用户名: 密码: 验证码:
工程机械散热模块传热性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,我国经济飞速发展,大批基础建设随即展开。为了适应社会发展与技术进步,作为建设工程的主要施工设备—工程机械,也面临着一系列新的挑战,高效、节能、环保重要性逐步凸显,国家对节能减排的要求也日趋严格。当前,国家正努力向工程机械国III排放标准推进,这些都对产品设计提出了更为严格的要求。
     作为工程机械的代表机型—双钢轮振动压路机,受施工条件影响,工作环境温度较高,同时,动力舱内存在多个发热部件,如果系统热量不能及时散去,将会出现整机性能不稳定等现象。工程机械采用“冷却风扇+散热器组”作为散热模块,利用冷却风扇产生的压差,使空气流经散热器,通过翅片与热流体进行热交换。散热模块性能主要由散热量与功耗表述,散热量与散热器性能相关,功耗与风扇性能相关,散热模块传热性能越好,同功耗下散热量越大,节能效果也就越加明显,因此,对散热模块传热性能研究应分别从冷却风扇、散热器、两者匹配等方面入手。
     论文结合“十二五”国家科技支撑计划课题“面向节能与安全的集成智能化工程机械装备研发”(课题编号:2013BAF07B04),利用CFD技术分别对冷却风扇、散热器、动力舱流场进行数值仿真与性能改进。
     (1)基于改善空气流动状态的冷却风扇研究
     以国内工程机械较为常见的某款冷却风扇作为分析对象,利用CFD数值仿真技术,在虚拟风道内对其性能进行模拟,对比试验数据,验证仿真的正确性。结合孤立翼型法对风扇进行设计,结果表明:新风扇进出口处空气流动状态得到改善,有利于提高散热器性能。
     (2)散热器和风扇间的交互影响分析
     对导风罩内具有散热器阻力特征的风扇性能进行分析,以风扇所能提供的空气流量作为性能评价标准,分别对散热器与风扇距离、散热器厚度、多个散热器组合特征下的风扇性能进行分析,结果表明:随着散热器与风扇距离增加,流量呈先上升再下降的变化趋势;增大散热器厚度,会削弱风扇转速对流量的作用效果;当多个散热器组合后,若中间散热器高度为导风罩高度一半时,受轴流风扇中心低压区偏移影响,空气流量迅速下降。
     (3)基于翼型热管特征的散热器传热性能强化
     结合国内某型双钢轮振动压路机,对其所使用的管片式散热器进行了CFD单元体数值仿真,以强化传热、降低流动阻力为目标,采用NACA0018翼型作为热管外形特征,引入JF综合评价因子对翅片性能进行评价,结果表明:与原翅片相比,当空气流速为12m/s时,新翅片JF综合评价因子高出约15.97%。
     (4)多工况下动力舱流场分析及试验验证
     利用CFD技术,对国内某型双钢轮振动压路机动力舱进行多工况流场分析,并对样机进行现场试验,结果表明:仿真值误差较小;受热空气回流影响,后退工况中的散热器性能好于前进工况,速度越高,差异越大;受风扇偏置影响,中冷器降温幅度较大,液压油散热器较小。
     (5)建立随环境温度变化的风扇转速模型
     以效能—传热单元数法中散热量计算公式为基础,分别针对散热器效能、流体物理性能参数、空气体积流量、冷热流体入口温度等方面,得到以风扇转速与环境温度为自变量的散热量计算模型。在保持散热量不变的前提下,建立各工况下随环境温度变化的风扇转速模型,结果表明:在环境温度-30—45℃区间内,工况2的风扇转速、轴功率整体较高,工况4较低;当环境温度较低时,各工况中风扇轴功率差异较小,当环境温度达到45℃时,差异趋于明显;CFD仿真与一维理论计算相结合是有效的研究途径。
     (6)以降低流通阻力、增大进风量为目标的系统改进
     以降低流通阻力、增大进风量为目标,分别从风扇与散热器位置、动力舱外形特征、散热器阻力特征、冷却风扇特征等方面入手,对国内某型双钢轮振动压路机散热模块进行研究,结果表明:在一定范围内拉大风扇与散热器间距,可以提升散热器性能;改进动力舱几何特征,避免热空气回流,可以提升散热器性能;改进出口方案,确定侧出口方案中的散热器性能较好;改进冷却液散热器阻力特征,散热器性能提升;改进风扇特征,散热器性能有所提升;将单冷却风扇改进为双冷却风扇,转速需与工况相配合,方能提高散热效果。
China’s economy has leapt forward and a large number of infrastructure has startedsince we followed the policy of reform and opening. In order to adapt to socialdevelopment and technical progress, construction machinery is also facing a series of newchallenges as the main construction equipment. Importance of efficiency, energyconservation and environmental protection gradually becomes prominent and thegovernment is more and more strict in energy conservation and emission reduction. Ourcountry is trying to formulate and implement National Ⅲ emission standard forconstruction machinery at present, which means there would be more stringentrequirements for product design.
