用户名: 密码: 验证码:
开式冷水型转轮除湿空调理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转轮式除湿空调是进行生产和生活环境湿度调节、实现温湿度独立控制的有效方式。如何提高能量转换利用效率、增强热湿处理能力是转轮式除湿空调研究的重要方向。本文针对传统转轮式除湿空调性能系数受限以及显热处理能力不足的问题,提出了“开式冷水型转轮除湿空调”,结合了等温除湿可以最小化干燥除湿过程的不可逆损失和再生式蒸发冷却理想情况下趋于可逆的特性,在干燥除湿的同时,输出较低温度冷水,不仅可以改善显热处理能力,而且利于实现由低品位热能驱动的温湿度独立控制。本文具体工作如下:
     首先,对典型通风式转轮除湿空调循环进行热力学分析,形成了适用于转轮式除湿空调的热力学分析方法和评价指标。在此基础上,针对传统转轮式除湿空调热力性能受限以及显热处理能力不足的问题,提出了基于等温除湿和再生式蒸发冷却的开式冷水型转轮除湿空调循环。其空调方式是通过两级转轮除湿过程对空气进行潜热负荷处理,显热负荷的处理则是利用修正的再生式蒸发冷却过程制取冷冻水实现。从循环形式上讲,开式冷水型转轮除湿空调与传统两级转轮混合式除湿空调具有相似性,都是先通过两级转轮除湿过程对空气进行潜热负荷处理,再对空气进行显热负荷处理;主要区别在于显热负荷的处理方式,两级转轮混合式除湿空调是引入空气源热泵等传统空调设备,开式冷水型转轮除湿空调则采用以低品位热能驱动所制取的低温冷水。与传统转轮式除湿空调相比,开式冷水型转轮除湿空调的制冷空调能力和能量利用效率均得以大幅提升。能量利用效率相当的情况下,开式冷水型转轮除湿空调较之两级转轮除湿空调,送风比火用增大约10%。与两级转轮混合式除湿空调相比,相同送风状态和制冷量条件下,开式冷水型转轮除湿空调的热力性能系数和火用效率提高约30%。
     其次,对开式冷水型转轮除湿空调的近似空调系统——基于两级转轮除湿和空气源热泵的混合式空调进行研究,通过典型工况下的实验测试、季节性热力性能分析以及适用性讨论,探明了该类型空调系统的运行特性,为后续开式冷水型转轮除湿空调的研究奠定了可行性基础和参照,同时也为两级转轮混合式除湿空调在太阳能等低品位热能利用方面提供了支持。高湿气候条件下,独立的太阳能两级转轮除湿空调通常只能进行潜热负荷处理,难以实现显热负荷处理,需要引入辅助冷却设备,组成太阳能两级转轮混合式除湿空调。两级转轮混合式除湿空调以太阳能驱动时,不仅能量利用效率高,而且具有良好的适用性。典型气候条件下,混合式除湿空调系统的夏季平均热力性能系数在0.9左右,相应太阳能贡献率和节电率在30%左右。
     第三,搭建了开式冷水型转轮除湿空调的实验装置,对基于两级转轮除湿和再生式蒸发冷却的冷冻水制取过程进行实验测试,并比较分析新型开式冷水型转轮除湿空调与传统两级转轮除湿空调的热力性能,完成了对开式冷水型转轮除湿空调的可行性实验验证。测试结果表明,开式冷水型转轮除湿空调所制取的冷水能有效地实现显热负荷处理,可以成为两级转轮混合式除湿空调的一种替代。独立冷冻水制取系统的热力性能系数为0.3~0.6,平均供水温度为15.1~20.7oC。开式冷水型转轮除湿空调的热力性能系数为0.8~0.9,送风含湿量相同的情况下,其送风温度较之传统两级转轮除湿空调大大降低,特别是在湿润和高湿工况下,传统系统显热处理能力不足,有效制冷量较小,需要更高品位的热能驱动才能实现独立运行,而新型系统则克服了这一问题,更加有利于低品位热能的利用。
     最后,在理论分析和实验研究的基础上,建立了开式冷水型转轮除湿空调的数学模型,并对开式冷水型转轮除湿空调的热质传递特性、可及处理区域和热湿处理能力进行了分析,比较了开式冷水型转轮除湿空调和传统两级转轮除湿空调热湿处理能力的差异,明确了新型空调方式在热湿处理能力(特别是显热处理能力)方面的改善程度。可及处理区域分析表明,开式冷水型转轮除湿空调具有良好的适用性,50~90oC热源基本可以满足温和、湿润和高湿气候下的驱动要求。与传统转轮式除湿空调相比,开式冷水型转轮除湿空调在显热负荷处理方面具有极大的优势,有利于突破传统系统所固有的(尤其是高湿工况下)显热处理能力不足的限制。
Rotary desiccant air conditioning is advantageous in being free from CFCs, using lowgrade thermal energy and controlling humidity and temperature separately. Thus, it hasbeen recognized as a viable alternative to vapor compression refrigeration for spacecooling. Ongoing research and development works suggest that the optimization of cycleconfiguration and the reduction of adsorption effect have significant potential forimproving the resource utilization rate and enhancing the sensible and latent handlingability of rotary desiccant dehumidification and air conditioning cycle. Up to now, varioustypes of cycles have been proposed and investigated, which have contributed greatly to theimprovement and the promotion of the technology. For the purpose of breaking theobstacle of limited temperature reduction encountered by conventional desiccant coolingcycle, a novel rotary desiccant cooling cycle is proposed in this paper. Especially, thetechnologies of isothermal dehumidification and regenerative evaporative cooling areincorporated by this cycle. In addition to dehumidification, the cycle is capable ofproducing chilled water, thereby realizing independent temperature and humidity controlwith low grade heat source.
