用户名: 密码: 验证码:
Na_2CO_3胁迫下甜高粱CBL基因家族的表达模式分析及功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐碱化给作物的生长带来了严重的危害,并对农业的发展产生了不利的影响。由于当今世界能源安全和环境问题的凸显,生物质能源的开发已迫在眉睫。甜高粱具有很多优良的生物学特性,使之成为最具潜力的生物质能源作物之一。为了了解甜高粱耐盐碱的生理特性以及发掘CBL基因家族中响应盐碱胁迫的功能基因以用于甜高粱耐盐碱新品种的遗传改良,本研究选取甜高粱“能饲Ⅰ号”品种为实验材料,分析了在Na2CO3胁迫条件下的生理响应,确定了一个适宜的盐碱胁迫处理浓度;通过实时荧光定量技术分析了盐碱胁迫条件下基因的表达模式及在正常生长条件下不同组织不同发育时期的表达模式;通过Gateway技术克隆了盐碱胁迫响应基因并转化拟南芥;通过酵母双杂交技术分析蛋白间的互作;同时,通过生物信息学的方法分析了该基因家族的生物信息学特性,取得的结果如下:
     (1)通过生理实验确定了活力指数,胚根和胚芽长度可以作为甜高粱耐盐碱品种的筛选的指标。同时,确定了甜高粱幼苗期Na2CO3胁迫处理的适宜浓度:100mM。
     (2)通过实时荧光定量的方法分析了甜高粱CBL基因家族在不同发育时期不同组织中的表达特性及幼苗期SbCBL基因家族对Na2CO3胁迫的响应模式,结果发现:
     该家族基因的表达具有组织特异性,SbCBL06、SbCBL08 mRNA相对表达水平在幼叶中最高,而其他6个SbCBL基因mRNA相对表达水平均在成熟叶片中最高;
     甜高粱CBL基因家族对Na2CO3胁迫响应呈现出不同的表达模式,SbCBL01、SbCBL07主要在幼苗根部呈现持续的上调表达,SbCBL06主要在幼苗叶片中响应。
     (3)应用生物信息学的方法对SbCBL基因家族进行生物信息学分析。
     首先通过数据库EST比对发现大部分SbCBL均有与之对应的受逆境胁迫诱导的EST序列,因此初步推测,该家族基因在抵抗逆境方面可能具有重要功能。
     SbCBL家族氨基酸序列多重比对及EF基序在线查找发现,除了SbCBL08含有2个EF-hand,其它SbCBL中均含有3个典型的EF-hand保守结构域,并且在SbCBL01、SbCBL04、SbCBL05和SbCBL08中具有N-豆蔻酰化结构域(MGXXXS/T)。
     对SbCBL家族基因上游5′-UTR 2.5kb序列进行预测分析,结果表明该家族基因启动子区均含有多种与逆境胁迫及植物激素相关的顺式作用元件。
     通过分析SbCBL基因家族外显子—内含子结构,发现CBL基因家族内含子数目在物种间及物种内均含有一定的保守性。
     通过进化树分析了SbCBL基因家族分别与拟南芥、水稻、玉米、葡萄、杨树和绿藻等物种中的CBL基因家族在进化上的亲缘关系。结果发现,在这几个物种中,SbCBL基因家族与水稻中的亲缘关系最近。
     (4)通过Gateway技术克隆了SbCBL01基因,构建到植物表达载体pLeela,利用农杆菌介导的沾花侵染的方法转化拟南芥,得到6个T1代的转基因株系;
     (5)将SbCBL01及多个能够响应Na2CO3胁迫的SbCIPK基因构建到pDEST22及pDEST32载体共转化酵母细胞,结果发现, SbCBL01蛋白可能与SbCIPK24及SbCIPK30蛋白互作;
Saline-alkali soil contains excessive sodium carbonate (Na2CO3) and sodium bicarbonate (NaHCO3), which inhibits most plant growth and development. The tradition fossil fuel is getting shortage and leads to a lot of environment problems, The development of renewable energy sources is urgently needed. Sweet sorghum (Sorghum bicolor L.) is characterized by drought and flood resistance, salt tolerance and high efficiency of biomass accumulation. It is considered to be one of the most promising bio-energy crops. In order to understand the function and the physiological expression pattern of SbCBL gene family in sweet sorghum under sodium carbonate stress and utilize this experimental results to obtain new sorghum cultivar which can tolerate sodium carbonate stress, we use sweet sorghum (Sorghum bicolor L.) cv. NengSiⅠto be our materials. In our research, we analyzed the physiological response of sweet sorghum, and identified a eligible sodium carbonate concentration. We used real-time quantitative polymerase chain reaction (RTqPCR) to analyze the expression pattern of SbCBL gene family under sodium carbonate stress and the expression pattern of SbCBL gene family in different tissues under regular condition. We cloned special gene by Gateway technology and introduced it into Arabidopsis. We analyzed the protein-protein interaction by yeast two hybrid. Meanwhile, through the bioinformatics analysis, we identified the character of SbCBL gene family. The results are as follows:
