用户名: 密码: 验证码:
脊髓小脑共济性失调2型的修饰基因变异及自然选择对ATXN2基因的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究室收集到一个表型为帕金森氏病的大家系,临床资料初步诊断为呈常染色体显性遗传模式的帕金森氏病家系。前期对此家系进行的研究排除了以往文献报道过的常染色体显性遗传的帕金森病致病基因,并采用基因芯片的方法对研究家系进行了全基因组扫描,最后在患者基因组候选区域内将致病基因定位为12号染色体上的ATXN2基因,确定该家系为脊髓小脑共济性失调2型(spinocerebellar ataxia type 2,SCA2)家系。
     SCA2是一种山ATXN2基因第一外显子中的CAG三核苷酸扩展突变导致的神经系统退行性疾病,发病时严重影响正常的感觉、运动控制功能。由于本家系病人表现出和普通SCA2病人不同的临床症状,并且对左旋多巴胺(L-Dopa)的治疗敏感,因而在本研究中,我们应用前期全基因组扫描的数据,按照所收集家系的临床资料对疾病表型模式进行设定,重新计算了连锁值。结果发现有两处连锁分数值(log of the odds,LOD)大于3:一处在5号染色体上,另一处在12号染色体上的峰对应的就是本家系的致病基因ATXN2。根据以上结果,我们对5号染色体的定位区域进行了单倍型构建及分析,进而观察到所有现在已经确定发病的病人基本都享有同样条单倍型,即3322323单倍型。据此推测可能在5号染色体上这一定位区域存在个修饰基因,使此家系的发病症状偏向于帕金森氏病,并且让发病年龄提前。我们用测序的方法,对所定位区域内的5个修饰基因候选者——-ENC1,HEXB,SV2C,GFM2以及HOMER1进行研究,从而寻找修饰基因的存在,用以分析探讨此修饰基因怎样使SCA2病人临床症状发生改变,并使本研究家系成员对多巴胺敏感的原因。检测结果显示,在HEXB基因第五外显子上存在一处第207位氨基酸ATT/GTT错义突变,从本研究家系测序结果分布看来,所有的病人都带有A等位基因;在ENC1的5'-UTR区发现一A/G突变以及在其外显子的分段测序中检到两处同义突变(分别为丝氨酸、赖氨酸同义突变),据家系中5'-UTR区测序结果看来,绝大部分病人都带有A等位基因。而其余三个基因均未观察到突变。根据以上结果分析,我们认为HEXB基因的错义突变为本研究寻找的修饰基因变异的可能性较大。由于各个基因间相互作用的关系非常复杂,修饰基因的突变位点可能与其他位点连锁共同作用,基因的同义突变也可能影响转录后的剪接、加工及蛋白表达量进而影响疾病表型,或者存在其他未经鉴定的复杂作用过程或基因,这些功能上的作用及机制需要进一步阐明。
     有研究认为帕金森表型的出现和ATXN2基因CAG重复中CAA三核苷酸插入出现的频率有关,我们通过对本家系中致病基因序列的测定,对其关联性加以验证。在本家系的病人中检测到ATXN2基因CAG重复序列中仅有一个CAA插入,与文献报道的病人CAA插入次数越多表型就越偏向帕金森病不一致,提示可能存在其他因素对本家系产生影响,使之对左旋多巴敏感。因此,本研究选取6个正常民族群体,对其ATXN2基因的CAG重复序列是否受到选择的作用进行研究,以期闸明致病基因的作用机制及其与自然选择的关系。
     我们对所有样本染色体的CAG重复序列进行了测序。进行中性检测后发现,在除了回族群体以外的5个民族群体中,Tajima's D值显示了显著性的负值,提示可能受到正向选择的作用。回族群体的中性检测值仅显示为负值,未达到显著性。根据该位点周围8个SNP的分型结果构建单倍型进行分析,也显示核心单倍型达到了很高的频率,并在一个较大的区域内显示了强连锁不平衡(linkage disequilibrium, LD)。这些都是5个民族群体中正向选择的特征。我们认为在这5个民族群体ATXN2基因的CAG重复序列上可能存在正向选择的作用,使(CAG)8CAA(CAG)4CAA(CAG)8这种等位基因在正常群体中具有优势,保持遗传稳定而不趋于扩展。同时也提示我们,其他的多聚谷氨酰胺(polyglutamine, polyQ)相关疾病致病基因可能也存在类似的机制,对于这些致病基因是否受到选择的作用,值得我们进一步的研究。
A Parkinsonism pedigree was collected by our group. According to clinical characteristics, primary diagnosis showed that it was an autosomal dominant (AD) Parkinson Disease pedigree. The known pathogenic genes of AD Parkinson Disease were excluded in our previously study and a whole genomic scan was performed by gene chip. The pathogenic gene ATXN2 was located on chromosome 12, the candidate region of patient's genome. Thereby, this pedigree was finally confirmed as a Spinocerebellar Ataxia type 2 (SCA2) family.
     Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease caused by the expansions of CAG trinucleotide repeat in exon 1 of the ATXN2 gene, which has severe influences on sensory and motor controlling functions. Because the patients exhibited different clinical phenotypes in this family with other common type of SCA2 and were sensitive to levodopa treatment, thus, to investigate whether modifier genes exist, log of the odds (LOD) were recomputed according to the settings of this SCA2 family phenotype mode using the preliminary work data of the whole genomic scan. The results showed that two LOD scores were more than 3, one scroe existed on chromosome 5, another was on chromosome 12, where the SCA2 pathogenic gene ATXN2 located at. Subsequently, haplotypes were constructed and analyzed in the location region on chromosome 5 depending on the results above. The same haplotype "3322323" was exhibited among almost all of the patients. Based on these, we presumed that modifier genes existed in this region of chromosome 5, which made the clinical phenotype deviation in favor of Parkinson Disease trails and age of onset ahead of time. Therefore, DNA sequencing was operated on five candidate genes in the location region of chromosome 5 for the purpose of finding whether these modifier genes exist, so as to discuss how modifier genes made SCA2 patients'clinical symptoms changed and to find the reasons for responsing to levodopa. The results showed that a missense mutation ATT/GTT existed on 207 amino acid of the HEXB gene exon 5. From the distributions of this mutation in the pedigree, A allele was carried in all of the patients. Furthermore, A/G mutation in 5'-UTR and two synonymy mutations (serine and lysine, respectively) were detected in ENC1 gene. According to results of 5'-UTR, almost all of the patients carried with A allele. Moreover, no mutation was observed in the other three genes. According to these results above, we considered that the missense mutation of the HEXB gene could be the modifier gene variation in this research which had more possibilities. On account of complex interactional relationships between genes, the mutations of modifier genes could have combined action with other locus. A synonymy mutation also could influence RNA post-transcriptional splicing, processing and the expression of protein, and then affect the phenotype. Perhaps other unidentified complex mechanism and genes exist. These mechanisms need to be clarified.
     Some researches proposed that the appearance of Parkinsonism in SCA2 patients was associated with frequency of CAA interuptions in CAG repeats of the ATXN2 gene. This association was analyzed by sequencing the CAG repeats. There was only one CAA interruption detected in the CAG repeats of ATXN2 gene in patients of our pedigree, which was discord with the reports that more CAA interruptions made the phenotype in favor of Parkinson Disease. It prompted other factors could have impacts on this family and made them sensitive to levodopa. Therefore, to investigate whether this CAG repeat of the ATXN2 gene is under positive selection, we collected six different Chinese ethnic groups, to evaluate the mechanism of the pathogenic gene and the relation with natural selection.
     The segments containing CAG repeats in the ATXN2 gene were sequenced for all chromosomes. Significantly negative Tajima's D values were observed in 5 ethnic groups except Hui by performing neutral tests, which suggested positive selection could act on this locus. Hui only showed negative values in these tests, but not significant. Haplotypes were constructed with genotyping data of 8 adjacent SNPs, which also demonstrated that core haplotype reached a high frequency and strong linkage disequilibrium reflected in a large region. These are signatures for positive selection in these 5 ethnic groups. We proposed that positive selection could act on this CAG repeat in these five ethnic groups and make (CAG)8CAA(CAG)4CAA(CAG)8 allele predominant in normal groups, which keeps heredity stability from expanding. Meanwhile, it was suggested that disease causing genes of other polyQ diseases probably have similar mechanism. Whether these related genes are under positive selection or not is worth further investigating.
引文
[1]李洵桦,梁秀龄,刘焯霖,等.957例神经遗传病分析[J].中华医学遗传学杂志.1994(6):372-374.
    [2]Yamamoto-Watanabe Y, Watanabe M, Hikichi M, et al. Prevalence of autosomal dominant cerebellar ataxia in Aomori, the northernmost prefecture of Honshu, Japan.[J]. Intern Med.2010, 49(22):2409-2414.
    [3]Durr A, Smadja D, Cancel G, et al. Autosomal dominant cerebellar ataxia type Ⅰ in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families.[J]. Brain.1995,118(Pt 6):1573-1581.
    [4]Moretti P, Blazo M, Garcia L, et al. Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental delay in infancy.[J]. Am J Med Genet A.2004,124A(4): 392-396.
    [5]Pulst S M, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2.[J]. Nat Genet.1996,14(3):269-276.
    [6]Ragothaman M, Sarangmath N, Chaudhary S, et al. Complex phenotypes in an Indian family with homozygous SCA2 mutations[J]. Ann Neurol.2004,55(1):130-133.
    [7]Velazquez P L, Cruz G S, Santos F N, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba:insights into SCA2 founder effect in Holguin.[J]. Neurosci Lett.2009,454(2):157-160.
    [8]Lee W Y, Jin D K, Oh M R, et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1,2,3,6, and 7 in Korean patients[J]. Arch Neurol.2003,60(6):858-863.
    [9]虞容豪,谢秋幼,李洵桦,等.遗传性共济失调的临床特点与基因诊断策略[J].广东医学.2010(2):180-181.