     Firstly, the thermodynamic characteristics of the basic ventilation cycle are analyzed.Appropriate methodology and thermodynamic indexes for evaluating the performance ofthe rotary desiccant cooling cycle are developed. Based on this, a novel rotary desiccantcooling cycle incorporating isothermal dehumidification and regenerative evaporativecooling is proposed. It can provide dry air and chilled water simultaneously and overcomesthe problem of limited sensible handling ability encountered by conventional cycles.Furthermore, the cycle can also be designed as a standalone chilled water plant. As a rotarydesiccant dehumidification-based chilled water producing technology, it would expanddesiccant cooling to a boarder niche application. In view of air conditioning, the novelcycle remove latent heat load by two-stage dehumidification, and sensible heat load by the produced chilled water. Hence, it is similar to the conventional hybrid two-stage rotarydesiccant cooling cycle in system configuration. The main difference lies in the treatmentof sensible heat load. The hybrid two-stage cycle usually adopts conventional coolingequipment like air-source heat pump, and the novel cycle uses the produced chilled water.Both the air conditioning ability and the energy utilization rate of the novel cycle are muchhigher than those of the conventional cycles. With similar energy utilization rate, thesupply air specific exergy of the novel cycle is about10%higher than the conventionaltwo-stage cycle. Compared with hybrid two-stage rotary desiccant cooling cycle, both thethermal coefficient of performance and the exergy efficiency of the novel cycle areincreased by about30%.
     Secondly, hybrid two-stage rotary desiccant cooling cycle, which is similar to theproposed cycle, is studied. The operating characteristics, the seasonal performance and thesuitability of the hybrid cycle are investigated and discussed. It is found that, standalonesolar driven two-stage rotary desiccant cooling cycle can’t accomplish the treatment ofsensible heat under high humid conditions. Auxiliary cooler must be incorporated. Thehybrid cycle not only has favorable cooling capacity and energy utilization rate, but alsocan be applied to a wide range of operating conditions. Based on the typical meteorologicalyear data of Beijing, Shanghai and Hong Kong, the seasonal average thermal coefficientperformance of the cycle is around0.9, with a solar fraction and electric power saving ratearound30%. Being similar to the hybrid cycle in principle, the prospect of the proposedcycle is suggested to be favorable.
     Thirdly, the experimental setup of the novel cycle is configured. The isothermaldehumidification and regenerative evaporative cooling-based chilled water producingprocess is tested. The operating characteristics of the novel cycle are analyzed incomparison with those of the conventional cycle. The results demonstrate that theproduced chilled water of the novel cycle can remove the sensible heat effectively. It istherefore proved to be a promising alternative to the hybrid two-stage rotary desiccantcooling cycle. The supply chilled water temperature of the chilled water producing processis around15.1-20.7oC, with a thermal coefficient performance of about0.3-0.6. Thethermal coefficient of performance of the novel isothermal dehumidification andregenerative evaporative cooling-based cycle is about0.8-0.9. With the same moistureremoval, the temperature of the supply air is lowered greatly in comparison with the conventional cycle. Especially, under the conditions of humid and high humid, theeffective cooling capacity of the conventional cycle becomes much low due to limitedtemperature reduction ability. In these cases, relatively higher grade heat source is neededto realize standalone operations. Nevertheless, the novel cycle overcomes this problem andis more promising for low grade heat sources utilization.