     (1) The results of physiological experiment showed that vitality index, radicle and the length of plumule can be the index of sorghum cultivar which can tolerate sodium carbonate stress, and we identified a eligible sodium carbonate treatment concentration: 100mM Na_2CO_3.
     (2) We used real-time quantitative polymerase chain reaction to analyze the expression pattern of SbCBL gene family under sodium carbonate stress and the expression pattern of SbCBL gene family in different tissues under normal condition. The results showed that SbCBL genes in sweet sorghum have different tissue-specific expression patterns under normal growth condition, the transcription of SbCBL06 and SbCBL08 were most abundant in leaves at seedling stage and others were higher expression in matured leaves. In addition, SbCBL genes showed various sodium carbonate stress responsive patterns in sweet sorghum seedlings treated with sodium carbonate, the transcriptional level of SbCBL01 and SbCBL07 showed sustained increase in roots and a similar pattern appeared in the transcription of SbCBL06 in shoots.
     (3) Bioinformatic analysis of SbCBLs:
     Firstly, Each SbCBL had its homologous ESTs in the database. Some of these ESTs were related to abiotic stresses. The results showed that SbCBL gene family might play an important role in abiotic stress.
     Secondly, Multiple alignments revealed that sequences of SbCBLs are highly conserved and most SbCBLs have three typical EF-hands structure. Four SbCBL proteins (SbCBL01, SbCBL04, SbCBL05, SbCBL08) have a conserved N-myristoylation domain (MGXXXS/T).
     Thirdly, Many stress responsive and phytohormones responsive cis-elements are found in the promoter region of SbCBLs. The conservation in intron number of the same or different species infers that the introns may have some effect on the function of CBL gene family.
     Phylogenetic analysis of SbCBL gene family between sweet sorghum and other plants (Arabidopsis, rice, maize, Vitis vinifera, poplar and chlorella ) suggested that sweet sorghum CBL gene family had the most closely genetic relationship with rice.
     (4) We cloned SbCBL01 by Gateway technology and introduced it into the expression vector pLeela. We used the floral dip method of Agrobacterium-mediated transformation to infect Arabidopsis. SbCBL01 has been inserted into the genomic DNA of Arabidopsis. We obtained six T1 transgenic lines .
     (5) We constructed SbCBL01 and potential target SbCIPK gene into pDEST22 and pDEST32, respectively and analyzed SbCBL and SbCIPK interaction. The result showed that SbCBL01 might interact with SbCIPK24 and SbCIPK30.
引文
[1]王遵亲.中国盐渍土[M ].北京:科学出版社, 1993: 250-311.
    [2]吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社, 1998:195-197.
    [3]石德成,殷丽娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报, 1993, 35(2): 144-149.
    [4]曲元刚,赵可夫. NaCl和Na2CO3对玉米生长和生理胁迫效应的比较研究.作物学报, 2004, 30(4): 334-341.
