, 1991, 1543: 128~132
    [153] Mikhail Loktev, Gleb Vdovin. Liquid crystal wavefront corrector with modal response based on spreading of the electric field in a dielectric material [J]. OPTICS EXPRESS, 2007, 15(6): 2770~2778
    [154] Alexander E Naumov, Gleb Vdovin. Multichannel liquid crystal based wave-front corrector with modal influence functions,Opt. Lett.,1998, 23(19):1550
    [155] Loktev M, Vdovin G, Nanver L. Liquid crystal wavefront corrector on silicon [C]. Proc. of SPIE, 2005, 5825: 195~200
    [156] Cugat O, Basrour S, Divoux C, Mounaix P, Reyne G. Deformable magnetic mirror for adaptive optics: technological aspects [J]. Sensors and Actuators A, 2001, 89: 1~9
    [157] Enrique J. Fernández, Laurent Vabre, Boris Hermann, Angelika Unterhuber, Boris Pova?ay, Wolfgang Drexler. Adaptive optics with a magnetic deformable mirror: applications in the human eye [J]. OPTICS EXPRESS, 2006, 14(20): 8900~8910
    [158] Rooms F, Camet S, Charton J, Curis J F, and Jocou L. A new deformable mirror and experimental setup for free-space optical communication [C]. Proc. of SPIE, 2009, 7199: 71990O
    [159] http://www.as.northropgrumman.com/products/xinetics_deformable_mirror/index.html
    [160] Mohamed Gad-el-Hak. MEMS: design and fabrication [M]. Boca Raton: CRC Press, Taylor & Francis Group, 2006: 2.1~2.7
    [161] Williams K R, Muller R S. Etch rate for micromaching process [J]. J. Microelectromech. Syst., 1996, (5): 256~269.
    [162] Bean K E. Anisotropic etching of silicon [J]. IEEE Trans. Electron Devices, 1978, (25): 1185~1193
    [163] Finne R M, Klein D L. A water-amine-complexing agent system for etchingsilicon [J]. J. Electrochem. Soc., 1967, (114): 965
    [164] Winters H F, Coburn J W. The etching of silicon with XeF2 vapor [J]. Appl. Phys. Lett., 1979, (34): 70~73.
    [165] Wang X Q, Yang X, Walsh K et al. Gas Phase Silicon Etching with Bromine Trifluoride [C]. Proceedings, Transducer, 97, 1997
    [166] Tabata O, Asahi R, Funabash H et al. Anisotropic etching of silicon in TMAH solutions [J]. Sensors and Actuators A, 1993, (37~38): 737~743
    [167] Schnakenberg U, Benecke W, Lochel B. NH4OH-based etchants for silicon micromachining [J]. Sensors and Actuators A, 1990, (23): 1031~1035
    [168] Jackson T N, Tischler M A, Wise K D. An electrochemical p-n junction etch-stop for the formation of silicon microstructure [J]. IEEE Electron Device Letters, 1981, (2): 44~45.
    [169] Koester D, Cowen A, Mahadevan R, Stonefield M, and Hardy B, PolyMUMPs design handbook [Z]. MEMSCAP, Tech. Rep., 2003, revision 10.0.
    [170] SUMMiT V? Five Level Surface Micromachining Technology Design Manual [Z]. Version 3.1a– April 10, 2008, Sandia National Laboratories.
