用户名: 密码: 验证码:
基于稳定同位素组成分析的中国北方海域食物网结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以稳定同位素分析技术为基础,对我国北方海域食物网结构进行了研究。确立了一套海洋食物网样品碳、氮稳定同位素分析的保存和预处理方法。通过不同氮磷比对北方海域典型赤潮藻碳、氮稳定同位素组成影响的研究,为北方海域食物网研究提供了基础数据。通过沉积物和悬浮颗粒有机物碳、氮稳定同位素组成变化,判断有机质来源,探讨陆源输入对海洋环境造成的影响。了解了北方海域食物网结构及营养关系,不同类型生物之间的食性差异等,为揭示北方海域食物网的物质循环和能量流动提供基础数据。
     依据上述方法,对海洋食物网样品碳、氮稳定同位素分析的保存和预处理方法研究。干燥保存是样品长期保存的最佳方法。冷冻干燥是常用的去除生物样品中水分的方法;〥N分析样品不需要进行酸化处理,〥C分析样品SOM、POM、浮游动植物及甲壳动物需酸化处理;样品酸化前水洗,酸化后不需要水洗。
     不同赤潮藻〥C和〥N值存在一定差异。赤潮藻〥C值与NO3和P04浓度普遍呈显著正相关;〥N值与N03浓度普遍呈显著负相关,与P04浓度普遍呈显著正相关。
     悬浮颗粒有机物〥C和〥N值总体趋势是由陆向海增大,季节变化不明显(分别为P=-0.84和P=0.55)。表层沉积物稳定同位素组成总体变化趋势与悬浮物相同,沉积物各站位〥C和〥N值存在极显著性差异(p<0.01)。不同季节潮间带沉积物中〥C值不存在显著性差异(p=0.31),〥N值差异显著(p<0.05)。
     底栖动物不同种类样品碳、氮稳定同位素组成随季节变化而不同。底栖食物网生物营养级位于2.07~3.92之间,与北黄海海域相比,辽东湾海域潮间带10种底栖动物〥C和〥N值有所增加(除斑管栖纽虫〥N值)。游泳动物(55种)〥C和〥N值范围分别为-20.90~13.96%o和8.69-14.25%o,营养级范围为3.02-4.59。除日本嚼和许氏平触,两个海域13种游泳动物〥C和〥N值无显著性差异。〤C和〥N值都与体长存在显著性对数相关。营养级与体重等级之间存在显著性相关,〥C平均值与体重(1og2)无显著性相关,〥N平均值与体重(1og2)存在显著性相关。捕食者-食物体重比为904.26:1。
Based on the analysis of stable isotopes, the food web structures of Northern China Seawere studied. The comprehensive sample preservation and processing methods of marine food web for stable isotopic analysis were given. Basic data of Northern Sea were provided by the study of stable carbon and nitrogen isotope values of the typical algae. In order to provide crucial information on the major sources of organic matter, spatial and temporal variations of carbon and nitrogen stable isotopes in intertidal suspended particulate organic matters and sedimentswere evaluated. According to the variations of813C and815N of intertidal and main nektonic food web in Northern Sea, the food web structre and trophic relationships, and feeding habits among different biolo-gical were explored.
     The main results are as follows:
     We suggest that drying is the most suitable method for preserving samples, since it does not affect the the stable isotope values of the samples. Freezedrying is a common method used for the removal of water from biologic samples; Samples should not be acidified for nitrogen isotope analysis. Moreover, acidification is needed for carbon stable isotope analysis in samples of SOM, POM, plankton and crustaceans. Samples should be washing before acidification, while should not be after acidification.
     The results of813C and δ15N values of the typical algae in Northern Sea showed that the carbon and nitrogen isotopic signatures of phytoplankton were differ among di-fferent phytoplankton species. There were significant positive correlation between813C values and concentration of NO3-and PO43-. There were significant negative correlation between815N values and concentration of NO3-, while significant negative correlation between815N values and concentration of PO43-.
     General trend of813Cand δ15N valuesin POMwas increasing from land to sea. Seasonal variation of813C and815N values were not significant (p=0.84and p=0.55, respectively). The isotopic values of SOM and POM had the same trend. There were significant differences813C and815N values in sediment in each station (p<0.01). The813C values of sediment in different seasons had not significant differences (p=0.31), while815N values were significant differences (p<0.05).
     The δ13C and δ15N values of benthos were different with season. The trophic level in benthic food web was from2.07to3.92. The δ13C and815N values ofzoobenthos in Liaodong Gulf were higher than northern Yellow Sea (except815N in Tubulanus punctatus). Studies on the stable isotope ratios of the main nekton (55species) indicated that813C rangingfrom-20.90‰to-13.96‰, and δ15N from8.69‰to14.25‰. The trophic level was from3.02to4.59. The813C and δ15N values between Liaodong Gulf and northern Yellow Sea were not significant differences except Charybdis japonica and Sebastes schlegeli. The813C and815N of nektonvalues were logarithmic correlation to the body length. Trophic level was closely related to the body weight. The average815N values were significant correlation to the body size (log2). The ratio of predator and food resources in the study area was904.26.
引文
[1]Hardy C A. The herring in relation to its animate environment I. The food and feeding of the herring with special reference to the east coast of England.1924, 7:1-53.
    [2]Steel J. The structure of Marine Ecosystems. Oxford London:Blackwell Scientific Publication,1974.
    [3]Trites A W. Ecosystem changes and the decline of marine mammals in the Eastern Bering Sea:testing the ecosystem shift and commercial whaling hypotheses. REPORTS C R.1999,7.
    [4]Christensen V, Pauly D. Changes in models of aquatic ecosystems approaching carrying capacity. Ecological Applications.1998,8:s104-s109.
    [5]Pauly D, Christensen V, Dalsgaard J, et al. Fishing down marine food webs. Science. 1998,279:860-863.
    [6]Christensen V, Pauly D. Primary production required to sustain global fisheries. Nature.1995,374:255-257.
    [7]邓景耀,孟田湘,任胜民.渤海鱼类的事物关系.海洋水产研究.1988,8(9):151-172.
    [8]邓景耀,姜卫民,杨纪明,等.渤海主要生物种间关系及食物网的研究.中国水产科学.1997,4(4):1-7.
    [9]张其永,林秋眠,林尤通,等.闽南-台湾浅滩渔场鱼类食物网研究.海洋学报.1981,3(2):275-290.
    [10]颜云榕.北部湾主要鱼类摄食生态及食物关系的研究:(博士学位论文).青岛:中国科学院研究生院(海洋研究所),2010.
    [11]洪巧巧.长江口中国花鲈的食性及分子生物学在食性分析上的研究:(硕士学位论文).上海:华东理工大学,2012.
    [12]杨纪明,周名江,李军.一个海洋食物链能流的初步研究.应用生态学报.1998,9(5):517-519.