     Finally, on the basis of the thermodynamic analysis and experimental investigation,the model of the novel isothermal dehumidification and regenerative evaporativecooling-based rotary desiccant cooling cycle is established. The characteristics of heat andmass transfer, the attainable handling region and the sensible and latent heat handlingability of the cycle are analyzed. Investigations on attainable handling region suggest thatthe cycle is applicable to a wide range of weather conditions. Favorable supply chilledwater and qualified supply air can be provided by the cycle with heat source of50-90oC inmost cases under the climates of temperate, humid and even high humid. Moreover,compared with the conventional desiccant cooling cycle, the novel cycle can handle air to amuch lower temperature without diminishing in thermal performance. This is of greatbenefit to breaking the obstacle of limited temperate reduction encountered byconventional desiccant cooling cycle.
引文
[1]赵荣义,范存养,薛殿华,钱以明.空气调节.北京:中国建筑工业出版社,2000.
    [2]张立志.除湿技术.北京:化学工业出版社,2005.
    [3]刘晓华,江亿.温湿度独立控制空调系统.北京:中国建筑工业出版社,2006.
    [4]尉迟斌,卢士勋,周祖毅.实用制冷与空调工程手册.北京:机械工业出版社,2002.
    [5] La D, Dai YJ, Li Y, Wang RZ, Ge TS. Technical development of rotary desiccantdehumidification and air conditioning: A review. Renewable and Sustainable Energy Reviews,2010,14(1):130-147.
    [6] Murphy P. IEA Solar Heating&Cooling Programme,2004Annual Report. Washington, USA,2005.
    [7] Collier RK. Desiccant properties and their affect on cooling system performance. ASHRAETransactions,1989,95(1):823-827.
    [8] Waugaman DG, Kini A, Kettleborough CF. A review of desiccant cooling systems. Journal ofEnergy Resources Technology,1993,115(1):1-8.
    [9] Collier RK, Cale TS, Lavan Z. Advanced desiccant materials assessment, Final report. GasResearch Institute Report GRI-86/0182,1986.
    [10] Collier RK. Advanced desiccant materials assessment, Phase2, Final report. Gas ResearchInstitute Report GRI-88/0125,1988.
    [11]方玉堂,蒋赣.转轮除湿机吸附材料的研究进展.化工进展,2005,24(10):1131-1135.
    [12]李鑫,李忠,韦利飞,肖静,肖利民.除湿材料研究进展.化工进展,2004,23(8):811-815.
    [13]丁静,杨晓西,苏茂尧,梁世中,谭盈科.吸附式空调系统的原理及添加剂强化吸附工质性能的研究.离子交换与吸附,1998,14(2):166-170.
    [14] Aristov YI. New family of solid sorbents for adsorptive cooling: Material scientist approach.Journal of Engineering Thermophysics,2007,16(2):63-72.
    [15] Liu YF, Wang RZ. Pore structure of new composite adsorbent SiO2·xH2O·yCaCl2with highuptake of water from air. Science in China, Series E2003,46(5):551-559.
    [16]张学军.硅胶-卤素盐复合干燥剂转轮除湿性能研究.博士学位论文,上海交通大学,机械与动力工程学院,2003.
    [17] Jia CX, Dai YJ, Wu JY, Wang RZ. Use of compound desiccant to develop high performancedesiccant cooling system. International Journal of Refrigeration,2007,30(2):345-353.
    [18] Tokarev M, Gordeeva L, Romannikov V, Glanzev I, Aristov YuI. New composite sorbent CaCl2inmesopores for sorption cooling/heating. International Journal of Thermal Sciences,2002,41(5):470-474.
    [19] Thoruwa TFN, Johnstone CM, Grant AD, Smith JE. Novel, low cost CaCl2based desiccants forsolar crop drying applications. Renewable energy,2000,19(4):513-520.
    [20] Jia CX, Dai YJ, Wu JY, Wang RZ. Experimental comparison of two honeycombed desiccantwheels fabricated with silica gel and composite desiccant material. Energy Conversion andManagement,2006,47(15-16):2523-2534.
    [21] Pennington NA. Humidity changer for air conditioning. USA, Patent No.2700537,1955.
    [22] Sand JR, Fischer JC. Active desiccant integration with packaged rooftop HVAC equipment.Applied Thermal Engineering,2005,25(17-18):3138-3148.
