用户名: 密码: 验证码:
稀疏群团状物种分布模型和抽样技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物种分布与环境关系的研究、物种分布的模拟和生物多样性分布格局的模拟,在全球变化、生物多样性监测、保护和评价以及外来种入侵等方面都具有重要的理论和实践意义。然而,无论是植物种与环境的关系分析,还是其潜在分布区的模拟及未来分布趋势的预测,最基本的、也是最重要的工作应该是对物种分布现状的调查和记录。
     森林资源的调查,特别是对于稀疏群团状分布的森林资源,如珍稀乔木树种、灌木、草本及濒临灭绝的动物等的调查,比较难执行,而且一般的调查方法效率不高。为了提高稀疏群团状分布资源调查的精度和效率,国内外应用自适应群团抽样调查技术和方法进行调查。对稀疏群团分布的物种进行调查,自适应群团抽样也存在一些问题,例如,在调查前人们事先无法知道稀疏群团物种的分布状况。因此,研究如何简便快捷的调查稀疏群团物种资源的分布,具有非常重要的现实意义。
     物种分布模型可以利用物种已知的或是未知的分布点与其对应的环境因子的关系,预测物种的所有可能的分布状况。自适应群团抽样与物种分布模型相结合,应用物种分布模型事先对物种的分布状况进行预测,使自适应群团抽样调查技术更具有针对性和实用性。因此,研究物种分布模型和抽样技术的结合具有重要的意义。
     本论文以内蒙古磴口县巴彦高勒镇乌兰布和沙漠边缘地区为研究区,选取沙枣(Elaeagnus angustifolia)、梭梭(Haloxylon ammodendron)、白刺(Nitraria tangtorum)和柽柳(Tamarix chinensis)研究对象,研究了四个物种的空间分布格局。使用研究区域的实际调查数据和遥感数据,选择物种分布模型MaxEnt模型和GARP模型进行了应用研究,并提出了物种分布模型和抽样技术相结合的应用研究方法。在物种分布模型的研究中,主要是研究了影响物种分布模型精度的几个因子。其中,在MaxEnt模型研究中,主要研究了训练数据和检验数据的比例、改变环境变量、阈值、样本量、样方大小以及物种等因子对MaxEnt模型预测精度的影响;在GARP模型研究中,研究了样本量、样方大小以及物种对其预测精度的影响。最后比较研究了MaxEnt模型和GARP模型。在研究物种分布模型和抽样技术时,研究了物种存在的概率,并提出了在物种分布模型的指导下,对于分布稀疏群团状分布的物种所应选择的抽样方法。主要研究结论和创新点如下:
     主要创新点为:
     1、模拟研究了多种因子对物种分布模型的预测精度的影响。
     2、提出抽样技术和物种分布模型结合起来进行研究的方法,利用物种分布模型预测的结果指导抽样调查的实施。
     主要结论为:
     1、研究了样本量、样方大小、物种和环境变量对物种分布模型的精度影响,结果表明:样方为10×10m时,MaxEnt物种分布模型选择的样本量为100预测精度最好,GARP选择的样本量为150预测精度最高;这两个模型的预测精度都是在样方大小和分辨率比较近时比较大,样方大小和分辨率相差的比较大时,预测精度比较低;MaxEnt和GARP物种分布模型都是对物种沙枣和柽柳的预测结果比较好,对物种白刺和梭梭的预测结果稍差一些。证明了物种的聚集程度不同,得出的预测精度不同;环境变量的选择影响MaxEnt物种分布模型的预测稳定性和精度,选择的变量越多,可以得出的精度越高。
     2、基于研究区域和样方为10×10m的设计,物种沙枣和柽柳的预测的样方物种存在概率为p≥0.55时,表示为物种存在;物种梭梭的预测的样方物种存在概率为p≥0.45时,表示为物种存在;物种白刺的预测的样方物种存在概率为p≥0.65时,表示为物种存在;物种花棒的样方物种存在概率为p≥0.7时,表示为物种存在;物种沙蒿的样方物种存在概率为p≥0.4时,表示为物种存在。物种实际存在的样方数越多,应该选择的概率越小;物种实际存在的样方数越少,应该选择的概率越大。
     3、研究了物种分布模型和抽样技术结合的方法。集群分布的物种沙枣、梭梭、白刺和柽柳采用基于H-T估计量的适应性抽样得出的方差和存在物种的样方数的均值,估计效果都是最好的。
The study of relationship between species distribution and environmental, species distribution simulation and simulation of distribution patterns of biodiversity, which play an important role in theoretical and practical for global changing, biodiversity monitoring, conservation and evaluation, species invasive and so on. However, whether the analysis of relationship between species and environment, or the simulation of the potential distribution area and future distribution trends forecast, the most basic and important task is investigated and recorded the status of species distribution. Forest resource survey, especially the forest resource shows scare, cluster distribution. Such as the rare tree species, shrubs, herbs and other endangered animals, the investigation more difficult to perform, and generally not efficient. To improve the accuracy and efficiency of resource survey for sparse species. The adaptive sampling techniques and methods were used for investigating at home and abroad. But adaptive cluster sampling have some problems, e.g, survey people can not know the distribution of species ahead of time. So, There is very important significance for investigate species resources simply, especially the distribution of forest resource.
     Species distribution models use present species points and absent species points and their corresponding environmental factors to predict all possible species distribution. Adaptive cluster sample combine with species distribution model predict species distribution in advance. The investigation has a target, and greatly improves the efficiency of the investigation. Therefore, the study of species distribution model and its guidance to sampling techniques are extremely important.