     Double-drum vibratory roller is widely used in the construction of airports and roadsas a representative of construction machinery. There are many heating parts inside theengine cabin of double-drum vibratory roller, and ambient temperature is high duringworking. If the heat generated by system could not be removed in time, it would makeworking performance unstable. Construction machinery uses “cooling fan&radiatorgroup” as the heat-dissipation module, which uses the differential pressure generated bythe cooling fan to make cold air flow through the radiator for heat exchange between coldair and thermal fluid. The performance of the heat-dissipation module includes heattransfer capacity and power consumption, the former is related to the performance ofradiator and the latter is related to the performance of cooling fan. If the heat-dissipationmodule has better performance, there would be more heat transferred with same powerconsumption, and the energy conservation effect would be more obvious. Therefore, doingresearch on the performance of the heat-dissipation module should start respectively fromcooling fan, radiator and their matching etc.
     Based on the project in the National Science&Technology Pillar Program during theTwelfth Five-year Plan Period,"Intelligent Construction Machinery Design for EnergyConservation and Safety"(NO.2013BAF07B04), aiming to improve performance of theheat-dissipation module, CFD numerical simulation was used in this paper to makeimprovement in performance of cooling fan, radiator and flow field of engine cabin.
     (1) Research on cooling fan for improving inlet air status of radiator
     Based on a cooling fan that is widely used in domestic construction machinery, itsperformance is simulated with CFD numerical method in a virtual wind tunnel. Thesimulation result was compared with the experimental data to verify the correctness ofmodel. The cooling fan is redesigned with single aerofoil method. The results show that theinlet and outlet air status of new fan is improved, which would benefit enhancing radiatorperformance.
     (2) Analysis of interaction between cooling fan and radiator
     The performance of cooling fan in the shroud with radiator resistance was analyzed,actual air flow generated by the fan was taken as the evaluation criterion, the performanceof cooling fan was analyzed under different conditions, which include distance betweenradiator and cooling fan, thickness of radiator and combination of radiators. The resultsshow that the air flow increases at first and decreases then as distance increases. Impact ofrotation speed of fan on the air flow decreases as the thickness increases. With the lowpressure zone near center of rotation offset, air flow decreases rapidly when the height ofradiator is equal to half of shroud height.
     (3) Heat transfer performance enhancement of radiator based on airfoil tube
     CFD was used to simulate performance of element unit of tube-fin radiator that isused by a domestic double-drum vibratory roller. In order to enhance heat transferperformance and reduce flow resistance, NACA0018airfoil was taken as tube geometricalprofile. JF comprehensive evaluation factor was taken to assess fin performance. Theresults show that JF comprehensive evaluation factor of new fin increases about15.97%compared with the original fin.
     (4) Analysis and experimental verification of airflow field of engine cabin undermulti-working condition
     CFD method was used to analyze the airflow field of engine cabin of the domesticdouble-drum vibratory roller under multi-working condition, and the prototype machinewas tested. The results show that the error between the simulation results and experimentdata is small. With the influence of hot-air backflow, The radiator performance underbackward working condition is better than that under forward working condition, vehiclespeed is related to the discrepancy. With the influence of cooling fan excursion, the outlettemperature of thermal fluid of inter-cooler decreases and outlet temperature of thermalfluid of oil radiator changes slightly.