    [5]买买提·阿扎提,艾力克木·卡德尔,吐尔逊·哈斯木.土壤盐渍化及其治理措施研究综述.环境科学与管理, 2008, 33(5): 29-33.
    [6]杨国会,石德成.盐碱胁迫对小冰麦相对生长率及茎叶离子积累的影响.河南农业科学, 2011, 40(1): 45-47.
    [7]李清芳,辛天蓉,马成仓,王琳. pH值对小麦种子萌发和幼苗生长代谢的影响[J].安徽农业科学, 2003, 31(2): 185-187.
    [8]孙菲菲,赵彦坤,张文胜,胡海洲,李报,王幼宁,刘孟雨,李霞.高pH对拟南芥萌发和主根伸长的影响[J].中国农学通报, 2007, 7(23): 285-289.
    [9]王波,宋凤斌,张金才.植物耐盐性研究进展.农业系统科学与综合研究, 2007, 23(2): 212-216.
    [10] AbdE。G. K. Baki, F. Siefritz, H.-M. Man, H. Weiner, R. Kaldenhoff, W. M. Kaiser. Nitrate reductase in Zea mays L.under salinity. Plant Cell Environ, 2000, 23: 515-521.
    [11] Flores, P. Botella, M. A. Martínez, V. Cerdá, A. Ionic and osmotic effects on nitrate reductase activity in tomatoesedlings. Journal of Plant Physiology, 2000, 156: 552-557.
    [12] Comba.M.E., Benavides.M.P. and Tomaro.M.L., Effect of salt stress on antioxidant defence system in soybean root nodules. Aust J Plant Physiol, 1998, 25: 665-671.
    [13]林栖凤.耐盐植物研究[M].科学出版社, 2004.
    [14]张万钧,等.盐渍土绿化[M].北京:中国环境科学出版社, 1999.
    [15]赵可夫,冯立田,等.中国盐生植物资源[J].北京:科学出版社, 2001.
    [16]赵可夫,等.植物抗盐生理[M].北京:中国科学技术出版社, 1993.
    [17]贾洪涛,赵可夫.盐胁迫下Na+、K+、Cl–对碱蓬和玉米离子的吸收效应.山东师大学报(自然科学版), 1998, 13(4): 437-440.
    [18]韩军丽,赵可夫.植物盐腺的结构、功能和泌盐机理的探讨.山东师大学报(自然科学版), 2001, 16(2): 194-198.
    [19]周三,韩军丽,赵可夫.泌盐盐生植物研究进展.应用与环境生物学报, 2001, 7(5): 496-501.
    [20]赵可夫.植物对盐渍逆境的适应.生物学通报, 2002, 37(6): 7-9.
    [21]张风娟.盐生植物耐盐结构的研究现状(综述).河北职业技术师范学院学报, 2003, 17(4): 75-78.
    [22]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展.海南大学学报自然科学版, 2003, 21(2): 177-182.
    [23] Jin Su and Ray Wu. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis[J]. Plant Science, 2004, 166: 941-948.
    [24] Petrusa L M and Winicol L. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl[J]. Plant Physiological Biochemistry, 1997, 35: 303-310.
    [25] Ishitani M, Nakamura T, Handeung Y, et al. Expression of the betainaldehyde dehydrogenase gene in barley in response no osmotic stress and abscisci acids[J]. Plant Molecular Biology, 1995, 27: 307-310.
    [26] Mitchell C. Tarczynski, Richard G. Jensen and Hans J. Bohnert. Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol[J]. Science, 1993, 259: 1122-1124.
    [27]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报, 2001, 18(5): 587-596.
    [28] Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003, 6(5):441-445.
    [29] Michele. B. and Boutry. M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzyme with Multiple Physiological Functions). Plant Physiol, 1995, 108(1): 1-6.
    [30] Cushman J. C., Meyer. G., Michalowski. C. B., Schmitt. J. M. and Bohnert. H. J. Salt Stress Leads to Differential Expression of Two Isogenes of Phosphoenolpyruvate Carboxylase during Crassulacean Acid Metabolism Induction in the Common Ice Plant. THE PLANT CELL, 1989, 1:715-725.