     Based on the population data of four species, Elaeagnus angustifolia, Haloxylon ammodendron, Nitraria tangtorum, Tamarix chinensis, which are rare and clustering. Research area lie at the edge of Wulanbuhe desert at Bayangaolei Town in Dengkuo County in west Inner Mongolia. The spatial pattern of four species were studied first. Actual data and remote sensing data were combined. First the application of MaxEnt and GARP species distribution models were studied. Then the research of species distribution model to guide sampling technique was presented. In the study of MaxEnt species distribution model, the radio of training data and test data, change of environment variable, threshold, sample size, quadrat size and species, which influence on predictive accuracy were main studied. However, about GARP species distribution model, only sample size, quadrat size and species were studied. At last, MaxEnt and GARP models were compared. When study on the guidance of species distribution models to sampling technique, first the probability of present species was studied, then the sample method was presented about rare, cluster species under the guidance of species distribution models. Research conclusions and innovations are mainly as follows:
     The main innovations are as follows:
     1. The influence of various factors on predictive accuracy of species distribution was studied.
     2. The method of sampling techniques and species distribution model to study together was presented, and use the results of species distribution model to guide the sampling.
     The main research conclutions are as follows:
     1. Through the study of influence of sample size, quadrat size, species and environment variables,on predictive accuracy, we received that : when the quadrat size is 10×10m, MaxEnt model chooses 100 sample size the accuracy is the best and GARP model choose 150 the accuracy is the best. The predictive accuracy is much large when quadrat size close to resolution of these two models. On the contrary, the predictive accuracy is low.MaxEnt and GARP species distribution models are both better to Elaeagnus angustifolia and Tamarix chinensis, but worse to Haloxylon ammodendron and Nitraria tangtorum. It is proved that different degree of aggregation, received the different predictive accuracy. Different environment variables, different predictive accuracy. And the more variables received higher accuracy.
     2. Based on the design of study area and 10×10m quadrat size. The probability of present species was presented. When the probability more than 0.55, Species Elaeagnus angustifolia and Tamarix chinensis are shown presence. When the probability more than 0.45, Species Haloxylon ammodendron are shown presence. When the probability more than 0.65, Species Nitraria tangtorum are shown presence. When the probability more than 0.45, Species Haloxylon ammodendron are shown presence. When the probability more than 0.65, Species Nitraria tangtorum are shown presence. When the probability more than 0.7, Species Hedysarum scoparium are shown presence. When the probability more than 0.4, Species Artemisia ordosica are shown presence. Overall, When the species distribution overview was known, if the more point of actual distribution, the smaller probability value was choice; if the smaller point of actual distribution, the larger probability value was choice.