     (5) Building a fan rotation speed model that changes with ambient temperature
     Considering ε, physical parameters, volume flow rate of air and inlet temperature ofcold and thermal fluid, the calculation model that takes cooling fan rotation speed andambient temperature as independent variables was built based on the formula for heatdissipating capacity in ε—NTU. Based on the domestic double-drum vibratory roller, a fanrotation speed model that changes with the ambient temperature was built on the premiseof keeping heat dissipating capacity constant. The results show that within the range from-30℃to45℃, rotation speed and shaft power are higher under forward condition withhigh vehicle speed and they are lower under backward working condition with high vehiclespeed. When ambient temperature is low, there is little discrepancy between shaft powerunder each condition. When the ambient temperature is45℃, the discrepancy becomesobvious. It is an effective research way to combine CFD simulation and one-dimensionaltheoretical calculation.
     (6) System improvement for decreasing flow resistance and increasing air flow
     In order to decrease flow resistance and increase air flow, the improvement ofperformance of heat-dissipation module for the domestic double-drum vibratory roller wasmade in several ways, such as adjusting distance between cooling fan and radiator,changing shape characteristics of the engine cabin, reducing resistance characteristics ofradiator and enhancing performance characteristics of cooling fan. The results show thatradiator performance can be enhanced by the ways mentioned above.
引文
[1]孟宪鹏.现代学科大辞典[M].北京:海洋出版社.1990.
    [2]姚仲鹏.车辆冷却传热[M].北京:北京理工大学出版社.2001.
    [3]张启君.国内外压路机发展概况及趋势[J].交通世界,2005,11:34-38.
    [4]李开亮.节能减排对工程机械的影响[J].工程机械文摘,2010,6:22-26.
    [5]张毅,俞小莉,谭建勋,等.装载机液压系统过热问题研究[J].工程机械,2005,6:47-50.
    [6]王雪莲,秦四成,缪雷,等. ZL50型轮式装载机散热系统过热现象试验研究[J].工程机械,2009,40(2):14-19.
    [7]毕小平,马志雄,韩树,等.装甲车辆发动机冷却却系统空气流动的仿真模型[J].内燃机学报,2002,20(4):373-376.
    [8] HONG R S, JONG M P. A study of the transient analysis technique on the underhood thermaldamage[J]. Sae Technical Paper,2011-28-0126.
    [9]张翔,王佳,杨建中,等.仿真技术在设计发动机冷却系统中的应用[J].天津汽车,2008,11:33-35.
    [10]褚双磊,俞国胜,秦瑞鸿.轴流式风力灭火机的高速轴流风机气动设计与试验研究[J].空气动力学学报,2010,28(5):565-571.
    [11]马良玉,安连锁,王松岭等.大型动(静)叶调节轴流风机通用性能数学模型的建立及工程应用实践[J].动力工程,2000,20(5):900-905.
    [12]李俊.轴流通风机动叶安装角异常的气动特性研究[D].保定:华北电力大学,2008.
    [13]刘飞,吴克启.大型轴流风机来流条件对内流影响的数值分析[J].工程热物理学报,2006,27(增刊1):145-148.
    [14] JACK W, DINAKARA K, WALT O. Cooling inlet aerodynamic performance an systemresistance[J]. Sae Technical Paper,2002-01-0256.
    [15] PETER G, LENNART L, STEVEN A, et al. An investigation and correction method of stationaryfan CFD MRF simulations[J]. Sae Technical Paper,2009-01-3067.
    [16] PETER G, RAJA S. Axial fan performance predictions in CFD, comparison of MRF and slidingmesh with experiments[J]. Sae Technical Paper,2011-01-0652.
    [17] PETER G, LENNART L, PETER N, et al. Continued study of the error and consistency of fanCFD MRF models[J]. Sae Technical Paper,2010-01-0553.
    [18] ALLAN W, ZHIZHU X, HAMID G. Evaluation of the multiple reference frame(MRF) model ina truck fan simulation[J]. Sae Technical Paper,2005-01-2067.
    [19] FOSS J, NEAL D, HENNER M, Moreau S. Evaluating CFD models of axial fans by comparisonswith phase-averaged experimental data[J]. Sae Technical Paper,2001-01-1701.
    [20] ITSUHEI K, YUJI K, YUKIO M. Prediction of the performance of the engine cooling fan withCFD simulation[J]. Sae Technical Paper,2010-01-05484.
    [21]袁凤东,由世俊,高立江.基于CFD的地铁用轴流风机性能模拟[J].流体机械,2006,34(5):26-30.