    [23] Dunkle RV. A method of solar air conditioning. Mech. and Chem. Engrg. Trans. Inst. Engrs,1965,73:73-78.
    [24] Maclaine-cross IL. A Theory of Combined Heat and Mass Transfer in Regenerations, PhD Thesis,Monash University. Australia,1974.
    [25] Maclaine-cross IL. High-performance adiabatic desiccant open-cooling cycles. Journal of SolarEnergy Engineering,1985,107(1):102-104.
    [26] Waugaman DG, Kettleborough CF. Combining direct and indirect evaporative cooling with arotating desiccant wheel in residential applications. Proceedings of the ASME InternationalThermal and Solar Energy Conference, Honolulu, Hawaii,1987.
    [27] Wurm J, Kosar D, Clemens T. Solid desiccant technology review. Bulletin of the InternationalInstitute of Refrigeration,2002,82(3):2-31.
    [28] Glav BO. Air conditioning apparatus. USA, Patent No.3251402,1966.
    [29] Collier RK, Cohen BM. An analytical examination of methods for improving the performance ofdesiccant cooling systems. Journal of Solar Energy Engineering,1991,113(3):151-163.
    [30] Worek WM, Zheng W, Belding WA, Novosel D, Holeman WD. Simulation of advanced gas-fireddesiccant systems. ASHRAE Transactions,1991,97(2):609-614.
    [31]葛天舒.转轮式两级除湿空调理论与实验研究.博士学位论文,上海交通大学,机械与动力工程学院,2009.
    [32] Meckler G. Two-stage desiccant dehumidification in commercial building HVAC systems.ASHRAE Transactions1989,95(2):1116-1123.
    [33] Henning HM. Solar assisted air conditioning of buildings-an overview. Applied ThermalEngineering2007,27(10):1734-1749.
    [34] Mei VC, Chen FC, Lavan Z, Collier RK, Meckler G. An assessment of desiccant cooling anddehumidification technology. OAK Ridge National Laboratory,1992, available to public from theNational Technical Information Service, US Department of Commerce,52825Port Royal Rd.,Springfield, VA22161.
    [35] Zhang H, Niu JL. Two-stage desiccant cooling system using low-temperature heat. BuildingServices Engineering Research and Technology1999,20(2):51-55.
    [36] Ge TS, Li Y, Wang RZ, Dai YJ. Experimental study on a two-stage rotary desiccant coolingsystem. International Journal of Refrigeration2009,32(3):498-508.
    [37] Ge TS, Dai YJ, Wang RZ, Li Y. Experimental investigation on a one-rotor two-stage desiccantcooling system. Energy2008,33(12):1807-1815.
    [38] Maclaine-Cross IL, Banks PJ. Coupled heat and mass transfer in regenerators-prediction using ananalogy with heat transfer. International Journal of Heat and Mass Transfer,1972,15(6):1225-1242.
    [39] Van Leersum J. An analytical examination of three open-cycle cooling systems. ASME Journal ofSolar Energy Engineering,1984,106:312-321.
    [40] Kodama A, Hirayama T, Goto M, Hirose T, Critoph RE. The use of psychrometric charts for theoptimization of a thermal swing desiccant wheel. Applied Thermal Engineering,2001,21:1657-1674.
    [41] Li Y, Sumathy K, Dai YJ, Zhong JH, Wang RZ. Experimental study on a hybrid desiccantdehumidification and air conditioning system. Journal of Solar Energy Engineering,2006,128(1):77-82.
    [42] Burns PR, Mitchell JW, Beckman WA. Hybrid desiccant cooling systems in supermarketapplications. ASHRAE Transactions,1985,91(p1B):457-468.
    [43] Dhar PL, Singh SK. Studies on solid desiccant based hybrid air-conditioning systems. AppliedThermal Engineering,2001,21(2):119-134.
    [44] Sheridan JC, Mitchell JW. A hybrid solar desiccant cooling system. Solar Energy,1985,34(2):187-193.
    [45] Maclaine-Cross I. Hybrid desiccant cooling in Australia. Australian Refrigeration, AirConditioning and Heating,1987,41(5):16-25.
    [46] Worek WM, Moon CJ. Desiccant integrated hybrid vapor-compression cooling: Performancesensitivity to outdoor conditions. Heat Recovery Systems and CHP,1988,8(6):489-501.