     3. Though the study of species distribution models together with sampling technique, it is proved that the species of aggregated distribution use based on HT estimator adaptive sampling is the best.
引文
Anderson,R.P., Lew,D., Peterson,A.T. Evaluating predictive models of species’distributions: Criteria for selecting optimal models. Ecological Modelling, 2003.162: 211-232
    Aspinall, R.. An inductive modeling procedure based on Bayes’theorem for analysis of pattern in spatial data. Int. J. Geogr. Inform. Syst. 1992. 6 (2), 105–121.
    Berger,A.L., Della Pietra,S.A., Della Pietra,V.J. A maximum entropy approach to natural language processing. Computational Linguistics. 1996, 22(1): 39-71.
    Blackman,G.E. Statistical and ecological studies in the distribution of species in plant communities. I. Dispersion as a factor in the study of changes in plants populations. Ann Bot, 1942. 6: 351-371
    Borkowski, J.J. Network inclusion probabilities and Horvitz–Thompson estimation for adaptive simple Latin square sampling. Environmental and Ecological Statistics. 1999, 6, 291–311.
    Brotons,L., Thuiller,W., Araújo,M.B., Hirzel,A.H. Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography.2004,27, 437–448.
    Brown, J.A. The application of adaptive cluster sampling to ecological studies. In Statistics in Ecology and Environmental Monitoring. 1994, pp. 86–97.
    Brown, J.A. The relative efficiency of adaptive cluster sampling for ecological surveys, Mathematical and Information Sciences Report Series B:96/08, Massey University, Palmerton North, Department of Statistics. 1996
    Brown, J.A. Designing an efficient adaptive cluster sample. Environmental and Ecological Statistics.2003, 10, 95–105.
    Brown, J.A. and Manly, B.J.F. Restricted adaptive cluster sampling. Environmental and Ecological Statistics, 1998, 5, 49–63.
    Cairns,D.M. A comparison of methods for predicting vegetation type. Plant Ecology, 2001, 156, 3-18
    Chen,P.F.,Wiley,E.O., Mcnyset,K.M. Ecological niche modeling as a predictive tool: silver and bighead carps in North America. Biological Invasions. 2006, 9, 43–51.
    Christman, M.C. Comparison of efficiency of adaptive sampling in some spatially clustered populations. In ASA Proceedings of the Section on Statistics and the Environment. 1996a, pp. 122–126.
    Christman,M.C. Eciency of adaptive sampling designs for spatially clustered populations, Technical Report, Department of Statistics, Stanford University. 1996b
    Christman, M.C. Efficiency of some sampling designs for spatially clustered populations. Environmetrics, 1997, 8, 145–166.
    Christman, M.C. A review of quadrat-based sampling of rare, geographically clustered populations. Journal of Agricultural, Biological, and Environmental Statistics, 2000, 5(2), 168–201.
    Christman, M.C. and Lan, F. Sequential adaptive sampling designs to estimate abundance in rare populations, In ASA Proceedings of the Section on Statistics and the Environment. 1998, pp. 87–96.
    Christman, M.C.and Lan, F. Inverse adaptive cluster sampling. Biometrics,2001,57,1096-1105
    Christman, M.C. and Pontius, J.S. Bootstrap confidence intervals for adaptive cluster sampling. Biometrics. 2000, 56(2), 503–510.
    Dark SJ. The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis. Diversity and Distribution, 2004, 10, 1 - 9.
    DiBattista, T. Resampling methods for estimating dispersion indices in random and adaptive designs. Environmental and Ecological Statistics. 2003, 10, 83–93.