    [22] PHURIWAT ANUSONTI-INTHRA, WILLIAM L, ANDREAS B, et al. Virtual testing andsimulation methods for aerodynamic performance of a heavy duty cooling fan[J]. Sae TechnicalPaper,2010-01-1925.
    [23] ZHIGANG Y, JEFFREY B, FRED Z S. CFD for flow rate and air re-circulation at vehicle idleconditions[J]. Sae Technical Paper,2004-01-0053.
    [24] NAGESWARA R D, SUKHVINDER K B, RAVI K S, et al. CFD analysis of axial flow fans forradiator cooling in automobile engines[J]. Sae Technical Paper,2007-01-4262.
    [25]毛君,张利蓉,丁飞等.基于FLEUNT的叶轮机械内部流场模拟研究[J].煤矿机械,2006,27(8):48-50.
    [26]谷慧芳,顾平道,张曦.基于CFD的空调用轴流风机内部流场研究[J].流体机械,2007,35(11):29-33.
    [27]姜彩玲,陈江平,陈芝久.空调室外机流场特性研究[J].中国机械工程,2005,16(12):1061-1064.
    [28]王军,金培耕,伍光辉等.空调用轴流风扇系统内流特性分析与应用[J].工程热物理学报,2002,23(3):305-308.
    [29]杨东旭,由世俊,田铖等.利用FLUENT软件模拟地铁专用轴流风机(二)—弯掠组合翼型叶片轴流风机[J].流体机械,2003,31(12):11-13.
    [30]张倩,张磊,张健.空冷岛轴流通风机内流动力学特征的数值模拟[J].风机技术,2010,4:14-17.
    [31] WANLI Z, QIULIN Q, QIYUAN L. Numerical investigation on the flow field of an axial flowfan in a direct air-cooled condenser for a large power plant[J]. Heat Transfer-AsianResearch,2013,42(1):60-72.
    [32]张夏.轴流冷却风机内部流动分析及性能改进研究[D].西安:西北工业大学,2006.
    [33] HENNER M, KESSACI S, MOREAU S. Latest Improvements of CFD models of engine coolingaxial fan systems[J]. Sae Technical Paper,2002-01-1205.
    [34] JIANHUI Z, CHUNXIN Y. Design and Simulation of the CPU Fan and Heat Sinks[J]. IEEETransactions on components and packing technologies,2008,31(4):890-903.
    [35]李剑波.空调风扇及其导风罩匹配的数值模拟与实验研究[D].武汉:华中科技大学,2005.
    [36]石汇林.大型轴流引风机同流部件及其内流特性分析[D].武汉:华中科技大学,2006.
    [37]耿丽珍.轿车发动机冷却风扇CFD仿真分析及降噪研究[D].长春:吉林大学,2007.
    [38]杨文荣,朱鹏.汽车发动机冷却风扇智能控制系统的研究[J].微计算机信息,2009,25(1-2):45-247.
    [39] THOMAS K L, NAILA M-B, FAUSTO V. Read map and technology trends for vehicle enginecooling fan speed control[J]. Sae Technical Paper,2011-01-1334.
    [40]乔慧丽,陈鱼,贾秋红.基于CFD的风机变频节能技术[J].重庆工学院学报(自然科学),2008,22(9):32-35.
    [41]陈峰.车用轴流风机优化分析[D].上海:上海交通大学.2008
    [42]宣益民,张后雷译.紧凑热交换器第三版[M].北京:科学出版社,1997.
    [43]阎玉英,赵凯,玄哲浩等.管片式散热器增强传热的流动显示及分析[J].吉林工业大学学报,1989,4:108-114.
    [44]陈吉安,王登峰,郑联珠等.管带式车用散热器散热特性的试验研究[J].农业机械学报,2000,31(3):84-87.
    [45] CHICHUAN W, KUANYU C. Heat transfer and friction characteristics of plain fin-and-tube heatexchangers, part I:new experimental data[J]. Heat and Mass Transfer,1999,43:2681-2691.
    [46] CHICHUAN W, KUANYU C. Heat transfer and friction characteristics of plain fin-and-tube heatexchangers, part II: Correlation[J]. Heat and Mass Transfer,2000,43:2693-2700.
    [47]董军启.车辆冷却系统空气侧特性研究[D].上海:上海交通大学,2007.
    [48]王贤海.汽车散热器发展现状及新技术[J].重型汽车,2007,6:13-15.