    [47] Capozzoli A, Mazzei P, Minichiello F, Palma D. Hybrid HVAC systems with chemicaldehumidification for supermarket applications. Applied Thermal Engineering,2006,26(8-9):795-805.
    [48] Elsayed SS, Hamamoto Y, Akisawa A, Kashiwagi T. Analysis of an air cycle refrigerator drivingair conditioning system integrated desiccant system. International Journal of Refrigeration,2006,29(2):219-28.
    [49] Ghali K. Energy savings potential of a hybrid desiccant dehumidification air conditioning systemin Beirut. Energy Conversion and Management,2008,49(11):3387-90.
    [50] Turner RH, Kleiser JD, Chen RF, Chen F. Evaluation of desiccant assisted thermally activatedheat pumps in the U.S. climates. American Society of Mechanical Engineers, Advanced EnergySystems Division (Publication) AES,1988,8:65-71.
    [51] Cromer CJ. Cromer cycle air conditioner: a study to confirm target performance.http://txspace.di.tamu.edu/bitstream/handle/1969.1/5129/ESL-IC-01-07-18.pdf?sequence=4.
    [52]陈沛霖,张旭.大型客车发动机冷却系统与除湿供冷联用的空调系统.暖通空调,2002,32(4):53-55.
    [53]逯红梅,秦朝葵,詹佑超,唐继旭.燃气热泵结合除湿转轮的温湿度独立控制空调系统.暖通空调,2009,39(5):149-151.
    [54]周亚素,陈沛霖.转轮除湿复合式空调系统.暖通空调,1999,29(4):64-66.
    [55]张玉峰,郝红,房磊,张舸.转轮复合式空调系统的数值计算及能耗分析.太阳能学报,2006,27(1):55-62.
    [56]刘瑞,刘蔚巍.转轮式除湿复合式空调系统能耗研究.流体机械,2005,33(12):69-72.
    [57]陈志刚,王忠平,张雪梅,胡艳军,赵云华,钟英杰.转轮除湿复合空调系统的能耗数值分析.流体机械,2011,39(2):77-80.
    [58] Wang RZ, Ge TS, Chen CJ, Ma Q, Xiong ZQ. Solar sorption cooling systems for residentialapplications: Options and guidelines. International Journal of Refrigeration,2009,32(4):638-660.
    [59] Schinner EN, Radermacher R. Performance analysis of a combined desiccant/absorptionair-conditioning system. HVAC&R Research,1999,5(1),77-84.
    [60] Dai YJ, Wang RZ, Xu YX. Study of a solar powered solid adsorption-desiccant cooling systemused for grain storage. Renewable Energy,2002,25(3):417-430.
    [61] Niu JL, Zhang LZ. Analysis of energy and humidity performance of a system combining chilledceiling with desiccant cooling. ASHRAE Transactions,2002,108(p2):195-201.
    [62] Niu JL, Zhang LZ, Zuo HG. Energy savings potential of chilled-ceiling combined with desiccantcooling in hot and humid climates. Energy and Buildings,2002,34(5):487-495.
    [63] Niu JL, Zuo HG, Zhang LZ. Performance of a novel HVAC system in hot and humid weatherconditions: Chilled-ceiling combined with desiccant cooling. Transactions Hong Kong Institutionof Engineers,2002,9(2):25-29.
    [64] Zhang LZ, Niu JL. Indoor humidity behaviors associated with decoupled cooling in hot andhumid climates. Building and Environment,2003,38(1):99-107.
    [65] Zhang LZ, Niu JL. A pre-cooling Munters environmental control desiccant cooling cycle incombination with chilled-ceiling panels. Energy,2003,28(3):275-292.
    [66] Hao X, Zhang G, Chen Y, Zou S, Moschandreas DJ. A combined system of chilled ceiling,displacement ventilation and desiccant dehumidification. Building and Environment,2007,42(9):3298-3308.
    [67]丁云飞,丁静,王卓越,杨晓西.除湿转轮处理冷却顶板空调系统的湿负荷.华南理工大学学报(自然科学版),2004,32(3):10-14.
    [68] Subramanyam N, Maiya MP, Murthy SS. Application of desiccant wheel to control humidity inair-conditioning systems. Applied Thermal Engineering,2004,24(17-18):2777-2788.
    [69] Subramanyam N, Maiya MP, Murthy SS. Parametric studies on a desiccant assistedair-conditioner. Applied Thermal Engineering,2004,24(17-18):2679-2688.