    [13]张波.中国近海食物网及鱼类营养动力学关键过程的初步研究:(博士学位论文).青岛:中国海洋大学,2005.
    [14]薛莹.黄海中南部主要鱼种摄食生态和鱼类食物网研究:(博士学位论文).青岛:中国海洋大学,2005.
    [15]Arrigo K R, Van Dijken G, Long M. Coastal Southern Ocean:a strong anthropogenic CO2 sink.Geophysical Research Letters.2008,35:L21602.
    [16]秦大河.全球碳循环.北京:气象出版社,2003.
    [17]IPCC.Climate Change 2007:The Physical Scientific Basis.//Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge U K:Cambridge University Press,2007.
    [18]Balino B M, Fasham M J R, Bowles M C. Ocean Biogeochemistry and Global Change: JGOFS Research Highlights 1988-2000. Igbp Science Series.2001,2:8-9.
    [19]宋金明.中国近海生物地球化学.山东:山东科技出版社,2004.
    [20]高学鲁,宋金明,李学刚,等.中国近海碳循环研究的主要进展及关键影响因素分析.海洋科学.2008,32(3):83-90.
    [21]胡敦欣,杨作升.东海海洋能量关键过程.北京:海洋出版社,2001.
    [22]Keeling C D. Carbon dioxide in surface ocean water. J Geophys Res.1968,73: 4543-4553.
    [23]Takahashi T, Goddard S, Sutherland D W, et al. Seasonal and geographic variability of carbon dioxide sink/source in the oceanic areas. J Geophys Res.1986,91:10517-10527.
    [24]Tans P P, Fung I Y, Takahashi T.Observational constraints on the global atmospheric CO2 budget.Science.1990,247:1431-1438.
    [25]Zehr J P, Kudela R M. Nitrogen cycle of the open ocean:From genes to ecosystems. Annual Review of Marine Science.2011,3:197-225.
    [26]Ward B B, Capone D G, Zehr J P. What's new in the nitrogen cycle. Oceanography. 2007,20(2):101-109.
    [27]Arrigo K R. Marine microorganisms and global nutrient cycles. Nature.2005,437 (7057):349-355.
    [28]Ward B B, Kilpatrick K A, Renger E H, et al. Biological nitrogen cycling in the nitracline. Limnology and Oceanography.1989,34(3):493-513.
    [29]Zumft W G. Cell biology and molecular basis of denitrification:Microbilogy and Molecular Biology Reviews.1997:61,533-616.
    [30]洪义国.硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展.地球科学进展.2013,28(7):751-764.
    [31]Schimel D S. Theory and application of tracers. San Diego:Academic Press,1993.
    [32]Peterson B J, Fry B. Stable isotopes in ecosystem studies. Ann Rev Ecol Syst. 1987,18:293-320.
    [33]Urey H C. The thermodynamic properties of isotopic substances. J Chem Soc.1947: 562-581.
    [34]Gilles L, Patrick D, Sylvie G. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystem. Marine Pollution Bulletin. 2004,49:887-891.
    [35]Zhang L L, Liu J L. The analysis method and model of benthic food web on Baiyangdian Lake of China. Procedia Environmental Sciences.2012,13:1254-1270.
    [36]Craig H. The geochemistry of the stable carbon isotopes. Ceochim Cosmochim Acta. 1953,3:53-92.
    [37]Mariotti A. Natural 15N abundance measurements and atmospheric nitrogen standard calibration. Nature.1984,303:685-687.
    [38]Holt B D, Engelkemeir A G. Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis. Anal Chem.1970,27:1451-1453.
    [39]Fry B, Silva S R, Kendall C, et al. Oxygen isotope corrections for online δ34S analysis.Rapid Commun Mass Sp.2002,16:854-858.
    [40]Craig H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta.1957,12: 133-149.
    [41]Hayes J M. An introduction to isotopic measurements and terminology. Spectra. 1982,12:133-149.
    [42]Coplen T B. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta.1996,60:3359-3360.
    [43]Mariotti A. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature.1983,303:685-687.
    [44]Boutton T W. Stable isotope ratios of natural materials:Ⅱ. Atmospheric, Terrestrial, Marine, and freshwater environments. Carbon Isotope Techniques, New York, 1991:173-185.
    [45]喻涛.南海北部表层沉积物不同粒级组分中有机质的来源研究:(博士学位论文).厦门: 厦门大学,2002.
    [46]刘从强.生物地球化学过程与地表循环—西南卡斯特土壤—植被系统生源要素循环.北京:科学出版社,2009.
    [47]张凌,陈繁荣,杨永强,等.珠江口及近海沉积有机质来源判断.2008,27(5):447-451.
    [48]Fetahi T, Schagerl M, Mengistou S, et al.Food web structure and trophic interactions of the tropical highland lake Hayq, Ethiopia. Ecological Modelling. 2011,222 (3):804-813.
    [49]Kendall C, Silva S R, Kelly V J. Carbon and nitrogen isotopic compositions of Particulate organic matter in four large river systems across the United States. Hydrological Processes.2001,15(7):1301-1346.
    [50]郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000.
    [51]刘秀娟.喀斯特城市地下水C、N同位素地球化学—污染物迁移和转化研究:(博士学位论文).广州:中国科学院:地球化学研究所,2009.
    [52]Wada E. Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environment.Isotope Marine Chemistry.1980:375-398.
    [53]Hoch M P, Fogel M L, Kirchman D L. Isotope fractionation during ammonium uptake by marine microbial assemblages. Geomicrobiol J.1994,12:113-127.
    [54]Pennock J R, Velinsky D J, Ludlam J L, et al. Isotopic fractionation of nitrogen during the uptake of ammonium and nitrate by Skeletonema costaum.Limnol Oceanogr. 1996,41(3):431-449.
    [55]Nathalie A, Waser, Yu Z M, et al. Nitrogen isotopic fractionation during a simulated diatom spring bloom:importance of N-starvation in controlling fractionation. Marine Ecology Progress Series.1999,179:291-296.
    [56]Adams T S, Sterner R W. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography.2004,5:601-607.
    [57]朱兆良,邢光熹.氮循环—维系地球生命生生不息的一个自然过程.北京:清华大学出版社,2002.
    [58]Post D M. Using stable isotopes to estimate trophic position:models, methods, and assumptions. Ecology.2002,83:703-718.
    [59]Minagawa M, Wada E. Stepwise enrichment of δ15N along food chains:Further evidence and the relation between δ15N and animal age. Geochimica Cosmochimica Acta.1984, 48:1135-1140.
    [60]Vinagre C, Maguas C, Cabral H N, et al. Food web structure of the coastal area adjacent to the Tagus estuary revealed by stable isotope analysis. Journal of Sea Research.2012,67(1):21-26.