    [10]谢秋幼,梁秀龄,李洵桦.脊髓小脑性共济失调的分子遗传学诊断与临床应用[J].中华医学遗传学杂志.2005,22(1):71-73.
    [11]Lu C S, Wu C Y, Kuo P C, et al. The parkinsonian phenotype of spinocerebellar ataxia type 2[J]. Arch Neurol.2004,61(1):35-38.
    [12]Furtado S, Payami H, Lockhart P J, et al. Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2).[J]. Mov Disord.2004,19(6):622-629.
    [13]Sun H, Satake W, Zhang C, et al. Genetic and clinical analysis in a Chinese parkinsonism-predominant spinocerebellar ataxia type 2 family.[J]. J Hum Genet.2011,56(4): 330-334.
    [14]Charles P, Camuzat A, Benammar N, et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism?[J]. Neurology.2007,69(21):1970-1975.
    [15]Yu F, Sabeti P C, Hardenbol P, et al. Positive selection of a pre-expansion CAG repeat of the human SCA2 gene.[J]. PLoS Genet.2005,1(3):e41.
    [16]Excoffier L, Laval G, Schneider S. Arlequin (version 3.0):an integrated software package for population genetics data analysis[J]. Evol Bioinform Online.2005,1:47-50.
    [17]Slatkin M. A measure of population subdivision based on microsatellite allele frequencies[J]. Genetics.1995,139(1):457-462.
    [18]Librado P, Rozas J. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data.[J]. Bioinformatics.2009,25(11):1451-1452.
    [19]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.[J]. Genetics.1989,123(3):585-595.
    [20]Fu Y X, Li W H. Statistical tests of neutrality of mutations. [J]. Genetics.1993,133(3):693-709.
    [21]Stephens M, Smith N J, Donnelly P. A new statistical method for haplotype reconstruction from population data.[J]. Am J Hum Genet.2001,68(4):978-989.
    [22]Stephens M, Scheet P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation.[J]. Am J Hum Genet.2005,76(3):449-462.
    [23]Li Z, Zhang Z, He Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers:update of the SHEsis (http://analysis.bio-x.cn).[J]. Cell Res.2009,19(4):519-523.
    [24]Barrett J C, Fry B, Maller J, et al. Haploview:analysis and visualization of LD and haplotype maps.[J]. Bioinformatics.2005,21(2):263-265.
    [25]沈璐,唐北沙,汤熙翔,等.脊髓小脑型共济失调Ⅱ型(CAG)n突变检测研究[J].中华内科杂志.2000,39(4):259-261.
    [26]Mutesa L, Pierquin G, Segers K, et al. Spinocerebellar ataxia type 2 (SCA2):clinical features and genetic analysis.[J]. J Trop Pediatr.2008,54(5):350-352.
    [27]王进,李桂冰,罗曼,等.脊髓小脑性共济失调2型的分子遗传学诊断及临床分析[J].中国临床神经科学.2009(1):12-15.
    [28]谭建强,汪萍,胡启平,等.广西地区脊髓小脑性共济失调病人的基因诊断和CAG重复扩增[J].遗传.2009(6):605-610.
    [29]陈朴,马明义,商慧芳,等.常染色体显性小脑性共济失调致病基因动态突变位点三核苷酸重复变异的研究[J].中华医学遗传学杂志.2009,26(6):626-633.
    [30]Giuffrida S, Lanza S, Restivo D A, et al. Clinical and molecular analysis of 11 Sicilian SCA2 families:influence of gender on age at onset[J]. Eur J Neurol.1999,6(3):301-307.
    [31]雷晶,马建华,张小宁.脊髓小脑共济失调2型-家系的临床和基因突变分析[J].新疆医学.2007,37(4):121-123.
    [32]Hernandez M C, Andres-Barquin P J, Kuo W L, et al. Assignment of the ectodermal-neural cortex 1 gene (ENC1) to human chromosome band 5q13 by in situ hybridization[J]. Cytogenet Cell Genet.1999,87(1-2):89-90.
    [33]Kim T A, Lim J, Ota S, et al. NRP/B, a novel nuclear matrix protein, associates with p110(RB) and is involved in neuronal differentiation[J]. J Cell Biol.1998,141(3):553-566.
    [34]Seng S, Avraham H K, Birrane G, et al. NRP/B mutations impair Nrf2-dependent NQO1 induction in human primary brain tumors[J]. Oncogene.2009,28(3):378-389.
    [35]Wang X J, Zhang D D. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level[J]. PLoS One.2009,4(5):e5492.
    [36]Hammarsund M, Lerner M, Zhu C, et al. Disruption of a novel ectodermal neural cortex 1 antisense gene, ENC-1 AS and identification of ENC-1 overexpression in hairy cell leukemia[J]. Hum Mol Genet.2004,13(23):2925-2936.
    [37]Brest P, Lapaquette P, Souidi M, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease[J]. Nat Genet. 2011,43(3):242-245.