    Dryver, A.L. and Thompson, S.K.. Improving unbiased estimators in adaptive cluster sampling. In ASA Proceedings of the Section on Survey Research Methods, 1998, pp. 727–731.
    Dud′(?)k, M., Phillips, S.J., Schapire, R.E., Performance guarantees for regularized maximum entropy density estimation. In: Proceedings of the 17th Annual Conference on Computational Learning Theory, ACM Press, New York, 2004. pp. 655– 662.
    Elith,J., Graham,C. H., Anderson,P.R., Dudik,M., Ferrier,S., Guisan,A., Hijmans,R.J., Huettmann,F., Leathwick,J.R., Lehmann,A., Li,J., Lohmann,L. G., Loiselle,B.A., Manion,G., Moritz,C., Nakamura,M., Nakazawa,Y., Overton,J.McC., Peterson,A.T., Phillips,S.J., Richardson,K., Scachetti-Pereira,R., Schapire,R.E., Soberon,J., Williams,S., Wisz,M.S., Zimmermann,N.E. Novel methods improve prediction of species' distributions from occurrence data. Ecography. 2006, 29(2): 129-151.
    Engler, R. et al. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. - J. Appl. Ecol. 2004, 41: 263-274
    Ferrier, S., Watson, G. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Canberra, Australia: NSW National Parks and Wildlife Service. 1996 http://www.deh.gov.au/biodiversity/publications/technical/surrogates.
    Ferrier, S., Watson, G., Pearce, J., Drielsma, M. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. 1. Species-level modeling. Biodivers. Conserv. 2002, 11, 2275–2307.
    Fielding,A.H., Bell,J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 1997, 24: 38-49.
    Goodenough,D.J., Rossmann K, Lusted LB. Radiographic applications of receiver operating characteristic (ROC) curves. Radiology, 1974, 110, 89–95.
    Greig-Smith,P.1952. The use of random and contiguous quadrats in the study of the structure of plant communities. Annual Botany, 16:293-316
    Guisan,A., Edwards,T.C., Hastie,T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 2002,157,89-100
    Hernandez,P.A., Graham,C.H., Master,L.L., Albert,D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006, 29, 773–785.
    Higgins,S.I., Richardson,D.M., Cowling,R.M., Modeling invasive plant spread: the role of plant environment interactions and model structure. Ecology, 1996, 77 (7) : 2043-2054
    Higgins,S.I., Richardson,D.M., Cowling,R.M. Predicting the landscape—scale distribution of alien plants and their threat to plant diversity. Conservation Biology, 1999,13:303-313
    Jaynes, E.T.. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630.
    Jaynes, E.T.. Notes on present status and future prospects. In: Grandy Jr., W.T., Schick, L.H. (Eds.), Maximum Entropy and Bayesian Methods. Kluwer, Dordrecht, The Netherlands. 1990, 1–13.
    Leathwick,J.R., Lehmann,A., Li,J., Lohmann,L.G., Loiselle,B.A., Manion,G., Moritz,C., Nakamura,M., Nakazawa,Y., Overton,J.McC., Peterson,A.T., Phillips,S.J., Richardson,K., Scachetti-Pereira,R., Schapire,R.E., Soberon,J., Williams,S., Wisz,M.S., Zimmermann,N.E. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 2006, 29(2): 129-151.
    Leshowitz,B. Comparison of ROC curves from one- and two-interval rating-scale procedures. The Journal of Acoustical Society of America, 1969, 46, 399–402.
    Manel,S., Williams,H.C., Ormerod,S.J. Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology. 2001, 38, 921–931.
    Matsui,T., Yagihashi,T., Nakaya,T., Tanaka, N., Taoda, H. Climatic controls on distribution of Fagus crenata forests in Japan. Journal of Vegetation Science, 2004a, 15, 57 - 66
    Metz, C.E. Basic principles of ROC analysis. Seminars in Nuclear Medicine. 1978, 8, 283–298.