    [61]DeNiro M J, Epstein S. Influence of diet on the distribution of carbon isotopes in animals. Geochimica Cosmochimica Acta.1978,42:495-506.
    [62]Phillips D L.Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia.2001,127:166-170.
    [63]Phillips D L, Newsome S D, Gregg J W. Combining sources in stable isotope mixing models:alternative methods. Oecologia.2005,144:520-527.
    [64]Phillips D L, Gregg J W. Source partitioning using stable isotopes:Coping with too many sources. Oecologia.2003,136:261-269.
    [65]Lemons G, Lewison R, Komoroske L, et al. Trophic ecology of green sea turtles in a highly urbanized bay:Insights from stable isotopes and mixing models. Journal of Experimental Marine Biology and Ecology.2011,405(1-2):25-32.
    [66]Vander Zanden M J, Casseiman J M, Rasumussen J B. Primary consumer δ13C andδ15N and the trophic position of aquatic consumers. Ecology.1999,80:1395-1404.
    [67]Fry B. Stable isotope diagrams of freshwater food webs. Ecology.1991,72: 2293-2297.
    [68]Hobson K A, Fiskb A, Karnovskyc N A. A stable isotope (δ13C,δ15N) model for the North Water food web:implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Research.2002,49:5131-5150.
    [69]Estep M L F, Vigg S. Stable carbon and nitrogen isotope tracers of trophic dynamics in natural populations and fisheries of the Lahontan Lake system, Nevada. Can J Fish Aquat Sci.1985,42:1712-1719.
    [70]Yoshioka T, Wada E, Yatsuka S. Isotopic Characterization of Lake Kizaki and Lake Suwa. Japanese J. Limnol.1988,49:119-128.
    [71]Zohary T, Erez J, Gophen M. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol Oceanog.1994,39:1030-1043.
    [72]Harvey C J, Kitchell J F. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web. Can J Fish Aquat Sci.2000,57:1395-1403.
    [73]Beaudion C P, Prepas E E, Tonn W M. A stable carbon and nitrogen isotope study of lake food webs in Canada's Borcal Plain. Freshw Biol.2001,46:465-477.
    [74]Fisher S J, Brown M L, Willis D W. Temporal food web variability in an upper Missouri River backwater:energy origination points and transfer mechanisms. Ecol Freshw Fish.2001,10:154-167.
    [75]Jepsen D R, Winemiller K O. Structure of tropical river food webs revealed by stable isotope ratios. Oikos.2002,96:46-55.
    [76]Peterson B J, Howarth R W, Garritt R H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science.1985,227:1361-1363.
    [77]Kwak T J, Zedler J B. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia.1991,126:254-265.
    [78]Fantle M S, Dittel A I, Schwalm S M, et al.A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acods. Oecologia.1999,120:416-426.
    [79]Rau G H, Mearns A J, Young D R, et al. Differences in animal I3C, I5N and D abundance between a polluted and an unpolluted coastal site:likely indicators of sewage uptake by a marine food web. Estuar Coast Shelf Sci.1981,13:701-707.
    [80]Hobson K A, Welch H E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis.Mar Ecol Prog Ser.1992,84:9-18.
    [81]Davenport S R, Bax N J. A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Can J Fish Aquat. Sci.2002, 59:514-530.
    [82]Hamano T, Hayashi K I, Kabota K, et al. Population structure and feeding behavior of the stomatopod crustacean kempina Mikado(Kemp&Chopra,1921)in the East China Sea. Fish Sci.1996,62(3):397-399.
    [83]洪巧巧,庄平,杨刚,等.长江口中国花鲈食性分析.生态学报.2012,32(13):4181-4190.
    [84]France R. Stable nitrogen isotopes in fish:literature synthesis on the influence of ecotonal coupling. Estuarine, Coastal and Shelf Science.1995,41:737-742.
    [85]李忠义,金显仕,庄志猛.等.稳定同位素技术在水生生态系统研究中的应用.生态学报.2005,25(11):3052-3060.
    [86]Fry B. Natural stable carbon isotope tag traces shrimp migrations. Fish Bull Us. 1981,79(2):337-345.
    [87]Hansson S, Hobbie J E, Elmgren R, et al. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology.1997,78:2249-2257.
    [88]Gu B, Schell D M, Frazer T, et al. Stable isotope evidence for reduced feeding of Gulf of Mexico sturgeon during their prolonged river residence period. Estuar Coast Shelf Sci.2001,53:275-280.
    [89]Persson A, Lars-Anders H. Diet shift in following competitive release. Can J Fish Aquat Sci.1998,56(1):70-78.
    [90]Pennisi E. Brighter prospects for the world's coral reefs. Science.1997,277: 491-493.
    [91]Stapel J, Aarts T L, Van D, et al. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Marine Ecology Progress Series.1996,134:195-206.
    [92]Lee K S, Dunton K H. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: Development of a whole-plant nitrogen budget. Limnology and Oceanography. 1996,44:1204-1215.
    [93]Mcclelland J W, Valiela I. Changes in food web structure under the influence of increase anthropogenic nitrogen inputs to estuaries. Marine Ecology Progress Series. 1998,168:259-271.
    [94]Holmer M, Perez M, Duarte C M. Benthic primary producers-a neglected environmental problem in Mediterranean mariculture. Marine Pollution Bulletin.2003,46:1372-1376.
    [95]Gearing P J, Gearing J N, Maughan J T, et al. Isotopic distribution of carbon from sewage sludge and eutrophication in the sediments and food web of estuarine systems. Environ Sci Technol.1991,25:295-301.
    [96]Heaton T H E. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere:a review. Chem Geol.1986,59:87-102.
    [97]Lake J L, McKinney R A, Osterman F A, et al. Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Can J Fish Aquat Sci.2001, 58:870-878.
    [98]Waldron S, Tatner P, Jack I, et al. The impact of sewage discharge in a marine embayment:a stable isotope reconnaissance. Estuarine Coastal and Shelf Science. 2001,52:111-115.
    [99]McClelland J W, Valiela I.Nitrogens-stable signature in estuarine food webs: Arecord of increasing urbanization in coastal watersheds. Limnol Oceanogr.1997, 42(5):930-937.
    [100]Spies R B, Kruger H, Ireland R, et al. Stable isotope ratios and contaminant concentrations in a sewage distorted food web. Mar Ecol Prog Ser.1989,54:157-170.
    [101]Van D C L, Grassle L F, Fry B, et al. Stable isotope evidence for entry of sewage-derived organic material into a deep-sea food web. Nature.1992,360:153-156.
    [102]Wainright S C, Fuller C M, Michener R H, et al. Spatial variation of position and growth rate of juvenile striped bass (Morone saxatilis) in the Delaware River. Can J Fish Aquat Sci.1996,53:685-692.