    [49]黄钰期,俞小莉,陆国栋.锯齿型翅片单元的流动与传热数值模拟[J].浙江大学学报(工学版),2008,42(8):1462-1468.
    [50]刘占斌.翅片管换热过程的数值模拟及实验研究[D].西安:西安理工大学,2008.
    [51]王飞,秦四成,赵克利.装载机管片式散热器流动与传热特性数值分析[J].吉林大学学报(工学版),2009,S1:196-199.
    [52] AYTUNC E, BARIS O, LEVENT B, et al. Effect of geometrical parameters on heat transfer andpressure drop characteristics of plate fin and tube heat exchangers[J]. Applied ThermalEngineering,2005,25:2421-2231.
    [53]袁志群,谷正气,何亿斌,等.汽车散热器结构参数对空气流动阻力特性影响[J].科技导报,2008,26(21):52-56.
    [54] BALARAM K, KWAN-SOO L. Thermal design of an orthotropic flat fin in fin-and-tube heatexchangers operating in dry an wet environments[J]. Heat and Mass Transfer,2010,30:1438-1446.
    [55]肖宝兰,俞小莉,韩松,等.散热带翅片参数对车用水箱散热器流动传热性能的影响[J].内燃机工程,2010,31(3):85-89.
    [56]肖宝兰,俞小莉,韩松,等.翅片参数对车用中冷器流动传热性能的影响[J].浙江大学学报(工学版),2010,4(11):2164-2178.
    [57]徐振元.工程车辆波纹翅片散热器特性分析与应用研究[D].长春:吉林大学.2012.
    [58]李化,施光明.紧凑换热器传热试验平台设计[J].四川化工,2005,8(3):4-9.
    [59]莫春兰.车用发动机管带式散热器性能的研究[D].南宁:广西大学,2001.
    [60] WITRY A, AL-HAJERI M H, BONDOK A A. Thermal performance of automotive aluminiumplate radiator[J]. Applied Thermal Engineering,2005,25:1207-1218.
    [61] OLIET C, OLIVA A, CASTRO J, et al. Parametric studies on automotive radiators[J]. AppliedThermal Engineering,2007,27:2033-2043.
    [62] HAK J K, CHARN-JUNG K. A numerical analysis for the cooling module related to automobileair-conditioning system[J]. Applied Thermal Engineering.2008,28:1896-1905.
    [63]常贺,袁兆成.基于CFD方法的汽车散热器仿真研究[J].硅谷,2009,19:8-10.
    [64]袁兆成,朱晴,王吉,等.汽车管带式散热器仿真设计方法的研究[J].内燃机工程,2011,32(2):85-88.
    [65]张斌彧.汽车发动紧凑型冷却系统的研究[D].广州:广东工业大学,2012.
    [66] GRETCHEN R. Analytical investigation of flow stagnation in a pumped fluid loop radiator[J].Sae Technical Paper,2007-01-3260.
    [67] CHICHINDAEV A V. Heat Transfer of Humid-Air Flow in a Compact Heat Exchanger withPlate Ribbing[C].3rd International Forum on Strategic Technologies, IFOST-2008,Novosibirsk-Tomsk, June23-292008, New Jersey: Inst. of Elec. and Elec. Eng. ComputerSociety.
    [68] LIZHI Z. Heat and mass transfer in a quasi-counter flow membrane-based total heat exchanger[J].Heat and Mass Transfer,2010,53:5478-5486.
    [69] ZIRONG L, SHUANGFENG W, JIEPENG H, et al. Heat transfer characteristics and LED heatsink application of aluminum plate oscillating heat pipes[J]. Applied ThermalEngineering,2011,31:2221-2229.
    [70]王安麟,李晓田,慈健,等.基于参数敏感分析的管片散热器再设计方法[J].同济大学学报(自然科学版),2009,37(10):1398-1402.
    [71] MARTINEZ A, VIAN J G, ASTRAIN D, A RODRIGUEZ. Optimization of heat exchangers of athermoelectric generation system[J]. Journal of Electronic materials,2010,39(9):1463-1468.
    [72] JONN A M, STURE H. Improving the thermal performance of ventilation radiators-the role ofinternal convection fins[J]. International Journal of Thermal Science,2011,50:115-123.