    [38]Proia R L. Gene encoding the human beta-hexosaminidase beta chain:extensive homology of intron placement in the alpha-and beta-chain genes[J]. Proc Natl Acad Sci U S A.1988,85(6): 1883-1887.
    [39]Bolhuis P A, Oonk J G, Kamp P E, et al. Ganglioside storage, hexosaminidase lability, and urinary oligosaccharides in adult Sandhoffs disease[J]. Neurology.1987,37(1):75-81.
    [40]Bolhuis P A, Ponne N J, Bikker H, et al. Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the beta-chain of beta-hexosaminidase results in a labile enzyme[J]. Biochim Biophys Acta.1993,1182(2):142-146.
    [41]Neote K, Mcinnes B, Mahuran D J, et al. Structure and distribution of an Alu-type deletion mutation in Sandhoff disease[J]. J Clin Invest.1990,86(5):1524-1531.
    [42]Mcinnes B, Potier M, Wakamatsu N, et al. An unusual splicing mutation in the HEXB gene is associated with dramatically different phenotypes in patients from different racial backgrounds[J]. J Clin Invest.1992,90(2):306-314.
    [43]Zampieri S, Filocamo M, Buratti E, et al. Molecular and functional analysis of the HEXB gene in Italian patients affected with Sandhoff disease:identification of six novel alleles[J]. Neurogenetics. 2009,10(1):49-58.
    [44]Drousiotou A, Stylianidou G, Anastasiadou V, et al. Sandhoff disease in Cyprus:population screening by biochemical and DNA analysis indicates a high frequency of carriers in the Maronite community[J]. Hum Genet.2000,107(1):12-17.
    [45]Janz R, Sudhof T C. SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family[J]. Neuroscience.1999,94(4):1279-1290.
    [46]Iezzi M, Theander S, Janz R, et al. SV2A and SV2C are not vesicular Ca2+ transporters but control glucose-evoked granule recruitment[J]. J Cell Sci.2005,118(Pt 23):5647-5660.
    [47]Dong M, Yeh F, Tepp W H, et al. SV2 is the protein receptor for botulinum neurotoxin A[J]. Science.2006,312(5773):592-596.
    [48]Mahrhold S, Rummel A, Bigalke H, et al. The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves[J]. FEBS Lett.2006,580(8):2011-2014.
    [49]Lynch J, Tate S, Kinirons P, et al. No major role of common SV2A variation for predisposition or levetiracetam response in epilepsy[J]. Epilepsy Res.2009,83(1):44-51.
    [50]Hammarsund M, Wilson W, Corcoran M, et al. Identification and characterization of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution[J]. Hum Genet.2001,109(5):542-550.
    [51]Tsuboi M, Morita H, Nozaki Y, et al. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis[J]. Mol Cell.2009,35(4):502-510.
    [52]Sasarman F, Antonicka H, Shoubridge E A. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2[J]. Hum Mol Genet.2008,17(23):3697-3707.
    [53]Brakeman P R, Lanahan A A, O'Brien R, et al. Homer:a protein that selectively binds metabotropic glutamate receptors[J]. Nature.1997,386(6622):284-288.
    [54]Xiao B, Tu J C, Petralia R S, et al. Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins[J]. Neuron.1998, 21(4):707-716.
    [55]Ango F, Prezeau L, Muller T, et al. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer[J]. Nature.2001,411(6840):962-965.
    [56]Rietschel M, Mattheisen M, Frank J, et al. Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression[J]. Biol Psychiatry. 2010,68(6):578-585.
    [57]Spellmann I, Rujescu D, Musil R, et al. Homer-1 polymorphisms are associated with psychopathology and response to treatment in schizophrenic patients[J]. J Psychiatr Res.2011,45(2): 234-241.
    [58]Barton N H. Genetic hitchhiking.[J]. Philos Trans R Soc Lond B Biol Sci.2000,355(1403): 1553-1562.
    [59]Sabeti P C, Reich D E, Higgins J M, et al. Detecting recent positive selection in the human genome from haplotype structure.[J]. Nature.2002,419(6909):832-837.
    [60]Schlotterer C. Hitchhiking mapping--functional genomics from the population genetics perspective.[J]. Trends Genet.2003,19(1):32-38.
    [61]Sobczak K, Krzyzosiak W J. CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts.[J]. J Biol Chem.2005,280(5):3898-3910.
    [62]Sobczak K, Krzyzosiak W J. Patterns of CAG repeat interruptions in SCA1 and SCA2 genes in relation to repeat instability.[J]. Hum Mutat.2004,24(3):236-247.
    [63]Choudhry S, Mukerji M, Srivastava A K, et al. CAG repeat instability at SCA2 locus:anchoring CAA interruptions and linked single nucleotide polymorphisms.[J]. Hum Mol Genet.2001,10(21): 2437-2446.
    [64]Mizushima K, Watanabe M, Kondo I, et al. Analysis of spinocerebellar ataxia type 2 gene and haplotype analysis:(CCG)1-2 polymorphism and contribution to founder effect.[J]. J Med Genet. 1999,36(2):112-114.