    [31]王家利,丁同楼,王宝山.肉质植物及其对盐渍和干旱环境的适应.山东师范大学学报(自然科学版), 2005, 20(4): 74-75.
    [32]高俊杰,张琳,秦爱国,于贤昌.氯化钠胁迫下嫁接黄瓜叶片SOD和CAT mRNA基因表达及其活性.应用生态学报, 2008, 19(8): 1754-1758.
    [33]赵海新.碱胁迫对水稻苗期SOD和POD活性及MDA含量的影响.黑龙江农业科学, 2010, 8: 22-23.
    [34]王萍,殷立娟,李建东.中性盐和碱性盐对羊草幼苗胁迫的研究[J].草业学报, 1994, 3(02): 37-42.
    [35]何龙飞,沈振国,刘友良.铝胁迫下钙对小麦根液泡膜功能和膜脂组成的影响.南京农业大学学报, 2000, 23(l):10-13.
    [36]刘琳,曾幼玲,张富春. ABA与植物的耐盐性.植物生理学通讯, 2009, 45(2): 187-194.
    [37]张丽霞,李国婧,王瑞刚,黄荣峰.乙烯调控植物耐盐性的研究进展.生物技术通报, 2010, 9: 1-7.
    [38]胡婷婷,刘超,王健康,丁成伟,郭荣良,吴玉玲,徐家安,王友霜.水稻耐盐基因遗传及耐盐育种研究.分子植物育种, 2009, 7(1): 110-116.
    [39]陈煜,杨燕凌,谢小芳,柯玉琴.水稻耐盐相关基因的克隆及转化研究进展.中国农学通报, 2010, 26(11): 23-27.
    [40]张建锋,乔勇进,焦明,等.盐碱地改良利用研究进展[J].山东林业科技, 1997(3): 25-28.;
    [41]王利民,陈金林,梁珍海,陈菲然,王丽娜,薛丹,赵好.盐碱土改良利用技术研究进展.浙江林学院学报, 2010, 27(1): 143-148.
    [42]石元春.盐碱土改良——诊断、管理、改良[M].北京:农业出版社, 1996: l-22.
    [43]赵兰坡,王字,马晶,等.吉林省西部苏打盐碱土改良研究[J].土壤通报, 2001, 32(增刊): 91-96.
    [44]郭龙彪,薛大伟,王慧中,陈受宜,卢德赵,曾大力,高振宇,颜美仙,黄大年,钱前.转基因与常规杂交相结合改良水稻耐盐性.中国水稻科学, 2006, 20(2): 141-146.
    [45]王为,潘宗瑾,潘群斌.作物耐盐性状研究进展.江西农业学报, 2009, 21(2): 30-33.
    [46]刘丽云,王明友. CaCl2对盐胁迫下小麦种子萌发及生理效应的影响.河南农业科学, 2010, 1: 5-7.;
    [47] Duan.P, Ding. F, Wang. F, Wang B.S. Priming of Seeds with Nitric Oxide Donor Sodium Nitroprusside (SNP) Alleviates the Inhibition on Wheat Seed Germination by Salt Stress. Journal of Plant Physiology and Molecular Biology. 2007, 33(3): 244-250.
    [48] Juan C Melgar, James. P. Syvertsen and Francisco García-Sánchez. Can elevated CO2 improve salt tolerance in olive trees[J]. Journal of Plant Physiology, 2008, 165: 631-640.
    [49] Wahid A, Perveen M, Gelani S, Basra SM. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol, 2007, 164(3): 283-94.
    [50] Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol, 2008, 165(14): 1455-65.
    [51] Habib-ur-Rehman A, Ameer .K and Muhammad A. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany, 2008, 63: 224-231.
    [52] Huang Y, Bie ZL, Liu ZX, Zhen Ai, Wang. W J. Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Science and Plant Nutrition, 2009, 55: 698-704.