    [103]Wayland M, Hobson K A. Stable carbon, nitrogen and sulphur isotope ratios in riparian food webs on rivers receiving sewage and pulp mill effluents. Can J Zool. 2001,79:5-15.
    [104]Fry B.Using stable isotopes to monitor watershed influences on aquatic trophodynamics. Can J Fish Aquat Sci.1999,56:2167-2171.
    [105]Cabana G, Rasmussen J B. Comparison of aquatic food chains using nitrogen isotopes. P Natl Acad Sci. Usa.1996,93:10844-10847.
    [106]Xu J, Xie P, Zhang M, et al. Variation in stable isotope signatures of seston and a zooplanktivorous fish in a eutrophic Chinese lake. Hydrobiologia.2006,541: 215-220.
    [107]刘敏,侯立军,许世远,等.长江口潮滩有机质来源地C、N稳定性同位素示踪.地理学报.2004,5(4):918-926.
    [108]白志鹏,张利文,彭林,等.稳定性同位素在污染物溯源与示踪中的应用.城市环境与城市生态.2006,19(4):29-32.
    [109]Cabana G, Rasmussen J B.Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature.1994,372:255-257.
    [110]Jarman W M, Hobson K A, Sydeman W J, et al. Influence of trophic position and feeding location on contaminant levels in the Gulf of the Farallones food web revealed by stable isotope analysis. Environ Sci Technol.1996,30:654-660.
    [111]Atwell L, Hobson K A, Welch H E. Biomagnification and bioaccumulation of mercury in an arctic marine food web:insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci.1998,55:1114-1121.
    [112]Bowles K C, Apte S C, Maher W A, et al. Bioaccumulation and biomagnification of mercury in Lake Murray, Papua New Guinea. Can J Fish Aquat Sci.2001,58:888-897.
    [113]Power M, Klein G M, Guiguer K R R A, et al. Mercury accumulation in the fish community of a sub-Arctic lake in relation to trophic position and carbon sources. J Appl Ecol.2002,39:819-830.
    [114]D R D, GDR, S S V P, et al. Regional, temporal, and species patterns of mercury in Alaskan seabird eggs:Mercury sources and cycling or food web effects?Environmental Pollution.2012,166:226-232.
    [115]Kidd M A, Achindler D W, Hesslein R H, et al. Correlation between stable nitrogen isotope ratios and concentrations of organochlorines in biota from a freshwater food web.Sci Total Environ.1995,160/161:381-390.
    [116]Kidd M A, Achindler D W, Hesslein R H, et al. Effects of trophic position and lipid on organochlorine concentrations in fishes from subarctic lakes in Yukon Territory. Can J Fish Aquat Sci.1998,55:869-881.
    [117]Kiriluk R M, Servos M R, Whittle D M, et al. Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex and PCB in a Lake Ontariopelagic food web. Can J Fish Aquat Sci.1995,52:2660-2674.
    [118]Kucklick J R, Harvey H R, Ostrom P H, et al. Organochlorine dynamics in the pelagic food web of Lake Baikal. Environ Toxicol Chem.1996,15:1388-1400.
    [119]Swanson H K, Johnston T A, Leggett W C, et al. Trophic positions and mercury bioaccumulation in rainbow smelt (Osmerus mordax) and native forage fishes in northwestern Ontario lakes. Ecosystems.2003,6:289-299.
    [120]Greenfield B K, Hrabik T R, Harvey C J, et al. Predicting mercury levels in yellow perch:use of water chemistry, trophic ecology, and spatial traits.Can J Fish Aquat Sci.2001,58:1419-1429.
    [121]Broman D, Naf C, Rolff C, et al. Using ratios of stable nitrogen isotopes to estimate bioaccumulation and flux of polychlorinated dibenzop-dioaxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem.1992,11:331-345.
    [122]Vander Zanden M J, Rasmussen J B. Variation in 15N and I3C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr.2001,46:2061-2066.
    [123]Kelly J F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool.2000,78:1-27.
    [124]Syvaranta J, Tiirola M, Jones R I. Seasonality in lake pelagic δ15N values: patterns, possible explanations, and implications for food web baselines. Fund Appl Limnol.2008,172:255-262.
    [125]Newsome S D, Clementz M T, Koch P L.Using stable isotope biogeochemistry to study marine mammal ecology. Mar Mamm Sci.2010,26:509-572.
    [126]Winemiller K 0. Spatial and temporal variation in tropical fsh trophic networks. Ecol Monogr.1990,60:331-367.
    [127]Fry B, Sherr E B.δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. In Stable Isotopes in Ecological Research, eds. P. W. Rundel, J R Ehleringer & K A Nagy, New York,1989:196-229.
    [128]Riera P, Stal L J, Nieuwenhuize J, et al. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes:importance of locally produced sources. Mar Ecol Prog Ser.1999, 187:301-307.
    [129]Vinagre C, Salgado J, Costa M J, et al. Nursery fidelity, primary sources of nutrition and food web interactions of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal):a stable isotope approach. Estuar Coast Shelf S. 2008,76:255-264.
    [130]DeNiro M J, Epstein S.Influence of the diet on the distribution of nitrogen isotopes in animals.Geochim. Cosmochim. Ac.1981,45:341-351.
    [131]Hecky R E, Hesslein R H. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J North Am Benthol Soc.1995,14:631-653.
    [132]Lorrain A, Savoye N, Chauvaud L, et al. Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material.Anal Chim Acta.2003,491:125-133.
    [133]Bosley K L, Wainright S C. Effects of preservatives and acidification on the table isotope ratios (15N:14N,13C:12C) of two species of marine animals. Can J Fish Aquat Sci. 1999,56:2181-2185.
    [134]Kaehler S, Pakhomov E A. Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms.Mar. Ecol Prog. Ser.2001,219:299-304.
    [135]Feuchtmayr H, Grey J. Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Commun Mass S. 2003,17:2605-2610.
    [136]Fanelli E, Cartes J E, Papiol V, et al. Effects of preservation on the 813C and δ15N of deep sea macrofauna. J Exp Mar Biol Ecol.2010,395:93-97.
    [137]Kelly B, Dempson J B, Power M. The effects of preservation on fish tissue stable isotope signatures. J Fish Biol.2006,69:1595-1611.
    [138]Carabel S P, Verlsimo P, Freire J. Effects of preservatives on stable isotope analyses of four marine species. Estuar Coast Shelf S.2009,82:348-350.
    [139]Mullin M M, Rau G H, Eppley R W. Stable nitrogen isotopes in zooplankton:some geographic and temporal variations in the North Pacific. Limnol Oceanogr.1984,29: 1267-1273.
    [140]Ogawa N O, Koitabashi T, Oda H, et al. Fluctuations of nitrogen isotopes of gobiid fish (Isaza) specimens and sediments in Lake Biwa, Japan, during the 20th century. Limnol Oceanogr.2001,46:1228-1236.