    [70] Jia CX, Dai YJ, Wu JY, Wang RZ. Analysis on a hybrid desiccant air-conditioning system.Applied Thermal Engineering,2006,26(17-18):2393-2400.
    [71] Khalid A, Mahmood M, Asif M, Muneer T. Solar assisted, pre-cooled hybrid desiccant coolingsystem for Pakistan. Renewable Energy,2009,34(1):151-157.
    [72]秦朝葵,张雪梅,刘雄.天然气发动机复合空调系统的实验研究.同济大学学报(自然科学版),2007,35(9):1254-1258.
    [73]陈君燕,薛殿华,李曾豫,楼虹,张利民,窦春鹏.太阳能干燥剂复合式空调实验装置.太阳能学报,2000,21(2):176-180.
    [74] Henning HM, Erpenbeck T, Hindenburg C, Santamaria IS. The potential of solar energy use indesiccant cooling cycles. International Journal of Refrigeration,2001,24(3):220-229.
    [75] Solar powered desiccant cooling unit for air-conditioning of an office in Sintra, Portugal.http://www.iea-shc-task25.org/english/hps2/pic3.html.
    [76] Solar Heating and Cooling of Buildings, eco buildings Guidelines2007. BRITA in PuBs. The6thFramework Programme of the European Union.
    [77] Solar Cooling, Innovative Solutions for Building Conditioning. Federation of Scientific andTechnical Associations, Milan. European Commission-DG TREN within the6th FrameworkProgramme Contract No. TREN/05/F6EN/S07.54455/020114.
    [78] Zhuo X, Ding J, Yang X, Chen S, Yang J. The experimentation system design and experimentalstudy of the air-conditioning by desiccant type using solar energy. Proceedings of the6thInternational Conference of Enhanced Building Operations, Shenzhen, China, November6-9,2006, ESL-IC-06-11-286.
    [79] Fischer J, Mescher K, Elkin B, McCune SM, Gresham J. High-Performance Schools: High marksfor energy efficiency, humidity control, indoor air quality&first cost. ASHRAE Journal,2007,49(5):30-46.
    [80] Kohlenbach P, Bongs C, White S, Ward J. Performance modeling of a desiccant evaporativesorption air conditioning system driven by micro-turbine waste heat in tropical climates.Ecolibrium, December2006/January2007,25-31.
    [81] Popovic P, Marantan A, Radermacher R, Garland P. Integration of microturbine with single effectexhaust-driven absorption chiller and solid wheel desiccant system. ASHRAE Transactions,2002,108(p2):660-669.
    [82] Casas W, Schmitz G. Experiences with a gas driven, desiccant assisted air conditioning systemwith geothermal energy for an office building. Energy and Buildings,2005,37(5):493-501.
    [83] Jiang Y, Xie XY. Theoretical and testing performance of an innovative indirect evaporative chiller.Solar Energy,2010,84:2041-2055.
    [84] Ren C, Li N, Tang G. Principles of exergy analysis in HVAC and evaluation of evaporativecooling schemes. Building and Environment,2002,37:1045-1055.
    [85] Jain S. Emulating nature: evaporative cooling systems. ASHRAE Transactions,2008,114(p2):421-427.
    [86]黄翔.蒸发冷却空调理论与应用.北京:中国建筑工业出版社,2010.
    [87] Glanville P, Kozlov A, Maisotsenko V. Dew point evaporative cooling technology review andfundamentals. ASHRAE Transactions,2011,117(p1):111-118.
    [88] Pescod D. A heat exchanger for energy saving in an air conditioning plant. ASHRAE Transactions,1979,85(p2):238-251.
    [89] Maclaine-cross IL, Banks PJ. A general theory of wet surface heat exchangers and its applicationto regenerative cooling. Journal of Heat Transfer,1981,103(3):579-585.
    [90] Hsu, SH, Lavan Z, Worek WM. Optimization of wet-surface heat exchangers. Energy,1989,14(11):757-770.
    [91] Zhao X, Li JM, Riffat SB. Numerical study of a novel counter-flow heat and mass exchanger fordew point evaporative cooling. Applied Thermal Engineering,2008,28:1942-1951.
    [92] Worek W, Khinkis M, Kalensky D, Maisotsenko V. Integrated desiccant-indirect evaporativecooling system utilizing the Maisotsenko-cycle. ASME2012Summer Heat Transfer Conference,2012, HT2012-58039.
    [93] Gillan L. Maisotsenko cycle for cooling processes. Clean Air,2008,9:47-64.