    [53] Chen TH, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci, 2008, 13(9): 499-505.
    [54] Levent T, Cengiz K, Murat Dikilitas and David Higgs. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental andExperimental Botany, 2008, 62: 1-9.
    [55] Etehadnia M, Waterer. R., Tanino KK. The Method of ABA Application Affects Salt Stress Responses in Resistant and Sensitive Potato Lines. Journal of plant growth regulation, 2008, 27: 331-341.
    [56] Liming X, Karen S. Schumaker and Jian-Kang Zhu. Cell Signaling during Cold, Drought, and Salt Stress. The Plant Cell, 2002, S165-S183.
    [57] Reddy VS, Reddy AS. Proteomics of calcium-signaling components in plants. Phytochemistry, 2004, 65(12): 1745-76.
    [58] Nicola H Evans, Martin R McAinsh and Alistair M Hetherington. Calcium oscillations in higher plants. Current Opinion in Plant Biology, 2001, 4: 415-420.
    [59] Viswanathan C, Karen S and Zhu.JK. Molecular genetic perspectives on cross‐talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany, 2004, 55: 225-236.
    [60] Knight H, Brandt S, Knight MR. A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J, 1998, 16(6): 681-687.
    [61] Douglas S. Bush. Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta, 1996, 199: 89-99.
    [62] Price. AH, Taylor. A, Ripley. SJ, Griffiths. A, Trewavas. AJ, and Knight. MR. Oxidative Signals in Tobacco Increase Cytosolic Calcium. Plant Cell, 1994, 6(9): 1301-1310.
    [63]尚忠林,毛国红,孙大业.植物细胞内钙信号的特异性[J].植物生理学通讯, 2003, 39(2): 93-100.
    [64] Bush D S. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1995, 46: 95-122.
    [65] Jeffrey F. Harper and Alice Harmon. Plants, symbiosis and parasites: a calcium signalling connection. Nature Reviews Molecular Cell Biology, 2005, 6: 555-566.
    [66] Jinrui .S, Kyung-Nam .K, Olga Ritz, Veronica Albrecht, Rajeev Gupta, Klaus Harter, Sheng Luan, and J?rg Kudla. Novel Protein Kinases Associated with Calcineurin B–like Calcium Sensors in Arabidopsis. Plant Cell, 1999, 11:2393-2406.
    [67] Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc NatlAcad Sci U S A, 1999, 96(8): 4718-4723.
    [68] Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280(5371): 1943-1945.
    [69] Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun, 2002, 290(2): 615-623.
    [70] Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell, 2002, 14 Suppl: S389-400.
    [71] Zielinski RE. Calmodulin and Callmodulin binding proteins in plant... Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 697-725.
    [72] Braam J, Sistrunk ML, Polisensky DH, Xu W, Purugganan MM, Antosiewicz DM, Campbell P, Johnson KA. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes. Planta, 1997, 203 Suppl: S35-41.
    [73] Yang. T. and Poovaiah. B. W.. Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A, 2002, 99: 4097-4102.
    [74] Jiang M, Zhang J. Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defence in leaves of maize seedlings. Plant Cell Environ, 2003, 26(6): 929-939.
    [75] Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M. Calcium-calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol, 2007, 173(1): 27-38.
    [76] Guo X, Liu. ZH,Li YC. Function of Ca/CaM on transduction of stress signal in maize. Acta Botanica Sinica, 2005, 31(8): 1001-1006.
    [77] Alice.C., Michael. G, Erika.F, Jeffrey F. The CDPK superfamily of protein kinases. New Phytol, 2001, 151: 175-183.
    [78] Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca(2+)-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol Gen Genet, 1994, 244(4): 331-340.
    [79] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 1996, 274(5294): 1900-1902.
    [80] Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+)-permeable channels and stomatal closure. PLoS Biol, 2006, 4(10): e327.
    [81] Zhang M, Liang S, Lu YT. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochim Biophys Acta, 2005, 1729(3): 174-185.
    [82] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23(3): 319-327.