    [73] PEYGHAMBARZADEH S M, HASHEMABADI S H, SEIFI J M, et al. Improving the coolingperformance of automobile radiator with Al2O3/water nanofluid[J]. Applied ThermalEngineering,2010,31:1833-1838.
    [74] BINGLU R, ANTHONY M J. Investigation on inter tube falling-film heat transfer and modetransitions of aqueous-alumina nanofluids[J]. Journal of Heat Transfer,2011,133:1-11.
    [75]钟勋,俞小莉,张宇,等.纳米流体体柴油机机油冷却器传热试验设计[J].内燃机学报,2011,29(1):67-71.
    [76] Ng EY, Watkins S. New pressure-based methods for quantifying radiator airflow[J]. Proceedingsof The Institution of Mechanical Engineers Part D-Journal of AutomobileEngineering,2004,218(D4):361-372.
    [77]张毅.车辆散热器模块流动与传热问题的数值分析与试验研究[D].杭州:浙江大学,2006.
    [78] JAE S K, ALLAN W, MICHAEL W C. Transient conjugate CFD simulation of the radiatorthermal cycle[J]. Sae Technical Paper,2006-01-1577.
    [79]张毅,俞小莉,陆国栋,等.安装参数影响散热器模块性能的风洞研究[J].汽车工程,2006,28(5):455-459.
    [80]张毅,俞小莉,陆国栋,等.装载机散热器模块进出口位置匹配试验[J].农业机械学报,2007,38(1):41-44.
    [81]陆国栋,俞小莉,夏立峰.中冷器位置对柴油发电机冷却组性能的影响[J].农业机械学报,2007,38(2):69-71.
    [82]刘晓俊.车辆散热器模块试验研究[D].杭州:浙江大学,2010.
    [83]颜卫国,俞小莉,陆国栋.热管中冷器与前段冷却模块的匹配优化研究[J].内燃机工程,2012,33(1):44-48.
    [84]吕锋,俞小莉,陆国栋,等.密封对柴油机冷却模块性能影响的试验研究[J].内燃机工程,2012,33(3):45-48.
    [85] JOHN J M. Internal heat exchanger heat transfer and pressure drop effect on system performanceand compressor discharge temperature[J]. Sae Technical Paper,2012-01-0318.
    [86] ARNE A. Installation influence on cooling fan air flow[J]. Sae Technical Paper,971785.
    [87] TODD S, TRAVIS C. Fan and heat exchanger flow interactions[J]. Sae TechnicalPaper,2005-01-2004.
    [88] TIM J. Investigation and assessment of factors affecting the underhood cooling air flow usingCFD[J]. Sae Technical Paper,2008-01-2658.
    [89] FELIX R A. A numerical analysis on air-cooling performance of passenger cars[J]. Sae TechnicalPaper,2010-01-0554.
    [90]王海航,段耀龙,胡惠祥,等.发动机冷却风扇与冷却系统匹配[J].车用发动机,2012,2:1-6.
    [91]徐锦华,倪计民,石秀勇,等.车用冷却风扇安装位置对其性能影响的分析研究[J].汽车技术,2012(1):1-4.
    [92] KISHOR U, VIKRAM T, ASHOK J, et al. Design and development of radiator fan forautomotive application[J]. Sae Technical Paper,2012-01-0555.
    [93] NGY S A, PASCAL G, PHILIPPE J. Influence of front end vehicle, fan and shroud on heatperformance of A/C condenser and cooling radiator[J]. Sae Technical Paper,2002-01-1206.
    [94] P DUBE, S NATRAJAN, A MULEMANE, et al. A numerical approach to develop the front endcooling package in a vehicle using predicted engine fan performance data and vehicle systemresistances[J]. Sae Technical Paper,2007-01-0542.
    [95] MICHAEL S. On-system engine cooling fan measurement as a tool for optimizing cooling systemairflow performance and noise[J]. Sae Technical Paper,2011-01-1169.
    [96]陈志延,叶晓燕,赵洁.基于AT89S52的风扇自控系统设计[J].科技广场,2008,5:27-29.
    [97] MAHMOUD K, FAREED M, HISHAM E H, et al. Fan air flow analysis and heat transferenchancement of vehicle underhood cooling system-towards a new control approach for fuelconsumption reduction[J]. Applied Energy,2012,91:439-450.