    [141]Syvaranta J, Vesala S, Rask M, et al. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia.2008,600:121-130.
    [142]Sarakinos H C, Johnson M L, Vander. Z M J. A synthesis of tissue preservation effects on carbon and nitrogen stable isotope signatures. Can J Zool.2002,80:381-387.
    [143]Sweeting C J, Polunin N V, Jennings S.Tissue and fixative dependent shifts of δ13C and δ15N in preserved ecological material. Rapid Comm Mass Spectrom.2004,18: 2587-2592.
    [144]Arrington D A, Winemiller K O. Preservation effects on stable isotope analysis of fish muscle. Trans Am Fish Soc.2002,131:337-343.
    [145]Vander Zanden M J, Chandra S, Allen B C, et al. Historical food web structure and restoration of native aquatic communities in the lake Tahoe (California-Nevada) basin. Ecosytems.2003,6:274-288.
    [146]McCallister S L, Bauer J E, Cherrier J E, et al. Assessing sources and ages of organic matter supporting river and estuarine bacterial production:A multiple-isotope (δ14C,δ13C, and δ15N) approach. Limnol Oceanogr.2004,49(5):1687-1702.
    [147]Vizzini S, Mazzola A. Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon.Mar Biol.2003,142:1009-1018.
    [148]Bunn S E, Loneragan N R, Kempster M A. Effects of acid washing on stable isotopes ratios of C and N in penaeid shrimp and seagrass:Implications for food-web studies using multiple stable isotopes.Limnol Oceanogr.1995,40:622-625.
    [149]Pinnegar J K, Polunin N V C. Differential fractionation of δ13C and δ15N among fish tissues:implications for the study of trophic interactions.Funct Ecol.1999, 13:225-231.
    [150]McCutchan Jr. J H, Lewis Jr W M, Kendall C, et al. Variation in trophic shift for stable isotope ratios of carbon nitrogen, and sulfur. Oikos.2003,102:378-390.
    [151]Carabel S, Dominguez EG, Verisimo P, et al.An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol.2006, 336:254-261.
    [152]Rau G H, Teyssie J L, Rassoulzadegan F, et al. 13C/12C and 15N/14N variations among size-fractionated marine particles:Implications for their origin and trophic relationships. Mar Ecol Prog Ser.1990,59:33-38.
    [153]曾庆飞,孔繁翔,张恩楼,等.稳定同位素技术应用于水域食物网的方法学研究进展.湖泊科学.2008,20(3):13-20.
    [154]Edwards M S, Turner T F, Sharp Z D. Short- and long-term effects of fixation and preservation on stable isotope values (13C,15N, 34S) of fluid-preserved museum specimens. Copeia.2002,4:1106-1112.
    [155]Barrow L M, Bjorndal K A, Reich K J. Effects of preservation method on stable carbon and nitrogen isotope values. Physiol Biochem Zool.2008,81:688-693.
    [156]Dannheim J, Struck U, Brey T. Does sample bulk freezing affect stable isotope ratios of infaunal macrozoobenthos?J Exp Mar Biol Ecol.2007,351:37-41.
    [157]Syvaranta J, Martino A, Kopp D, et al. Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea). Hydrobiologia.2011,658:383-388.
    [158]Fleming N E C, Houghton J D R, Magill C L, et al. Preservation methods alter stable isotope values in gelatinous zooplankton:implications for interpreting trophic ecology. Mar Biol.2011,158:2141-2146.
    [159]韩龙.样品处理方式对水生生物碳、氮稳定同位素比值的影响及其对食物网研究的启示:(硕士学位论文).广州:暨南大学,2011.
    [160]Ponsard S, Amlou M.Effects of several preservation methods on the isotopic content of Drosophila sample. Anim Biol.322:35-41.
    [161]Xu J, Yang Q, Zhang M, et al. Preservation effects on stable isotope ratios and consequences for the reconstruction of energetic pathways. Aquat Ecol.2011,45: 483-492.
    [162]Fisher C R, Childress J J, Macko S A, et al. Nutritional interactions in Galapagos rift hydrothermal vent communities:inferences from stable carbon and nitrogen isotope analyses. Mar. Ecol Progr Ser.1994,103:45-55.
    [163]Honson K A, Gibbs H L, Gloutney M L. Preservation of blood and tissue sample for stable-carbon and stable-nitrogen isotope analysis. Can J Zool.1997,75:1720-1723.
    [164]Abdelwahed W, Degobert G, Stainmesse S, et al. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliver Rev.2006,58:1688-1713.
    [165]Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems:evidence from the Tay Estuary, Scotland. Estuar, Coast Shelf Sci.1994,38: 219-233.
    [166]Bouillon S, Raman A V, Dauby P. Carbon and nitrogen isotope ratios of sub tidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India). Estuar Coast Shelf Sci.2002,54:901-913.
    [167]Goering J, Alexander V, Haubenstock N. Seasonal variability of stable carbon and nitrogen isotope ratios of organism in a North Pacific Bay. Estuar Coast Shelf Sci.1990,30:239-260.
    [168]Jacob U, Mintenbeck K, Brey T. Stable isotope food web studies:for standardized sample treatment. Marecol Prog Ser.2005,287:251-253.
    [169]Keith L B, Same W. Effects of preservatives and acidification on the stable isotope ratios of two species of marine animals. Can J Fish Aquat Sci.1999,56(11): 2181-2185.
    [170]Street G, Montagna P. Incorporation of brown tide into an estuarine food web. Twenty-Third Bembre Ecology Meeting, NJUSA,1995.
    [171]Karyne M, Rogers. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota sewage pollution at Moa Point, New Zealand. Marine Pollution Bulletin.2003,46:821-827.
    [172]俞志明.不同氮源对海洋微藻氮稳定同位素分馏作用的影响.海洋与湖沼.2004,35(6):524-529.
    [173]金海燕,陈建芳,翁焕新,等.长江口外赤潮多发区近几十年来古生产力记录及环境意义.海洋学报.2009,3:113-119.
    [174]Dortsch Q, Clayton J J R, Thoresen S S. Species Differences in Accumulation of Nitrogen Pools in Phyto-plankton. Mar Biol.1984,81:237-250.
    [175]Thompson P A, Oh H M, Rhee G Y. Storage of Phosphorus in Nitrogen-fixing Anabaena flosaquae (Cyanophy-ceae). J Phycol.1994,30:267-273.
    [176]Sachs J P, Repeta D J, Goericke R.Nitrogen and carbon isotopic ratios of chlorophyll from marine phytoplankton. Geochim Cosmochim Acta.1999,63:1431-1441.
    [177]Gervais F, Riebesell U. Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in a marine diatom growing under different CO2 concentrations. Limnol Oceanogr.2001,46:497-504.