    [94]黄翔.露点间接蒸发冷却器的研究.暖通空调,2008,38:191-195.
    [95] Huang X, Liu X, Wu Z. The air conditioning technology of dew point indirect and directevaporative cooling. The Second China Energy Scientist Forum,2010,740-744.
    [96] Zhan C, Zhao X, Smith S, Riffat SB. Numerical study of a M-cycle cross-flow heat exchanger forindirect evaporative cooling. Building and Environment,2011,46(3):657-668.
    [97]张强,刘忠宝,马清波.露点间接蒸发冷却开式空调系统的介绍和应用.制冷空调与电力机械,2009,130(30):15-19.
    [98] Riangvilaikul B, Kumar S. An experimental study of a novel dew point evaporative coolingsystem. Energy and Buildings,2010,42:637-644.
    [99] Zhan C, Duan Z, Zhao X, Smith S, Jin H, Riffat S. Comparative study of the performance of theM-cycle counter-flow and cross-flow. Energy,2011,36:6790-6805.
    [100] Song GE, Lee DY. Development of a compact regenerative evaporative cooler. Annuals of theAssembly for International Heat Transfer Conference13,2006, HEX-30,18-27.
    [101] Uges PGH. Air conditioning using R718(water) as refrigerant.7th IIR Gustav LorentzenConference on Natural Working Fluids, Trondheim, Norway,2006.
    [102] http://oxy-com.com/index.html
    [103] Miyazaki T, Akisawa A, Nikai I. The cooling performance of a building integrated evaporativecooling system driven by solar energy. Energy and Buildings,2011,43:2211-2218.
    [104] Watt JR. Evaporative Air Conditioning. The Industrial Press, New York,1963.
    [105] Yellott JI, Gamero J. Indirect evaporative air coolers for hot, dry climates. ASHRAE Transactions,1984,90(p1B):139-147.
    [106] Crum DR, Mitchell JW, Beckman WA. Indirect evaporative cooler performance. ASHRAETransactions,1987,93(p1):1261-1275.
    [107] Kang TS, Maclaine-cross IL. High performance, solid desiccant, open cooling cycles. ASMEJournal of Solar Energy Engineering,1989,111:176-183.
    [108] Jain S, Dhar PL, Kaushik SC. Evaluation of solid-desiccant-based evaporative cooling cycles fortypical hot and humid climates. International Journal of Refrigeration,1995,18(5):287-296.
    [109] Jain S, Dhar PL, Kaushik SC. Evaluation of liquid desiccant based evaporative cooling cycles fortypical hot and humid climates. Heat Recovery Systems and CHP,1994,14(6):621-632.
    [110]谢晓云,江亿,陈晓阳,曲凯阳.利用盐溶液制备冷水的冷水机组.暖通空调,2004,34(11):110-113.
    [111] Hellmann HM, Grossman G. Simulation and analysis of an open-cycledehumidifier-evaporator-regenerator absorption chiller for low-grade heat utilization.International Journal of Refrigeration,1995,18(3):177-189.
    [112] Lee DY, Lee JW, Kang BH. Cycle simulation of the desiccant cooling system with a regenerativeevaporative cooler. Proceedings of the Asian Conference on Refrigeration and Air Conditioning2002, Kobe, Japan,2002,211-216.
    [113] Goldsworthy M, White S. Optimisation of a desiccant cooling system design with indirectevaporative cooler. International Journal of Refrigeration2011,34:148-158.
    [114] Cerci Y. A new ideal evaporative freezing cycle. International Journal of Heat and Mass Transfer,2003,46(16):2967-2974.
    [115] Lavan Z, Monnier J-B, Worek WM. Second law analysis of desiccant cooling systems. ASMEJournal of Solar Energy Engineering,1982,104:229-236.
    [116] Pons M, Kodama A. Entropic analysis of adsorption open cycles for air conditioning. Part1: fistand second law analyses. International Journal of Energy Research,2000,24:251-262.
    [117] Cengel YA, Boles MA. Thermodynamics: an engineering approach.5th ed. New York:McGraw-Hill Higher Education,2006.
    [118] Kanoglu M, Carpinlioglu MO, Yildirim M. Energy and exergy analyses of an experimentalopen-cycle desiccant cooling system. Applied Energy Engineering,2004,24:919-932.
    [119]沈维道,童钧耕.工程热力学.北京:高等教育出版社,2007.
    [120] Bejan A. Advanced engineering thermodynamics.3rd ed. Hoboken NJ: John Wiley&Sons,2006.