    Meore, P. G. A test for non-randomness in plant populationa. Ann Bot, 1953, 17:57-62
    McPherson, J.M., Jetz, W., Rogers, D.J. The effects of species’range sizes on the accuracy of distribution models: ecological phenomenon or statistical artifact? Journal of Applied Ecology. 2004, 41, 811–823.
    Moeur,M. Characterizing Spatial Patterns of Trees Using Stem-Mapped Data. Forest Ecology and Manaagement,1993,39(4):756-775.
    Ng, A.Y., Jordan, M.I.. On discriminative versus generative classifiers: a comparison of logistic regression and naive Bayes. Adv. Neural Inform. Process. Syst. 2001, 14, 605–610.
    Peterson,A. T., Papes,M., Kluza, D.A. 2003. Predicting the potential invasive distributions of four alien plant species in NorthAmerica.Weed Science,51: 863-868.
    Peterson,A.T., Cohoon,K.P. Sensitivity of distributional prediction algorithms to geographic data completeness. Ecological Modelling, 1999, 117, 159– 164
    Peterson, A. T., Papes, M. and Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and MaxEnt. Ecography. 2007, 30: 550_560
    Pearson, R.G., Dawson, T.P., Berry, P.M., Harrison, P.A.. Species: a spatial evaluation of climate impact on the envelope ofspecies. Ecological Modelling, 2002, 154, 289 - 300 .
    Pearson, R. G. et al. Predicting species’distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. _ J. Biogeogr. 2007, 34: 102_117.
    Phillips, S. J, Dudik, M., Schapire, R. E. A maximum entropy approach to species distribution modeling∥Proceedings of the 21stInternational Conference on Machine Learning. Banff, Canada. 2004.
    Phillips, S. J., Anderson, R. P., Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006, 190:231-259.
    Robertson, M.P., Villet, M.H., Palmer, A.R. A fuzzy classification technique for predicting species’distributions: applications using invasive alien plants and indigenous insects. Diversity and Distributions, 2004, 10, 461 - 474
    Rocco, E. Constrained inverse adaptive cluster sampling. Journal of Official Statistics, 2003, 19, 45–57
    Rouget, M., Richardson, D.M., Nel, J.L., Le Maitre, D.C., Egoh, B., Mgidi, T. Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Diversity and Distributions. 2004, 10, 475 - 484.
    Salehi, M.M. Comparison between Hansen–Hurwitz and Horvitz–Thompson estimators for adaptive cluster sampling. Environmental and Ecological Statistics. 2003, 10, 115–127.
    Salehi, M.M.Seber GAF. Unbiased estimators for restricted adaptive cluster sampling. Australian and New Zealand Journal of Statistics. 2002, 44:63-74
    Scachetti-Pereira, R. Desktop Garp. Lawrence, Kansas: University of Kansas Center for Research. http ://www.lifemapper.org/desktop-garp/(October 2006) . 2002
    Seber, G.A.F. and Thompson, S.K. Environmental adaptive sampling. In Handbook of Statistics. Volume 12: Environmental Statistics, 1994, pp. 201–220.
    Shannon,C.E. A mathematical theory of communication. Bell Systems Technical J, 1948, 27 (3) : 379-428.
    Smith, D.R., Conroy, M.J. and Brakhage, D.H. Efficiency of adaptive cluster sampling for estimating density of wintering waterfowl. Biometrics, 1995, 51, 777–788.
    Smith, D.R., Villella, R.F. and Lemarie′. Application of adaptive cluster sampling to low-density populations of freshwater mussels. Environmental and Ecological Statistics. 2003.10, 7–15
    Stockwell,D.and Peters,D. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science. 1999, 13: 143-158.
    Stockwell,D.R.B., Noble,I.R. Induction of sets of rules from animal distribution data : a robust and informative method of data analysis. Mathematics and Computers in Simulation. 1992, 33, 385 -390 .