    [98] SALAH M, MITCHELL T. A smart multiple-loop automotive cooling system model, control, andexperimental study[J]. IEEE-ASME Transactions on Mechatronics,2010,15(1):117-124.
    [99] D GANGA CHARYULU, GAJENDRA S, J K SHARMA. Performance evaluation of a radiatorin a diesel engine-a case study[J]. Applied Thermal Engineering,1999,19:625-639.
    [100]毕小平,马志熊,韩树,等.装甲车辆发动机冷却系统空气流动的仿真模型[J].内燃机学报,2002,20(4):373-376.
    [101]毕小平,黄小辉,王普凯.装甲车辆动力舱温度场试验研究[J].装甲兵工程学院学报,2009,23(2):26-28.
    [102]赵义贤,毕小平,刘西侠,等.装甲车辆传热仿真研究[J].兵工学报,2004,25(1):5-8.
    [103]刘西侠,曹玉坤,毕小平.坦克动力舱空气流动与传热研究综述[J].兵工学报,2007,28(8):1011-1016.
    [104]李瀚飞,张豫南,王冬,等.装甲车辆传动系统动力舱流场仿真研究[J].系统仿真学报,2009.21(8):2405-2409.
    [105]王敬,邵朋礼,魏来生,等.车辆传动系统热平衡计算与仿真研究[J].工程设计学报,2003,10(6):315-320.
    [106]许翔,杨定富,刘刚,等.装甲车辆传动装置综合传热建模与仿真研究[J].系统仿真学报,2011,23(9):2023-2028.
    [107]谢永奇,余建祖,高红霞.直升机动力舱通风冷却系统仿真[J].航空动力学报,2006,21(2):297-302.
    [108]刘毅,周大森,张红光.车用内燃机整机热平衡动态传热模型[J].内燃机工程,2006,27(6):47-50.
    [109]李迎,俞小莉,陈红岩,等.发动机冷却系统流固耦合稳态传热三维数值仿真[J].内燃机学报,2007,25(3):252-257.
    [110]李贵,朱壮瑞,孙蓓蓓.滑移装载机动力舱内空气流场数值模拟研究[J].工程机械,2009,40(10):28-31.
    [111] SHAOLIN M, CHANGRUI C, XIANCHANG L, et al. Thermal/structural analysis of radiatorsfor heavy-duty trucks[J]. Applied Thermal Engineering,2010,30:1438-1446.
    [112] SHAOLIN M, ZHIGANG F, MICHAELIDES E E. Off-high heavy-duty truck under-hoodthermal analysis[J]. Applied Thermal Engineering,2010,30:1726-1733.
    [113]秦四成,王雪莲,秦司南.轮式装载机热源系统空气场特征分析[J].中国公路学报,2010,23(3):123-126
    [114]王飞. ZL50型装载机动力舱空气流动与换热分析[D].长春:吉林大学,2010.
    [115]高青.汽车动力舱多热力系统模型分析方法[J].汽车工程学报,2012,2(1):8-15.
    [116]钱研.耦合空调动力舱气动冷却过程分析[D].长春:吉林大学,2012
    [117]刘佳鑫,秦四成,孔维康,等.虚拟风洞下车辆散热器模块传热性能数值仿真[J].吉林大学学报(工学版),2012,42(4):834-839.
    [118]刘佳鑫,秦四成,徐振元,等.工程车辆散热器模块散热性能数值仿真[J].西南交通大学学报,2012,47(4):623-628.
    [119]刘佳鑫,秦四成,徐振元,等.基于CFD仿真的车辆散热器模块传热性能对比分析[J].华南理工大学学报(自然科学版),2012,40(5):24-29.
    [120] CHANWOO P, ARUN K J. Thermal analysis of cooling system in hybrid electric vehicles[J].Sae Technical Paper,2002-01-0710.
    [121] HSIEH C T, JANG J Y.3-d thermal-hydraulic analysis for airflow over a radiator and engineroom[J]. International Journal of Automotive Technology,2007,8(5):659-666.
    [122] LANG G, KITANOSKI F, KUSSMANN C. Principal Aspects and simulation of a hybriddemonstrator vehicle's cooling system[J]. Sae Technical Paper,2007-01-3483.