    [121] Kodama A, Jin W, Goto M, Hirose T, Pons M. Entropic analysis of adsorption open cycles for airconditioning. Part2: interpretation of experimental data. International Journal of Energy Research,2000,24:263-278.
    [122] Mumma SA, Rodriguez-Anza JM. Rock bed regeneration as a means of indirect evaporativecooling. ASHRAE Transactions,1979,85(p2):787-796.
    [123] Hazami M, Kooli S, Lazaar M, Farhat A, Kerkani C, Belguith A. Capillary polypropyleneexchangers for conditioning of museum aquariums (Tunisia). Desalination,2004,166(15):443-448.
    [124] Li XW, Zhang XS, Cao RQ, Fu XZ. A novel ice slurry producing system: Producing ice byutilizing inner waste heat. Energy Conversion and Management,2009,50(12):2893-2904.
    [125] TRNSYS16User’s manual, Solar Energy Lab, University of Wisconsin, Madison,2004.
    [126] Zhang XJ, Dai, YJ, Wang, RZ A simulation study of heat and mass transfer in a honeycombedrotary desiccant dehumidifier. Applied Thermal Engineering,2003,23,989-1003.
    [127] Ge G, Xiao F, Xu X. Model-based optimal control of a dedicated outdoor air-chilled ceilingsystem using liquid desiccant and membrane-based total heat recovery. Applied Energy,2011,88(11):4180-4190.
    [128] Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. MechanicalEngineering,1953,78:3-8.
    [129] Hazami M, Kooli S, Lazaar M, Farhat A, Kerkani C, Belguith A. Capillary polypropyleneexchangers for conditioning of museum aquariums (Tunisia). Desalination,2004,166(15):443-448.
    [130] Capillary tube mat system for radiant heating/cooling: Product specifications. TubeEnergy-Saving Technology (Shanghai) Co., Ltd,2010.
    [131] La D, Dai YJ, Li Y, Ge TS, Wang RZ. Study on a novel thermally driven air conditioning systemwith desiccant dehumidification and regenerative evaporative cooling. Building and Environment,2010,45(11):2473-2484.
    [132] Ge TS, Ziegler F, Wang RZ. A mathematical model for predicting the performance of a compounddesiccant wheel (A model of compound desiccant wheel). Applied Thermal Engineering,2010,30(8-9):1005-1015.
    [133] Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pericone N, Ramsay JDF, Sing KSW,Unger KK. Recommendations for the characterization of porous solids, Pure and AppliedChemistry,1994,66:1739-1758.
    [134] Pesaran AA, Mills AF. Moisture transport in silica gel packed beds: II-Experimental study.International Journal of Heat and Mass Transfer,1987,30(6):1051-1060.
    [135]贾春霞.硅胶基复合干燥剂强化除湿机理及其应用研究.博士学位论文,上海交通大学,机械与动力工程学院,2006.
    [136] Sladek KJ, Gilliland ER, Buddour RF. Diffusion on surface II, correlation of diffusivities ofphysically and chemically adsorbed specie. Industrial Chemical Fundamental,1974,13(2):867-878.
    [137] Sherony DF, Solbrig CW. Analytical investigation of heat or mass transfer and friction factors in acorrugated duct heat or mass exchanger, International Journal of Heat Mass Transfer,1970,13:145-159.
    [138] Kettleborough CF, Hsieh CS. Thermal performance of the wet surface plastic plate heat exchangerused as an indirect evaporative cooler.Journal of heat transfer,1983,105(2):366-373.
    [139]代彦军,李增耀,张鹤飞.叉流高效降膜蒸发器传热传质规律研究.太阳能学报,2000,21(3):451-456.
    [140]代彦军,张鹤飞.降膜蒸发冷却复合传热传质研究.太阳能学报,1999,20(4):385-391.
    [141] Eames IW, Marr NJ, Sabir H. The evaporation coefficient of water: A review. InternationalJournal of Heat and Mass Transfer,1997,40(12):2963-2973.
    [142] Dai YJ, Wang RZ, Zhang HF, Yu JD. Use of liquid desiccant cooling to improve the performanceof vapor compression air conditioning. Applied Thermal Engineering,2001,21(12):1185-1202.
    [143]杨世铭,陶文铨.传热学.北京:高等教育出版社,2001.
    [144]关醒凡.现代泵技术手册.北京:中国宇航出版社,1995.
    [145]中华人民共和国建设部.采暖通风与空气调节设计规范. GB50019-2003,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700