    Stockwell, D.R.B., Peterson, A.T. Effects of sample size on accuracy of species distribution models. Ecological Modelling. 2002, 148, 1–13.
    Su, Z. M.,Quinm II,T. J. Estimator bias and efficiency for adaptive cluster sampling with order Statistics and a stopping rule. Environmental and Ecological Statistics. 2003, 10:17-41
    Swets, J.A. Measuring the accuracy of diagnostic systems.Science. 1988, 240: 1285-1293.
    Thompson, S.K. Adaptive cluster sampling. Journal of the American Statistical Association. 1990, 85, 1050–1059.
    Thompson, S.K. Adaptive cluster sampling: Designs with primary and secondary units. Biometrics. 1991a, 47, 1103–1115.
    Thompson, S.K. Stratified adaptive cluster sampling. Biometrika, 1991b, 78, 389–397.
    Thompson, S.K. Factors in?uencing the efficiency of adaptive cluster sampling.Technical Report Number 94-0301, Technical Reports and Reprints Series, Pennsylvania State University, Department of Statistics. 1994
    Thompson, S.K. Adaptive cluster sampling based on order statistics. EnvironMetrics. 1996, 7, 123–133.
    Thompson, S.K. and Seber, G.A.F. Detectability in conventional and adaptive sampling. Biometrics. 1994, 50, 712–724.
    Thompson, S.K. and Seber G.A.F. Adaptive Sampling. John Wiley & Sons. 1996
    Tom Fawcett.An introduction to ROC analysis.Pattern Recognition Letters.27(2006):861-874
    Wang, R., Wang Y.Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora(Asteraceae) in China.Diversity and Distributions. 2006, 12: 397-408
    Weber, E.F. The alien flora of Europe: a taxonomic and biogeographic review. Journal of Vegetation Science, 1997, 8, 565 - 572.
    Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distribution Working Group. Effects of sample size on the performance of species distribution models. Diversity and Distribution, 2008, 14: 763–773.
    Williams, P.M. Bayesian regularization and pruning using a Laplace prior. Neural Comput. 1995, 7 (1), 117–143.
    Whittaker, R. H.群落生态系统.姚璧君译.北京:科学出版社,1970. 89-93
    Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In: Proceedings of the 21st International Conference on Machine Learning. 2004, pp. 903–910.
    Zimmermann,N.E., Kienast F. Predictive mapping of alpine grasslands in Switzerland: species versus community approach. Journal of Vegetation Science. 1999, 10 , 469 - 482 .
    Zweig, M.H., Cambell, G. Receiver operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry, 1993, 39, 561–577.
    安慧君,张韬.聚集指数边界效应的校正方法与应用.南京林业大学学报(自然科学版) . 2005, 2(3): 57-60
    常杰,葛滢编著.生态学.浙江大学出版社,2001.112-115
    陈立立,余岩,何兴金.喜旱莲子草在中国的入侵和扩散动态及其潜在分布区预测.生物多样性. 2008, 16 (6): 578–585
    冯益明,梁军,吕全等.松突圆蚧在我国潜在的适生性分析林业科学研究.2009, 22(4) : 563-567
    胡艳波,惠刚盈,戚继忠,等.吉林蛟河天然阔叶红松林的空间结构分析.林业科学研究. 2003, 16(5): 523-530
    惠刚盈, Klaus von Gadow, Matthias Albert.角尺度---一个描述林木个体分布格局的结构参数.林业科学. 1999.35(1): 37-42
    惠刚盈, Gadow,K. v.,胡艳波.林分空间结构参数角尺度的标准角选择.林业科学研究. 2004a. 17(6): 687-692
    惠刚盈, Gadow,K. v. ,等.林分分布格局类型的角尺度均值分析方法.生态学报. 2004b. 24(6):1225-1229
    惠刚盈, Gadow,K. v.等著.结构化森林经营.北京:中国林业出版社. 2007
    惠刚盈,冯佳多.森林空间结构量化分析方法.北京:中国科学技术出版社, 2003.