    [65]Ramos E M, Martins S, Alonso I, et al. Common origin of pure and interrupted repeat expansions in spinocerebellar ataxia type 2 (SCA2).[J]. Am J Med Genet B Neuropsychiatr Genet.2010,153B(2): 524-531.
    [66]Bhattacharyya A, Thakur A K, Chellgren V M, et al. Oligoproline effects on polyglutamine conformation and aggregation.[J]. J Mol Biol.2006,355(3):524-535.
    [67]Hallen L, Klein H, Stoschek C, et al. The KRAB-containing zinc-finger transcriptional regulator ZBRK1 activates SCA2 gene transcription through direct interaction with its gene product, ataxin-2.[J]. Hum Mol Genet.2011,20(1):104-114.
    [68]Nonhoff U, Ralser M, Welzel F, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules.[J]. Mol Biol Cell.2007,18(4):1385-1396.
    [69]Elden A C, Kim H J, Hart M P, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.[J]. Nature.2010,466(7310):1069-1075.
    [70]Orr H T, Chung M Y, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.[J]. Nat Genet.1993,4(3):221-226.
    [71]A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntingdon's disease chromosomes. The Huntington's Disease Collaborative Research Group.[J]. Cell.1993,72(6): 971-983.
    [72]Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.[J]. Nat Genet.1994,8(3):221-228.
    [1]李洵桦,梁秀龄,刘焯霖,等.957例神经遗传病分析[J].中华医学遗传学杂志.1994(6):372-374.
    [2]Moretti P, Blazo M, Garcia L, et al. Spinocerebellar ataxia type 2 (SCA2) presenting with ophthalmoplegia and developmental delay in infancy.[J]. Am J Med Genet A.2004,124A(4): 392-396.
    [3]Durr A, Smadja D, Cancel G, et al. Autosomal dominant cerebellar ataxia type I in Martinique (French West Indies). Clinical and neuropathological analysis of 53 patients from three unrelated SCA2 families.[J]. Brain.1995,118 (Pt 6):1573-1581.
    [4]Jiang H, Tang B S, Xu B, et al. Frequency analysis of autosomal dominant spinocerebellar ataxias in mainland Chinese patients and clinical and molecular characterization of spinocerebellar ataxia type 6[J]. Chin Med J (Eng1).2005,118(10):837-843.
    [5]Harding A E. Classification of the hereditary ataxias and paraplegias[J]. Lancet.1983,1(8334): 1151-1155.
    [6]Sobczak K, Krzyzosiak W J. Patterns of CAG repeat interruptions in SCA1 and SCA2 genes in relation to repeat instability.[J]. Hum Mutat.2004,24(3):236-247.
    [7]Pulst S M, Nechiporuk A, Nechiporuk T, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxiatype 2.[J]. Nat Genet.1996,14(3):269-276.
    [8]Kawaguchi Y, Okamoto T, Taniwaki M, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1.[J]. Nat Genet.1994,8(3):221-228.
    [9]Orr H T, Chung M Y, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.[J]. Nat Genet.1993,4(3):221-226.
    [10]A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group.[J]. Cell.1993,72(6): 971-983.
    [11]姜淼,金春莲,林长坤,等.东北地区正常汉族人群SCAl及SCA3/MJD基因内CAG重复变异研究[J].中华医学遗传学杂志.2004,21(1):83-85.
    [12]唐北沙,刘春宇.遗传性脊髓小脑型共济失调患者SCAl基因突变检测分析[J].中华神经科杂志.1997,30(2):110-113.
    [13]唐北沙,王德安.中国人遗传性脊髓小脑型共济失调患者三核苷酸突变频率的分布[J].中华医学杂志.1997,77(11):819-822.
    [14]Della N R, Foresti S, Tessa C, et al. ADC mapping of neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias[J]. Neuroimage.2004,22(2):698-705.
    [15]Dragasevic N T, Culjkovic B, Klein C, et al. Frequency analysis and clinical characterization of different types of spinocerebellar ataxia in Serbian patients[J]. Mov Disord.2006,21(2):187-191.
    [16]Mittal U, Sharma S, Chopra R, et al. Insights into the mutational history and prevalence of SCA1 in the Indian population through anchored polymorphisms[J]. Hum Genet.2005,118(1):107-114.
    [17]谢秋幼,梁秀龄,李洵桦.我国南方汉族人脊髓小脑性共济失调不同基因亚型的频率分布[J].中华检验医学杂志.2004,27(9):555-557.
    [18]黄智恒,徐评议,等.广东汉族人遗传性脊髓小脑型共济失调基因突变的研究[J].中国神经精神疾病杂志.2002,28(4):248-251.
    [19]王进,李桂冰,罗曼,等.脊髓小脑性共济失调2型的分子遗传学诊断及临床分析[J].中国临床神经科学.2009(1):12-15.