    [123] SUNGJIN P, DOHOY J. Numerical Modeling and simulation of vehicle cooling systemfor a heavy duty series hybrid electric vehicle[J]. Sae Technical Paper,2008-01-2421.
    [124]王剑鹏,秦四成,田中笑.50型轮式装载机液压系统热平衡分析与验证[J].工程机械,2008,39(9):54-57.
    [125]王剑鹏.50型装载机液压系统动态特性与热平衡研究[D].长春:吉林大学,2011.
    [126]毕小平,吕良栋,周国印.基于CFD分析的车辆冷却风道综合性能评价[J].内燃机工程,2012,33(3):49-53.
    [127]顾宁,倪计民,仲韵,等.基于KULI的发动机热管理瞬态模型的参数设计与仿真[J].计算机应用,2009,29(7):1963-1965.
    [128]张翔,王佳,杨健中,等.应用Kuli软件设计发动机冷却系统[J].北京汽车,2009,2:39-41.
    [129]傅立敏.汽车超车过程的空气动力特性研究[J].空气动力学学报,2007,25(3):351-356.
    [130]傅立敏.队列行驶车辆的空气动力特性[J].吉林大学学报(工学版),2006,36(6):871-875.
    [131]傅立敏,贺宝琴,吴允柱,等.队列行驶车辆间距对气动特性的影响[J].汽车工程,2007,29(5):365-400.
    [132]吴学凤,黄家友.弯掠动叶在对旋通风机中的应用[J].风机技术,2006,2:22-23.
    [133]周建辉,杨春信. CPU轴流风扇参数化设计模拟及其应用[J].电子学报,2006,36(8):1526-1531.
    [134]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004:120-124.
    [135] GB/T1236-2000工业通风机用标准化风道进行性能试验[S].
    [136]吴秉礼.轴流通风机的工程设计方法—设计手册[M].长春:吉林大学出版社,2007.
    [137]蔡娜,李地,钟芳源.弯掠动叶气动—声学优化设计及实验研究[J].上海交通大学学报,1997,31(2):81-85.
    [138]蔡娜,钟芳源.弯掠动叶扩大稳定工作范围的实验研究[J].航空动力学报,1996,11(3):229-232.
    [139]李庆宜.通风机[M].北京:机械工业出版社,1986.
    [140]周建辉,杨春信.航空电子设备冷却轴流风扇优化设计[J].航空动力学报,2008,24(3):634-642.
    [141]王军,于文文,姚瑞峰,等.冷却用弯掠轴流风机的变型设计与数值分析[J].流体机械,2012,40(2):20-23.
    [142] TIMOTHY C S, DHANANJAY S J. Engin cooling module sizing using combined1-Dimensional and CFD modeling tools[J]. Sae Technical Paper,2009-01-1177.
    [143]教育部面向21世纪热工课程改革项目组,热工课程在工科各专业人才培养中的地位及设置建议[J].高等工程教育,2000,增刊:6-11.
    [144]郭丽华.锯齿型错列翅片冷却器的传热、阻力及工艺特性的研究[D].上海:上海交通大学,2007.
    [145]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2009.
    [146]田宇.大型飞机气动设计[J].航空科学技术,2007,2(1):32-34.
    [147]吕明忠.计算机数值仿真在汽车外流场分析方面的应用研究[J].计算机辅助设计与图形学学报,2002,14(2):181-184.
    [148] ETON Y NG, PETER J S, WATKINS L G. Wind-Tunnel Tests of vehicle cooling systemperformance at high blockage[J]. Sae Technical Paper,2000-01-0351.
    [149]田杰.空调器室外机轴流风机系统内部复杂流动及其气动声学研究[D].上海:上海交通大学,2009.
    [150]张玉成,仪登利,冯殿义.通风机设计与选型[M].北京:化学工业出版社.2011.
    [151]沈学锋,马志雄,刘西侠.装甲车辆动力舱冷却空气流动特性测试系统设计及流量测试方法[J].铁道机车车辆,2003,23(s1):156-158.
    [152]毕小平,马志雄,韩树等.装甲车辆发动机冷却系统空气流动的仿真模型[J].内燃机学报.2002,20(4):373-376.
    [153] WILLIAMS J. An automotive Front-End design approach for improved aerodynamics cooling[J].Sae Technical Paper,850281.
    [154]吕锋.商用车冷却模块匹配设计方法研究[D].杭州:浙江大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700