    [178]Popp B N, A L E, Bedigare R R, et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta.1998,62:69-77.
    [179]Lehman J T. The assumption and rationals of a computer model of phytoplankton population dynamics. Limnol Oceanogr.1975,20:343-364.
    [180]李扬,高亚辉,黄德强.海洋球石藻研究进展.海洋科学.2002,26(3):13-16.
    [181]刘苓.不同营养条件对赤潮藻碳和氮稳定同位素组成的影响:(硕士学位论文).大连:大连海事大学,2012.
    [182]Wu J, Calvert S E, Wong C S. Nitrogen isotope variations in the subarctic northeast Pacific:Relationships to nitrate utilization and tropic structure. Deep- Sea Res.1997,44:287-314.
    [183]Altabet M A, Deuser W G, Honjo S, et al. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature.1991,354:136-139.
    [184]Monyoya P J, McCarthy J J. Isotopic fractionation during nitrate uptake by phytoplankton growth in continuous culture. J Plankton Res.1995,17:439-464.
    [185]Dortch Q, Clayton J R, Thoresen S S, et al. Species differences in accumulation of nitrate pools in phytoplankton. Mar Biol.1984,81:237-250.
    [186]刘皓,高永利,殷克东,等.不同氮磷比对中肋骨条藻和威氏海链藻生长特性的影响.热带海洋学报.2010,29(6):92-97.
    [187]张冬鹏,武宝开.几种赤潮藻对温度、氮、磷的响应及藻间相互作用的研究.暨南大学学报.2000,21(5):82-87.
    [188]李铁,胡立阁,史致丽.营养盐对中肋骨条藻和新月菱形藻生长及氮磷组成的影响.海洋与湖沼.2000,31(1):46-52.
    [189]李铁,史致丽,仇赤斌,等.中肋骨条藻和新月菱形藻对营养盐的吸收速率及环境因素影响的研究.海洋与湖沼.1999,30(6):640-645.
    [190]Nimer N A, Merret M J, Brownlee C. Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high-calcifying strain of Emiliania huxleyi (Prymnesiophyceae). J Phycol.1996,32:813-818.
    [191]Vuorio K, Meili M, Sarvala J. Taxon-specific variation in the stable isotopic signatures (δ13C and δ15N) of lake phytoplankton. Freshw. Biol.2006,51:807-822.
    [192]Abelson P H, Hoering T C. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci.1961,47:623-632.
    [193]Berdalet E, C M, Estrada M, et al. Microbial community responses to nitrogen-and phosphorus-deficient nutrient inputs:microplankton dynamics and biochemical characterization. J Plankton Res.1996,18:1627-1641.
    [194]Rybczyk J M, Garson G, Day J W. Nutrient enrichment and decomposition in wetland ecosystems:models, analyses and effects. Current Topics in Wetland Biogeochemistry. 1996,2:52-72.
    [195]Darley W M. Algal biology:A physiological approach. Oxford London:Black-well Scientific Publications,1982.
    [196]Gavin K Y S, Maria L C Y, Chan D K 0. Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexanrium catenella. Hydrobiologia.1997,352(9):117-140.
    [197]Hu Z X, Xu N, Li A F, et al. Effects of different N:P ratios on the growth of Pseudo-nitzschia pungens, Prorocentrum donghaiense and Phaeocystis globosa. Acta Hydrobiogica Sinica.2008,32:482-485.
    [198]Kumar S, Ramesh R, Bhosle N B, et al. Natural isotopic composition of nitrogen in suspended particulatr matter in the Bay of Bengal. Biogeosciences Discussions. 2004,1:87-105.
    [199]Cifuentes L A, Sharp J H, Fogel M L. Stable carbon and nitrogen isotope biogeochemistry in the Delaware Estuary. Limnol. Oceanogr.1988,33:1102-1115.
    [200]Mayer B, Boyer E W, Goodale C, et al. Sources of nitrate in rivers draining sixteen watersheds in the northeastern US:isotopic constraints. Biogeochemistry.2002, (57/58):171-197.
    [201]Meyers P A, Ishiwatari R. Lacrustine organic geochemistry:An overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemi stry.1993,20:867-900.
    [202]Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processe. Organic Geochemistry.1997,27(5/6):213-250.
    [203]Fry B, Scalan R S, Parker P L. Stable carbon isotope evidence for two sources of organic matter in coastal sediments:Sea grasses and plankton. Geochimicaet Cosmochimica Acta.1997,4(12):1875-1877.
    [204]Thomton S F, McManus J. Application of organic carbon and matter provenance in estuarine systems:Evidence from the Tay Estuary. Scotland Estuarine, Coastal and Shelf Science.1994,38:219-233.
    [205]Herczeg A L, Smith A K, Dighton J C. A 120-year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia:C:N,δ15N and 813C in sediments. Applied Geochemistry.2001,16:73-84.
    [206]魏修华,童钧安,李永祺.黄渤海海域污染状况及对生态的影响.黄渤海海洋.1993,11(3):76-82.
    [207]李淑嫒,张风林,苗丰民,等.北黄海大鹿岛海域营养盐分布特征.海洋湖沼通报.1995,3:24-31.
    [208]马嘉蕊,邵秘华,鲍永恩,等.黄渤海辽宁省海湾的环境现状及其评价.环境科学研究.1995,8(1):27-34.
    [209]崔毅,过锋,袁有宪,等.黄海北部沿岸水域营养水平及有机污染状况分析.海洋水产研究.1998,19(2):37-44.
    [210]蔡德陵,石学法,周卫健,等.南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据.科学通报.2001,46:16-23.
    [211]Middelburg J J, Nieuwenhuize J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Marine Chemistry.1998,60(3/4): 217-225.
    [212]余婕,刘敏,许世远,等.长江口潮滩有机质稳定碳同位素时空分布与来源分析.地理研究.2008,27(4):847-854.
    [213]秦延文,郑丙辉,张雷,等.2004—2008年辽东湾水质污染特征分析.环境科学研究.2008,27(4):847-854.
    [214]刘敏,侯立军,徐世元,等.长江口潮滩有机质来源的C、N稳定同位素示踪.地理学报.2004,59(6):918-926.
    [215]俞志明,WaserN A D, Harrison P. J.不同氮源对海洋微藻氮同位素分馏作用的影响.海洋与湖沼.2004,35(6):524-529.
    [216]Delafontaine M T, Flemming B W. Mass physical properties of Wadden Seasediments, and some geological and biological implications. Institute of Geography University of Copenhagen,2004:48-53.
    [217]Go i M A, Teixeira M J, Perkey D W. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science.2003,57:1023-1048.
    [218]Brooks J M, Field N E, Kennicutt M C. Observations of gas hydrates and in marine sediments, offshore northern California. Marine Geology.1991,96(1):103-109.