    [83] Batistic O, Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 2004, 219(6): 915-924.
    [84] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134(1): 43-58.
    [85] Kudla J, Batistic O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22(3): 541-563.
    [86] Pandey GK, Grant JJ, Cheong YH, Kim BG, Li le G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008, 1(2): 238-248.
    [87] Yong .X, Huang.YM, and Xiong.LZ. Characterization of Stress-Responsive CIPK Genes in Rice for Stress Tolerance Improvement. Plant Physiol, 2007, 144(3): 1416-1428.
    [88] Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol, 2007, 65(6): 733-746.
    [89] Mahajan S, Sopory SK, Tuteja N. Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J, 2006, 273(5): 907-925.
    [90] Gao P, Zhao PM, Wang J, Wang HY, Du XM, Wang GL, Xia GX.Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiol Biochem, 2008, 46(10): 935-940.
    [91] Zhang.HC, Yin.WL and Xia.XL. Calcineurin B-Like family in Populus : comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regulation, 2008, 56: 129-140.
    [92] Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 2003, 15(8): 1833-1845.
    [93] Jiang .X, Li.DH, Chen.LQ, Yi W, and Wu.WH. A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 2006, Volume 125: 1347-1360.
    [94] Pino MT, Skinner JS, Jekni? Z, Hayes PM, Soeldner AH, Thomashow MF, Chen TH. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ, 2008, 31(4): 393-406.
    [95] Liu.JP, Manabu. I, and Zhu..JK The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A, 2000, 97(7): 3730-3734.
    [96] Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A, 2000, 97(7): 3735-3740.
    [97] Albrecht V, Weinl S, Blazevic D, D'Angelo C, Batistic O, Kolukisaoglu U, Bock R, Schulz B, Harter K, Kudla J. The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J, 2003, 36(4): 457-470.
    [98] D'Angelo C, Weinl S, Batistic O, Pandey GK, Cheong YH, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J, 2006, 48(6): 857-872.
    [99] Cheong YH, Sung SJ, Kim BG, Pandey GK, Cho JS, Kim KN, Luan S. Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis. Mol Cells, 2010, 29(2): 159-165.
    [100] Girdhar K. Pandey, Yong Hwa Cheong, Kyung-Nam Kim, John J. Grant,Legong Li, Wendy Hung, Cecilia D'Angelo, Stefan Weinl, J?rg Kudla, and Sheng Luan. The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis. Plant Cell, 2004, 16(7): 1912-1924.
    [101] Yoon .S, Park.J, Kim .K. Calcineurin B-like proteins in rice can bind with calcium ion and associate with the Arabidopsis CIPK family members. Journal Plant Science, 2009, 177: 577-583.
    [102] Gong D, Guo Y, Jagendorf AT, Zhu JK. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol, 2002, 130(1): 256-64.
    [103] Guo Y, Halfter U, Ishitani M, Zhu JK. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13(6): 1383-1400.
    [104] Gong D, Guo Y, Schumaker KS, Zhu JK. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol, 2004, 134(3): 919-926.
    [105] Kim KN, Cheong YH, Gupta R, Luan S. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol, 2000, 124(4): 1844-1853.
    [106] Albrecht V, Ritz O, Linder S, Harter K, Kudla J. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J, 2001, 20(5): 1051-1063.
    [107] Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell, 2007, 19(4): 1415-1431.
    [108] Halfter U, Ishitani M, Zhu JK. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A, 2000, 97(7): 3735-3740.
    [109] Quan.SQ, Guo. Y, Margaret .A. and Zhu.JK. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A, 2002, 99(12): 8436-8441.
    [110] Zhu JK. Salt and drought stress signal transduction in plants. Annu Rev PlantBiol, 2002, 53: 247-273.
    [111] Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem, 2004, 279(1): 207-215.
    [112] Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ. Conservation of the salt overly sensitive pathway in rice. Plant Physiol, 2007, 143(2): 1001-1012.