    [20]Mutesa L, Pierquin G, Segers K, et al. Spinocerebellar ataxia type 2 (SCA2):clinical features and genetic analysis.[J]. J Trop Pediatr.2008,54(5):350-352.
    [21]Yu F, Sabeti P C, Hardenbol P, et al. Positive selection of a pre-expansion CAG repeat of the human SCA2 gene.[J]. PLoS Genet.2005,1(3):e41.
    [22]沈璐,唐北沙,汤熙翔,等.脊髓小脑型共济失调Ⅱ型(CAG)n突变检测研究[J].中华内科杂志.2000,39(4):259-261.
    [23]谭建强,汪萍,胡启平,等.广西地区脊髓小脑性共济失调病人的基因诊断和CAG重复扩增[J].遗传.2009(6):605-610.
    [24]陈朴,马明义,商慧芳,等.常染色体显性小脑性共济失调致病基因动态突变位点三核苷酸重复变异的研究[J].中华医学遗传学杂志.2009,26(6):626-633.
    [25]雷晶,马建华,张小宁脊髓小脑共济失调2型-家系的临床和基因突变分析[J].新疆医学2007,37(4):121-123.
    [26]Giuffrida S, Lanza S, Restivo D A, et al. Clinical and molecular analysis of 11 Sicilian SCA2 families:influence of gender on age at onset[J]. Eur J Neurol.1999,6(3):301-307.
    [27]van de Warrenburg B P, Hendriks H, Durr A, et al. Age at onset variance analysis in spinocerebellar ataxias:a study in a Dutch-French cohort.[J]. Ann Neurol.2005,57(4):505-512.
    [28]van de Warrenburg B P, Sinke R J, Verschuuren-Bemelmans C C, et al. Spinocerebellar ataxias in the Netherlands:prevalence and age at onset variance analysis.[J]. Neurology.2002,58(5): 702-708.
    [29]Yamamoto-Watanabe Y, Watanabe M, Hikichi M, et al. Prevalence of autosomal dominant cerebellar ataxia in Aomori, the northernmost prefecture of Honshu, Japan.[J]. Intern Med.2010, 49(22):2409-2414.
    [30]Charles P, Camuzat A, Benammar N, et al. Are interrupted SCA2 CAG repeat expansions responsible for parkinsonism?[J]. Neurology.2007,69(21):1970-1975.
    [31]Furtado S, Payami H, Lockhart P J, et al. Profile of families with parkinsonism-predominant spinocerebellar ataxia type 2 (SCA2).[J]. Mov Disord.2004,19(6):622-629.
    [32]Gwinn-Hardy K, Chen J Y, Liu H C, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese.[J]. Neurology.2000,55(6):800-805.
    [33]Ragothaman M, Sarangmath N, Chaudhary S, et al. Complex phenotypes in an Indian family with homozygous SCA2 mutations[J]. Ann Neurol.2004,55(1):130-133.
    [34]Velazquez P L, Cruz G S, Santos F N, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba:insights into SCA2 founder effect in Holguin.[J]. Neurosci Lett.2009,454(2):157-160.
    [35]Lee W Y, Jin D K, Oh M R, et al. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1,2,3,6, and 7 in Korean patients[J]. Arch Neurol.2003,60(6):858-863.
    [36]谢秋幼,梁秀龄,李洵桦.脊髓小脑性共济失调的分子遗传学诊断与临床应用[J].中华医学遗传学杂志.2005,22(1):71-73.
    [37]虞容豪,谢秋幼,李洵桦,等.遗传性共济失调的临床特点与基因诊断策略[J].广东医学.2010(2):180-]81.
    [38]Sobczak K, Krzyzosiak W J. CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts.[J]. J Biol Chem.2005,280(5):3898-3910.
    [39]Choudhry S, Mukerji M, Srivastava A K, et al. CAG repeat instability at SCA2 locus:anchoring CAA interruptions and linked single nucleotide polymorphisms.[J]. Hum Mol Genet.2001,10(21): 2437-2446.
    [40]雷晶,马建华,张小宁.8例脊髓小脑共济失调2型、3型患者的临床表型及MRI表现分析[J].新疆医科大学学报.2007,30(11):1245-1248.
    [41]唐北沙,夏家辉,王德安.遗传性脊髓小脑型共济失调的CAG三核苷酸突变检测[J].中华医学遗传学杂志.1999,16(5):281-284.
    [42]杨笑,范学文,王进,等.宁夏地区回、汉族脊髓小脑共济失调家系SCA3/MJD基因突变研究[J].中国现代神经疾病杂志.2008,8(6):556-560.
    [43]Vale J, Bugalho P, Silveira I, et al. Autosomal dominant cerebellar ataxia:frequency analysis and clinical characterization of 45 families from Portugal[J]. Eur J Neurol.2010,17(1):124-128.
    [44]宋兴旺,唐北沙,江泓,等.湖南汉族人群遗传性脊髓小脑型共济失调患者三核苷酸突变频率分布[J].中南大学学报:医学版.2006,31(5):702-705.
    [45]Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel[J]. Nat Genet.1997,15(1):62-69.