    [219]Berner R A. Early Diagenesis:A Theoretical Approach. USA:Princeton University Press,1980.
    [220]Paterson D M, Black K S. Water flow, sediment dynamics and benthic biology. Advances in Ecology Research.1999,29:155-194.
    [221]张志南.水层-底栖耦合的某些进展.青岛海洋大学学报.2000,30(1):115-122.
    [222]Morton B, Morton J. The seashore ecology of Hong Kong. Hong Kong:Hong Kong University Press,1983.
    [223]福建省海洋研究所海洋生物研究室.厦门及其附近潮间带生态调查.厦门大学学报.1960,(3):74-95.
    [224]古丽亚诺娃,刘瑞玉,斯卡拉脱.黄海潮间带生态学研究.中国科学院海洋生物研究所丛刊.1958,1(2):1-43.
    [225]杨万喜,陈永寿.中国沿岸潮间带生态学研究概况及深化研究的建议.东海海洋.1997,15(1):52-58.
    [226]周时强,郭丰,吴荔生,等.福建海岛潮间带底栖生物群落生态的研究.海洋学报.2001,23(5):104-109.
    [227]张水浸.福建东山及其附近岛屿岩相潮间带海藻生态的初步研究.生态学报.1981,1(4):361-368.
    [228]陈品健.福建闽江口以北沿岸潮间带生态学研究:I.生物量及其分布.厦门水产学院学报.1989,11(2):16-25.
    [229]蔡如星,陈永寿,王复振.浙江南部沿岸(岩相)潮间带生态初步研究.海洋通报.1983,2(1):51-60.
    [230]杨万喜,陈永寿.嵊泗列岛潮间带群落生态学研究:I.岩相潮间带底栖生物群落组成及季节变化.应用生态学报.1996,7(3):305-309.
    [231]Haines E B, Montague C L. Food sources of estuarine invertebrates analyzed using 13C/12C rat ios. Ecology.1979,40:27-40.
    [232]Pinnegar J K, Polunin N V. Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes.Oecologia.2000,122:399-409.
    [233]Thimdee W, Deein G, Sangrungruang C. Analysis of primary food sources and trophic relationships of aquatic animals in a mangrove-fringed estuary, Khung Krabaen Bay (Thailand) using dual stable isotope techniques. Wetlands Ecology and Management. 2004,12:135-144.
    [234]国家海洋局专项办公室.海洋生物生态调查技术规范.北京:海洋出版社,2006.
    [235]Vander Zanden M J, Joseph B R. Variation in the δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol Oceanogr.2001,46:2061-2066.
    [236]蔡德陵,李红燕,唐启升,等.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果.中国科学C辑:生命科学.2005,35(2):123-130.
    [237]万秫,胡建英,安立会,等.利用稳定氮和碳同位素分析渤海湾食物网主要生物种的 营养层次.科学通报.2005,50(7):708-711.
    [238]蔡德陵,洪旭光,毛兴华,等.崂山湾潮间带食物网结构的碳稳定同位素初步研究.海洋学报.2001,23(4):41-47.
    [239]孙明,刘修泽,李轶平,等.应用氮稳定同位素技术研究辽东湾海域主要渔业生物的营养级.中国水产科学.2001,20(1):189-197.
    [240]杨纪明.渤海无脊椎动物的食性和营养级研究.现代渔业信息.2001,16(9):8-16.
    [241]程济生,朱金声.黄海主要经济无脊椎动物摄食特征及其营养层次的研究.海洋学报.1997,19(6):102-108.
    [242]Jennings S, Greenstreet S P R, Hill L, et al. Long-term trends in the trophic structure of the North Sea fish commu-nity:evidence from stable isotope analysis, size-spectra and community metrics.Mar Biol.2002,141(6):1085-1097.
    [243]张丹,闵庆文,成升魁,等.应用碳、氮稳定同位素研究稻田多个物的食物网结构和营养级关系.2010,30(24):6734-6742.
    [244]Power M, Power G, Caron F, et al. Growth and dietary niche in Salvelinus alpinus and Salvelinus fontinalis as revealed by stable isotope analysis. Environ Biol Fish. 2002,64:75-85.
    [245]Wilson R M, Chanton J, Lewis G, et al. Isotopic variation (δ15N,δ13C, and δ34S) with body size in post-larval estuarine consumers.Estu Coast Shelf Sci.2009, 83(3):307-312.
    [246]Rubenstein D R, Hobson K A. From birds to butterflies:animal movement patterns and stable isotopes.Trends Ecol Evol.2004,19(5):256-263.
    [247]徐军,张敏,谢平.氮稳定同位素基准的可变性及对营养级评价的影响.湖泊科学.2010,22(1):8-20.
    [248]张波,唐启升.渤、黄、东海高营养层次重要生物资源种类的营养级研究.海洋科学进展.2004,22(4):393-404.
    [249]Nixon S W, Buckley B A, Granger S L, et al. Anthropogenic enrichment and nutrients in some tropical lagoons of Ghana, West Africa. Ecol Appl.2007,17(5):Ecol Appl.
    [250]Bannon 0 R, Roman T C. Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries. Ecol Appl.2008,18(1):22-30.
    [251]袁宇,朱京海,侯永顺,等.辽东湾入海污染物调查及海域水质安全分析.中国安全科学学报.2008,18(2):12-16.
    [252]李建军,冯慕华,喻龙.辽东湾浅水区水环境质量现状评价.海洋环境科学.2001,20(3):42-45.
    [253]刘录三,孟伟,李新正,等.辽东湾北部海域大型底栖动物研究:I.种类组成与数量分布.环境科学研究.2008,21(6):118-123.
    [254]殷名称.鱼类生态学.北京:中国农业出版社,1995.
    [255]Ross S T. Resource partitioning in fish assemblages:a review of field studies. Copeia.1996,2:352-388.
    [256]Fogarty M J, Murawski S A. Large-scale disturbance and the structure of marine systems:fishery impacts on Georges Bank.Ecological Applications.1998,8(1):6-22.
    [257]韦晟,姜卫民.黄海鱼类食物网的研究.海洋与湖沼.1992,23(2):182-192.
    [258]韦晟.黄海带鱼的摄食习性.海洋水产研究.1980,1:49-57.
    [259]Hobson K A, Welch H E.Cannibalism and trophic structure in a high Arctic lake: insights from stable-isotope analysis. Can J Fish Aquat Sci.1994,52:1195-1201.
    [260]DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science.1977,197:261-263.
    [261]Peterson B J, Fry B. Stable isotopes in ecosystem studies.Ann Rev Ecol Syst. 1987,18:293-320.
    [262]纪炜炜.东海中北部主要游泳动物食物网结构和营养关系初步研究:基于稳定同位素技术:(博士学位论文).青岛:中国科学院海洋研究所,2011.