    [113] Anja T. Fuglsang, Yan Guo, Tracey A. Cuin, Quansheng Qiu, Chunpeng Song, Kim A. Kristiansen, Katrine Bych, Alexander Schulz, Sergey Shabala, Karen S. Schumaker, Michael G. Palmgren and JianKang Zhu. Arabidopsis Protein Kinase PKS5 Inhibits the Plasma Membrane H+-ATPase by Preventing Interaction with 14-3-3 Protein. The Plant Cell, 2007, 19: 1617-1634.
    [114] Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 2007,52(2): 223-239.
    [115] Li.LG Kim.BG, and Luan.S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A, 2006, 103(33): 12625-12630.
    [116] Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci U S A, 2007, 104(40): 15959-15964.
    [117] Shinozaki K, Yamaguchi-Shinozaki K. Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiol, 1997,115(2): 327-334.
    [118]黎大爵,廖馥荪.甜高粱及其利用.北京:科学出版社, 1992.
    [119] Bassam NEL (1998). Energy Plant Species—Their Use and Impact on Environment and Development. London: James & James Ltd.
    [120]陆水怡,李南珠,邹剑秋,李明莹.甜高梁的生物学特性、研究现状与开发应用前景.江苏农业科学. 2009, 3: 11-13.
    [121] Andrew H. John E, Remy B et al. The sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457: 551-556.
    [122] Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD,Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE. Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol, 2005, 58(5): 699-720.
    [123]邱宏伟.加强技术创新,走中国特色生物能源发展之路.中国生物工程杂志, 2007, 27(12): 114-116.
    [124]国家发展和改革委员会.可再生能源中长期发展规划.可再生能源, 2007, 25(6): 1-5.
    [125]黎大爵,开发甜高粱产业,解决能源、粮食安全及三农问题.中国农业科技导报, 2004, 5: 55-58.
    [126] Mullis. K., Faloona. F., Scharf.R. and Erlich. H.. Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring Harb Symp Quant Biol, 1986, 51: 263-273.
    [127] Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res, 1996, 6(10): 986-94.
    [128]陈旭,齐凤坤,康立功,李景富.实时荧光定量PCR技术研究进展及其应用.东北农业大学学报, 2010, 41(8): 148-155.
    [129]张茜,谢湘芝,经承学.荧光染料SYBR GreenⅠ及EB在定量PCR中敏感性比较.郑州大学学报(医学版), 2005, 40(3): 459-461.
    [130]王怡瑾,王宏,聂立波,何农跃.分子信标技术.化学通报, 2004, 12: 912-918.
    [131]陈忠斌,王升启,孙志贤.分子信标核酸检测技术研究进展.生物化学与生物物理进展, 1998, 25(6): 488-492.
    [132]罗婵,王志强,公方强,石德顺. SYBR Green实时荧光定量PCR检测水牛体细胞组蛋白乙酰化相关基因mRNA表达.中国兽医学报, 2009, 29(2): 233-237.
    [133]陈棋炯,孙永祥,丁水军,傅丹青,戴城钢.应用实时荧光定量PCR技术快速检测甲型H1N1流感病毒.中国卫生检验杂志, 2010, 20(6): 1394-1396.
    [134]李昊,李义,高建梅.免疫共沉淀技术的研究进展.内蒙古医学杂志, 2008, 40(4): 452-454.
    [135] Deborah.S, Daria M.R and Dorit.R. Glutathione S-Transferase Pull-Down Assay. Methods in Molecular Biology, 2003, 233: 345-350. [113] Pollok B A,Heim R. Using GFP in FRET-based applications. Trends Cell Biol, 1999, 9(2): 57-60.
    [136] Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques, 2006, 40(1): 61-66.
    [137] Drewes G, Bouwmeester T. Global approaches to protein-protein interactions. Curr Opin Cell Biol, 2003, 15(2): 199-205.
    [138] Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230): 245-246.
    [139]王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社, 2002, 8.
    [140] Brent R, Finley RL Jr. Understanding gene and allele function with two-hybrid methods. Annu Rev Genet, 1997, 31: 663-704.