    [46]Ishikawa K, Tanaka H, Saito M, et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1[J]. Am J Hum Genet.1997,61(2): 336-346.
    [47]Shizuka M, Watanabe M, Ikeda Y, et al. Molecular analysis of a de novo mutation for spinocerebellar ataxia type 6 and (CAG)n repeat units in normal elder controls[J]. J Neurol Sci.1998, 161(1):85-87.
    [48]Li L, Saegusa H, Tanabe T. Deficit of heat shock transcription factor 1-heat shock 70 kDa protein 1A axis determines the cell death vulnerability in a model of spinocerebellar ataxia type 6[J]. Genes Cells.2009,14(11):1253-1269.
    [49]Schols L, Amoiridis G, Buttner T, et al. Autosomal dominant cerebellar ataxia:phenotypic differences in genetically defined subtypes?[J]. Ann Neurol.1997,42(6):924-932.
    [50]Takano H, Cancel G, Ikeuchi T, et al. Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations[J]. Am J Hum Genet.1998,63(4):1060-1066.
    [51]Soong B W, Lu Y C, Choo K B, et al. Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6[J]. Arch Neurol.2001,58(7):1105-1109.
    [52]江泓,唐北沙,张美集,等.遗传性脊髓小脑型共济失调6型两个家系的临床特征及基因突变研究[J].中华神经科杂志.2003,36(2):98-101.
    [53]江泓,唐北沙,许波,等.中国大陆汉族人群SCA各亚型的突变频率分析及SCA6的临床和分子特征[J].中华医学遗传学杂志.2005,22(1):1-4.
    [54]David G, Abbas N, Stevanin G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion[J]. Nat Genet.1997,17(1):65-70.
    [55]谢秋幼,梁秀龄,李洵桦,等.脊髓小脑性共济失调7型的分子遗传学诊断及临床分析[J].第军医大学学报.2004,24(1):62-65.
    [56]Stevanin G, Giunti P, Belal G D, et al. De novo expansion of intermediate alleles in spinocerebellar ataxia 7[J]. Hum Mol Genet.1998,7(11):1809-1813.
    [57]Benton C S, de Silva R, Rutledge S L, et al. Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype[J]. Neurology.1998,51(4):1081-1086.
    [58]Andrew S E, Goldberg Y P, Hayden M R. Rethinking genotype and phenotype correlations in polyglutamine expansion disorders[J]. Hum Mol Genet.1997,6(12):2005-2010.
    [59]Sasaki H, Yabe I, Yamashita I, et al. Prevalence of triplet repeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan[J]. J Neurol Sci.2000,175(1):45-51.
    [60]顾卫红,下国相.橄榄一桥脑一小脑萎缩伴视网膜变性的临床分子生物学研究[J].中华神经科杂志.2000,33(2):93-97.
    [61]黄智恒,徐评议,等.遗传性脊髓小脑性共济失调7型的基因突变及临床特征分析[J].临床神经病学杂志.2001,14(5):272-275.
    [62]Imbert G, Trottier Y, Beckmann J, et al. The gene for the TATA binding protein (TBP) that contains a highly polymorphic protein coding CAG repeat maps to 6q27[J]. Genomics.1994,21(3): 667-668.
    [63]Gao R, Matsuura T, Coolbaugh M, et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17[J]. Eur J Hum Genet.2008,16(2):215-222.
    [64]Rasmussen A, De Biase I, Fragoso-Benitez M, et al. Anticipation and intergenerational repeat instability in spinocerebellar ataxia type 17[J]. Ann Neurol.2007,61(6):607-610.
    [65]Zuhlke C, Hellenbroich Y, Dalski A, et al. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia[J]. Eur J Hum Genet. 2001,9(3):160-164.
    [66]Nakamura K, Jeong S Y, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein[J]. Hum Mol Genet.2001,10(14): 1441-1448.
    [67]Rolfs A, Koeppen A H, Bauer I, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17)[J]. Ann Neurol.2003,54(3):367-375.
    [68]Stevanin G, Fujigasaki H, Lebre A S, et al. Huntington's disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes[J]. Brain.2003,126(Pt 7):1599-1603.
    [69]Takano T, Yamanouchi Y, Nagafuchi S, et al. Assignment of the dentatorubral and pallidoluysian atrophy (DRPLA) gene to 12p 13.31 by fluorescence in situ hybridization[J]. Genomics.1996,32(1):171-172.
    [70]Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p[J]. Nat Genet.1994,6(1):14-18.
    [71]Tomoda A, Ikezawa M, Ohtani Y, et al. Progressive myoclonus epilepsy: dentato-rubro-pallido-luysian atrophy (DRPLA) in childhood[J]. Brain Dev.1991,13(4):266-269.
    [72]Saitoh S, Momoi M Y, Yamagata T, et al. Clinical and electroencephalographic findings in juvenile type DRPLA[J]. Pediatr Neurol.1998,18(3):265-268.