    [263]Sherwood G D, Rose G A. Stable isotope analysis of some representativefish and invertebrate of the Newfoundland and Labrador continental shelf food web. Estuar. Coast. Shelf. S.2005,63:537-539.
    [264]Vander Zanden M J, Vadeboncoeur Y. Fishes as integrators of benthic andpelagic food webs in lakes. Ecology.2002,83:2152-2161.
    [265]李忠义.应用稳定同位素技术研究长江口及南黄海水域主要鱼类摄食生态和食物网结构:(博士学位论文).厦门:厦门大学,2006.
    [266]Carlier A, Riera P, Amouroux J M, et al.A seasonal survey of the food web in the Lapalme Lagoon (northwestern Mediterranean) assessed by carbon and nitrogen stable isotope analysis. Estuarine, Coastal and Shelf Science.2007,73:299-315.
    [267]Richoux N B, Froneman P W. Assessment of spatial variation in carbon utilization by benthic and pelagic invertebrates in a temperate South African estuary using stable isotope signatures. Estuarine, Coastal and Shelf Science.2007,71:545-558.
    [268]Navarro J, Coll M, Louzao M, et al. Comparison of ecosystem modeling and isotopic approach as ecological tools to investigate food webs in the NW Mediterranean Sea. Journal of Experimental Marine Biology and Ecology.2011,401:97-104.
    [269]Romanuk T N, Levings C D. Stable isotope analysis of trophic position and terrestrial vs. marine carbon sources for juvenile Pacific salmonids in nearshore marine habitats. Fisheries Manag Ecol.2005,12:113-121.
    [270]Currin C A, Wainright S C, Able K W. Determination of food web support and trophic position of the Mummichog, Fundulus heteroclitus, in New Jersey smooth Cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restores salt marshes. Estuaries.2003,26:496-510.
    [271]Madurell T, Fanelli E, Cartes J E. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean). J Marine Syst.2008,71:336-345.
    [272]Revill A T, Young J W, Lansdell M. Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Mar Biol.2009,156:1241-1253.
    [273]林龙山,郑元甲,程家骅,等.东海区底拖网渔业主要经济鱼类渔业生物学的初步研究.海洋科学.2006,30(2):21-25.
    [274]邓景耀,孟田湘,任胜民.渤海鱼类食物关系的初步研究.生态学报.1986,6(4):356-364.
    [275]庄平,王幼槐,李圣法,等.长江口鱼类.上海:上海科学技术出版社,2006.
    [276]梁振林.21世纪初海洋监测高新技术发展战略研讨会论文集:海洋渔业资源生态监测技术.海洋出版社,2000,61-64.
    [277]姜卫民,韦晟,孙建明.黄海高眼鲽食性及摄食季节变化的研究.海洋水产研究.1989,10:9-15.
    [278]Abitia C L A, Galvan M F, Gurierrez S F J, et al.Diet of blue Makaira mazara off the coast of Cabo San Lucas, Baja California Sur, Mexico. Fisheries Research. 1999,44:95-100.
    [279]Wootton R J. Ecology of teleost fishes.London: Chapman&Hall,1990.
    [280]王新刚,孙松.粒径谱理论在海洋生态学研究中的应用.海洋科学.2002,26(4):36-39.
    [281]Sheldon K W, Prakash A, Sutcliffe W H. The size distribution of particles in the ocean. Limnol Oceanogr.1972,17(3):327-340.
    [282]Grey J. Ontogeny and dietary specialization in brown trout (Salmo trutta L) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen. Ecol Freshw Fish.2001,10:168-176.
    [283]Jennings S, Pinnegar J K, Polunin N V C, et al. Weak-cross species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities.J Anim Ecol.2001,70:934-944.
    [284]Minawaga M, Wade E. Stepwise enrichment of 15N along food chains:further evidence and the relation between δ15N and animal age. Stepwise Enrichment of 15N Along Foodgeochim Cosmochim Acta.1984,48:1135-1140.
    [285]Eggold B T, Motta P J. Ontogenetic dietary shifts and morphological correlates in striped mullet, Mugil cephalus. Environmental Biology of Fishes.1992,34:139-158.
    [286]Gillanders B M. Feeding ecology of the temperate marine fish Achoerodus viridis (Labridae):size, seasonal and site-specific differences. Marine & Freshwater Research.1995,46:1009-1020.
    [287]Lukoschek V, McCormick M I. Ontogeny of diet changes in a tropical benthic carnivorous fish, Parupeneus barberinus (Mullidae):Relationship between forging behavior, habitat use, jaw size, and prey selection.Marine Biology.2001,138: 1099-1113.
    [288]M W D. Predation by rainbow trout (Slamo gairdneri):the influence of hunger, prey density, and prey size. Journal of the Fisheries Research Board of Canada. 1972,29:1193-1201.
    [289]Morato T, Santos R S, Andrade J P. Feeding habits, seasonal and ontogenetic diet shift of blacktail comber, Serranus atrcauda (Pisces:Serranidae), from the Azores, aorth-eastern Atlantic.Fisheries Reseach.2000,49:51-59.
    [290]Rooker J R, Turner J P, Holt S A. Trophic ecology of Sargassum associated fishes in the Gulf of Maxico determined from stable isotopes and fatty acids.Mar Ecol Prog Ser.2006,313:249-259.
    [291]Letourneur Y, Galzin R, Harmelin-Vivien M. emporal variation in the diet of the damselfish Stegastes nigricans (Lacepede) on a Reunion fringing reef. Journal of Experimental Marine Biiology and Ecology.1997,217:1-18.
    [292]Lassuy D R. Diet intestinal and nitrogen assimilation efficiency in the damsel--fish Stegastes lividus in Guam. Environmental Biology of Fishes.1984,10:183-193.
    [293]Polunin N V C, Brothers E B. Low efficiency of dietary carbon and nitrogen conversion to growth in an herbivorous coral reef fish in the wild. Journal of Fish Biology.1989,35:869-879.
    [294]Livingston R J. Inadequacy of species level designation for ecological studies of coastal migratory fishes. Environmental Biology of Fishes.1988,22:225-234.
    [295]France R, Chandler M, Peters R. Mapping trophic continua of benthic foodwebs: body size-δ15N relationships. Mar Ecol Prog Ser.1998,174:301-306.
    [296]Jennings S, Barnes C, Sweeting C J, et al. Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research. Rapid Commun Mass Spectrom.2008,22:1673-1680.
    [297]Jennings S, Pinnegar J K, Polunin N V C, et al. Weak-cross species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol.2001,70:934-944.
    [298]Pope J G, Stokes T K, Murawski S A, et al. A comparison of fish size composition in the North Sea and on Georges Bank:Wolff W, Soeder C J, Drepper F R (eds) Ecodynamics: contributions to theoretical ecology. Berlin:Springer-Verlag,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700