    [141]吴乃虎.基因工程原理(第二版)[M].北京:科学出版社, 1998.
    [142] Phizicky EM, Fields S. Protein-protein interactions: methods for detection and analysis. Microbiol Rev, 1995, 59(1): 94-123.
    [143] Yang. M, Wu. Z, and Fields. S. Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res, 1995, 23(7): 1152-1156.
    [144] Hartley JL, Temple GF, Brasch MA. DNA cloning using in vitro site-specific recombination. Genome Res, 2000, 10(11): 1788-1795.
    [145] Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem, 1989, 58: 913-949.
    [146] Bushman W, Thompson JF, Vargas L, Landy A. Control of directionality in lambda site specific recombination. Science, 1985, 230(4728): 906-911.
    [147] Karimi M, InzéD, Depicker A. GATEWAY vectors for Agrobacterium- mediated plant transformation. Trends Plant Sci, 2002, 7(5): 193-195.
    [148] Parker C, Hitchcock A M, Ramaiah K V. The germination of Striga species by crop root exudates techniques for selecting resistant crop cultivars. In Proceedings Asian-Pacific Weed Science Society 6th Conference. Jakarta: Asian-Pacific Weed Science Society, 1977, 67.
    [149]颜启传.种子学[M].北京:农业出版社, 2001: 112-113.
    [150]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社, 2004: 67-70, 274-276, 258-259.
    [151]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2002: 167-169.
    [152]利容干,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社, 2002: 55.
    [153]孙涌栋,李新峥,罗未蓉.南瓜发芽期对Na2CO3胁迫的生理响应及耐受性评价[J].核农学报, 2008, 22(6): 875-879.
    [154] Bowler C , Van C W, Montagu M, Inze D. Superoxide dismutase in plants[J]. Critical Reviews in Plant Sciences, 1994, 13: 199-218.
    [155] JOHN M. CHEESEMAN. Mechanisms of Salinity Tolerance in Plants. Plant Physiol, 1988, 87, 547-550.
    [156] Rana .M and Mark .T. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
    [157]石德成,殷丽娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报, 1993, 35(2): 144-149.
    [158] Shi D C, Sheng Y M and Zhao K F. Stress effects of mixed salts with various salinity on the seedlings of Aneurolepidium chinense [J]. Acta Botanica Sinica, 1998, 40(12): 1136-1142.
    [159] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4): 402-408.
    [160] Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H. Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene, 2008, 415(1-2): 1-12.
    [161] Thompson. J D, Jeanmougin. F, and Higgins. D G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876-4882.
    [162] Guo AY, Zhu QH, Chen X, Luo JC. GSDS: a gene structure display server. Yi Chuan, 2007, 29(8): 1023-1026.
    [163] Higo K, Ugawa Y, Iwamoto M, Korenaga T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res, 1999, 27(1): 297-300.
    [164] Prestridge DS. SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci, 1991, 7(2):203-206.
    [165] Towler DA, Adams SP, Eubanks SR, Towery DS, Jackson-Machelski E, Glaser L, Gordon JI. Myristoyl CoA:protein N-myristoyltransferase activities from rat liver and yeast possess overlapping yet distinct peptide substrate specificities. J Biol Chem, 1988, 263(4): 1784-1790.
    [166] Manabu .I, and Zhu.JK. SOS3 Function in Plant Salt Tolerance Requires N-Myristoylation and Calcium Binding. Plant Cell, 2000, 12: 1667-1678.
    [167] Lee EJ, Iai H, Sano H, Koizumi N. Sugar responsible and tissue specific expression of a gene encoding AtCIPK14, an Arabidopsis CBL-interacting protein kinase. Biosci Biotechnol Biochem, 2005, 69(1): 242-245.
    [168] Zhao J, Sun Z, Zheng J, Guo X, Dong Z, Huai J, Gou M, He J, Jin Y, Wang J, Wang G. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol, 2009, 69(6):661-674.
    [169] Weinl S and Kudla J. The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. Tansley review, 2009, 184: 517–528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700