    [171] Jonathan R. Andrews, Scott W. Teare, Sergio R. Restaino, David Wick, Christopher C.Wilcox, Ty Martinez. Performance of a MEMS reflective wavefront sensor [C]. Proc. of SPIE, 2008, 6888: 68880C
    [172] Daryl J. Dagel, William D. Cowan, Olga Blum Spahn, Grant D. Grossetete, Alejandro J. Gri?e, Michael J. Shaw, Paul J. Resnick, and Bernhard Jokiel, Jr. Large-Stroke MEMS Deformable Mirrors for Adaptive Optics [J]. Journal of Microelectromechanical systems, 2006, 15( 3): 572~583
    [173] William D C. Foundry Mircofabrication of Deformable Mirror for Adaptive Optics [D]. USA: Air Force Institute of Technology, 1998
    [174] Emily Jo Carr. Micro-Deformable Mirrors for Adaptive Optics Applications [D]. Davis: University of California, 2006
    [175] J. Christopher Dainty, Alexander V. Koryabin, and Alexis V. Kudryasho. Low-order adaptive deformable mirror [J]. Applied Optics, 1998, 13(2): 138~146
    [176] Zou J, Michal Balberg, Colin Byme. Optical Properties of Surface Micromachined Mirrors with Etch Holes [J]. Journal of Microelectromechanical Systems, 1999, 8(4): 506~513
    [177] Bennett J M and Mattsson L. Introduction to Surface Roughness and Scattering [C]. Washington, DC: Opt. Soc. of Amer., 1989.
    [178] Raji Krishnamoorthy Mail, Thomas Bifano, David Koester. A design-based approach to planarization in multilayer surface micromachining [J]. Micromech. Microeng, 1999, 9: 294~299
    [179] GYOUNGIL CHO. Design, Fabrication, and Testing of a Variable Focusing Micromirror Array Lens [D]. Texas: Texas A&M University, 2004
    [180] Dayong Qiao, Weizheng Yuan, Kaicheng Li, Xiaoying Li, Fubo Rao. Comparative Study on Different Types of Segmented Micro Deformable Mirrors [C]. Proc. of SPIE,2006, 6149: 61491H
    [181] Hsu T R. MEMS and microsystems: design and manufacture [M]. McGraw-Hill Higher Education, 2002
    [182] Dward K Cllan,Robert W Dutton. Electrostatic Micromechanical Actuator with EXtended Range of Travel [J]. Journal of Microelectromechanical Systems,2000, 9(3): 321~328
    [183] JI Seeger, SB Crary. Stabilization of Electrostatically Actuated Mechanical Devices[C]. TRANSDUCERS’97 Chicago, 1997 International Conference on Solid-State Sensors and Actuators,1997, 2(1): 1133~1136
    [184] Elmer S Hung, Stephen D Senturia. Extending the travel range of analog-tuned electrostatic actuators [J]. Journal of Microelectromechanical SystcIIls, 1999, 8(4): 497~505
    [185] Siyuan He, Ridha Ben Mrad. Large-Stroke Microelectrostatic Actuators for Vertical Translation of Micromirrors Used in Adaptive 0ptics [C]. IEEE Transaction Industrial Electronics, 2005, 52(4): 974~983
    [186] Burns D M and Bright V M. Designs to improve polysilicon micromirror surface topology [C]. Proc. of SPIE, 1997, 3008: 100~110.
    [187] Michel A Rosa, Dirk De Bruyker, Armin R Volkel, Eric Peeters and John Dunec. A novel external electrode configuration for the electrostatic actuation of MEMS based devices [C]. Journal of Micromechanics and Microengineering, 2004, 14: 446~451
    [188] Ju-Nan KUO, Gwo-Bin LEE, Wen-Fung PAN and Huei-Huang LEE. Shape and Thermal Effects of Metal Films on Stress-Induced Bending of Micromachined Bilayer Cantilever [C]. Japanese Journal of Applied Physics, 2005, 44(5): 3180~3186
    [189] George Brinton Thomas and Ross L. Finny. Calculus and analytic geometry [M]. Wesley, Reading, Mass, 8th edition, 1992
    [190]胡放荣,姚军,陈剑鸣.残余应力对静电驱动MEMS微镜性能的影响[J].中国激光, 2009, 36: 30~34
    [191] Zhang X M, Chau F S, Quan C, Lam Y L, Liu A Q. A study of the static characteristics of a torsional micromirror [J]. Sensors Actuators A, 2001, 90: 73~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700