    [73]Shimojo Y, Osawa Y, Fukumizu M, et al. Severe infantile dentatorubral pallidoluysian atrophy with extreme expansion of CAG repeats[J]. Neurology.2001,56(2):277-278.
    [74]Warner T T, Williams L, Harding A E. DRPLA in Europe[J]. Nat Genet.1994,6(3):225.
    [75]Connarty M, Dennis N R, Patch C, et al. Molecular re-investigation of patients with Huntington's disease in Wessex reveals a family with dentatorubral and pallidoluysian atrophy[J]. Hum Genet. 1996,97(1):76-78.
    [76]Moseley M L, Zu T, Ikeda Y, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8[J]. Nat Genet. 2006,38(7):758-769.
    [77]Todd P K, Paulson H L. RNA-mediated neurodegeneration in repeat expansion disorders[J]. Ann Neurol.2010,67(3):291-300.
    [78]Ito H, Kawakami H, Wate R, et al. Clinicopathologic investigation of a family with expanded SCA8 CTA/CTG repeats[J]. Neurology.2006,67(8):1479-1481.
    [79]Rasmussen A, Matsuura T, Ruano L, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10[J]. Ann Neurol.2001,50(2):234-239.
    [80]Trott A, Jardim L B, Ludwig H T, et al. Spinocerebellar ataxias in 114 Brazilian families:clinical and molecular findings[J]. Clin Genet.2006,70(2):173-176.
    [81]O'Hearn E, Holmes S E, Calvert P C, et al. SCA-12:Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion[J]. Neurology.2001,56(3):299-303.
    [82]Srivastava A K, Choudhry S, Gopinath M S, et al. Molecular and clinical correlation in five
    Indian families with spinocerebellar ataxia 12[J]. Ann Neurol.2001,50(6):796-800.
    [83]谢秋幼,梁秀龄,李洵桦,等.脊髓小脑性共济失调12型的分r遗传学诊断及临床分析[J].中山大学学报:医学科学版.2004,25(2):138-140.
    [84]Lim J, Crespo-Barreto J, Jafar-Nejad P, et al. Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1 [J]. Nature.2008,452(7188):713-718.
    [85]Nonhoff U, Raiser M, Welzel F, et al. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules.[J]. Mol Biol Cell.2007,18(4):1385-1396.
    [86]Reina C P, Zhong X, Pittman R N. Proteotoxic stress increases nuclear localization of ataxin-3[J]. Hum Mol Genet.2010,19(2):235-249.
    [87]Tonelli A, D'Angelo M G, Salati R, et al. Early onset, non fluctuating spinocerebellar ataxia and a novel missense mutation in CACNA1A gene[J]. J Neurol Sci.2006,241(1-2):13-17.
    [88]Pulst S M, Santos N, Wang D, et al. Spinocerebellar ataxia type 2:polyQ repeat variation in the CACNA1A calcium channel modifies age of onset[J]. Brain.2005,128(Pt 10):2297-2303.
    [89]Cancel G, Duyckaerts C, Holmberg M, et al. Distribution of ataxin-7 in normal human brain and retina[J]. Brain.2000,123 Pt 12:2519-2530.
    [90]Trottier Y, Lutz Y, Stevanin G, et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias[J]. Nature.1995,378(6555):403-406.
    [91]Yvert G, Lindenberg K S, Picaud S, et al. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice[J]. Hum Mol Genet. 2000,9(17):2491-2506.
    [92]Custer S K, Garden G A, Gill N, et al. Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport[J]. Nat Neurosci.2006,9(10): 1302-1311.
    [93]Peterson M G, Tanese N, Pugh B F, et al. Functional domains and upstream activation properties of cloned human TATA binding protein[J]. Science.1990,248(4963):1625-1630.
    [94]Purrello M, Di Pietro C, Mirabile E, et al. Physical mapping at 6q27 of the locus for the TATA box-binding protein, the DNA-binding subunit of TFIID and a component of SL1 and TFIIIB, strongly suggests that it is single copy in the human genome[J]. Genomics.1994,22(1):94-100.
    [95]Nikolov D B, Hu S H, Lin J, et al. Crystal structure of TFIID TATA-box binding protein[J]. Nature.1992,360(6399):40-46.
    [96]Wood J D, Yuan J, Margolis R L, et al. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins[J]. Mol Cell Neurosci.1998,11(3):149-160.
    [97]Zhang S, Xu L, Lee J, et al. Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes[J]. Cell.2002,108(1):45-56.
    [98]Sobrido M J, Cholfin J A, Perlman S, et al. SCA8 repeat expansions in ataxia:a controversial association[J]. Neurology.2001,57(7):1310-1312.
    [99]Wakamiya M, Matsuura T, Liu Y, et al. The role of ataxin 10 in the pathogenesis of spinocerebellar ataxia type 10[J]. Neurology.2006,67(4):607-613.
    [100]Mayer R E, Hendrix P, Cron P, et al. Structure of the 55-kDa regulatory subunit of protein phosphatase 2A:evidence for a neuronal-specific isoform[J]. Biochemistry.1991,30(15):3589-3597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700