    洪波,陈林,赵惠燕.基于GIS的有害生物分布预测系统研究开发.计算机工程与设计. 2009, 30(2): 499-452
    雷渊才,唐守正.适应性群团抽样技术方法和应用研究进展.林业科学. 2009, 45(3):118-127
    雷渊才,唐守正.适应性群团抽样技术在森林资源清查中的应用.林业科学. 2007, 43(11): 132-138
    李景文.森林生态学.第2版.北京:中国林业出版社. 1992.115-126
    李明辉.天山云杉天然林林分空间格局的研究.乌鲁木齐:新疆农业大学硕士学位论文. 2000. .23-30
    李明辉,何凤华,刘云,潘存德.林分空间格局的研究方法.生态科学.2003,22(1):77-81
    李明阳,巨云为, Sunil Kumar,等.美国大陆外来入侵物种斑马纹贻贝(Dreissena polymorpha )潜在生境预测模型.生态学报. 2008, 28(9): 4253-4258
    李明阳,巨云为,吴文浩等.气候变化情景下外来森林病虫害潜在生境动态分析——以美国南方松大小蠹为例.北京林业大学学报. 2009, 31(4):64-69
    刘恩斌,周国模,葛宏立.基于最大熵原理的浙江毛竹胸径分布及测量不确定度评定.生态学报. 2009, 29(1): 86-91
    刘洪霞,冯益明.双钩异翅长蠹在我国潜在的适生性分析.青岛农业大学学报(自然科学版). 2009, 26 (1) : 24~28
    马克明,祖元刚,倪红伟.1999.兴安落叶松种群格局的分形特征——关联维数.生态学报. 19(3):335-341
    王栋,朱元甡.最大熵原理在水文水资源科学中的应用.水科学进展. 2001, 12(3):424-430
    王颖,章桂明,杨伟东等.基于MAXENT的大豆南北方茎溃疡病菌在中国适生区的预测.植物检疫. 2009, 23(4): 14-17
    王运生,谢丙炎,万方浩,等.相似穿孔线虫在中国的适生区预测.中国农业科学. 2007, 40(11): 2502-2506
    徐进,陈林,许景生等.香蕉细菌性枯萎病菌在中国的潜在适生区域.植物保护学报. 2008, 35(3): 233-238
    徐兰英,李凤日.基于分形理论下的沙漠植被适应性群团抽样技术.植物研究. 2009, 29(3): 333-338
    杨波,薛跃规,唐小飞,等.外来入侵植物飞机草在中国的适生区预测.植物保护. 2009, 35(4): 70-73
    余岩,陈立立,何兴金.基于GARP的加拿大一枝黄花在中国的分布区预测.云南植物研究. 2009, 31(1): 57-62
    张金屯.植被数量生态学方法.北京:中国科学出版社.1995
    张金屯.数量生态学.北京:科学出版社.2004
    张金屯,邱扬,郑凤英.景观格局的数量研究方法.山地学报, 2000,18(4):346-352
    张南松,祝增荣和胡秉民.应用二阶适应性整群抽样估计害虫密度.浙江大学学报(农业与生命科学版),2000,26(6):617~620
    郑耘,杨伟东,章桂明等.李痘病毒适生区预测及模型选择.植物检疫.2009,23(3): 1-4
    钟艮平,沈文君,万方浩,王进军.用GARP生态位模型预测刺萼龙葵在中国的潜在分布区.生态学杂志. 2009, 28(1): 162-166
    周国梁,陈晨,叶军,胡白石,刘凤权.利用GARP生态位模型预测桔小实蝇(Bactrocera dorsalis)在中国的适生区域.生态学报. 2007, 27(8): 3362-3369
    朱光玉.自适应群团抽样在林业中的应用研究.博士论文.中国林业科学研究院, 2006
    左闻韵,劳逆,耿玉英,等.预测物种潜在分布区——比较SVM与GARP.植物生态学报. 2007, 31(4): 711~719

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700