用户名: 密码: 验证码:
聚乙烯熔体在突变收敛流道挤出口模内流变行为双折射理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挤出成型是塑料成型加工的重要方法之一,几乎所有的热塑性塑料都可以用挤出成型方法来加工,因此它在塑料成型加工中占有重要的地位。电磁动态塑化挤出机首次将振动力场引入到聚合物挤出全过程,振动力场的引入对聚合物塑化挤出过程和熔体流变行为产生了重大影响。
     掌握聚合物熔体在挤出机口模内的流变行为,对于合理设计成型工艺参数、制备性能优异的制品具有重要指导意义。因而借助于可视化技术手段,真实的描述聚合物熔体在动态挤出成型条件下口模内的流动情况,了解聚合物熔体对振动力场的响应规律,对研究电磁动态塑化挤出机的成型机理具有重要的科学与现实意义。据此,本文主要作了以下几方面的工作:
     首先,介绍了应用流动双折射方法研究聚合物熔体流变性能的基本原理,说明了应力光学系数的科学意义及其计算方法。在计算流场剪切应力方面,提出一种新的流动双折射测量方法。通过重新合理地布置装置中的光学元件,使得测量的条纹图中既有等差线信息,同时又包含取向角信息,从而根据应力光学定律对应力分布进行计算。
     其次,对三种商业聚乙烯材料的流变性能进行了表征,分析了三种材料的流变响应特性。应用高压毛细管流变仪测量了熔体在不同长径比口模下稳态剪切流动时的流变特性,根据Cogswell模型计算了三种聚乙烯熔体的拉伸粘度;应用高温凝胶色谱仪测定了材料的相对分子量及其分布;应用旋转流变仪测量了三种商业聚乙烯材料的流变性能,并通过Matlab编程,运用非线性拟合方法计算了材料的离散松弛时间谱。
     然后,根据熔体狭缝口模入口区的压力分布特点建立了入口长度模型,并根据稳态实验数据计算了不同条件下的入口长度;同时,应用双折射测量装置,在装有突变收缩流道口模的电磁振动塑化挤出机上进行了稳态挤出双折射实验,测量了不同加工条件的入口长度,验证了入口长度模型的可行性;应用粒子图像测速(PIV)技术测量了流场的速度分布,计算了熔体的表观拉伸粘度,并与Cogswell模型的计算结果进行了比较。
     最后,对三种聚合物进行了动态挤出实验分析。应用压力传感器测量了熔体在挤出机口模内沿流动方向的压力降,通过即得即测的方法测量熔体挤出速率,计算了熔体在振动条件下的瞬时剪切粘度,讨论了振动条件对流场应力分布、挤出成型压力及挤出速率等参数的影响;应用流动双折射实验装置,测得聚合物熔体在振动挤出过程中的双折射条纹图,得到了在不同振动条件下的流动双折射图谱,分析了相应流场的应力状态,计算了流场对称轴上的拉伸应力,分析了振动条件对熔体拉伸应力的影响。
Extrusion molding, as one main method of plastic forming, plays an important role inplastic industry, by which almost all thermoplastics can be processed. Electromagneticdynamic plastics extruder introduces the vibration force field into the whole process ofpolymer extrusion for the first time, and the vibration force field has a significant impact onthe rheological behavior of polymer melts in the whole forming process.
     It is instructive, for the reasonable decision of process parameters and the preparation ofproducts with excellent mechanical performance, to master the knowledge of the rheologicalbehavior of polymer melt in the die. So, to give a real characterization of the flow of polymermelts in the die, to master the knowledge of the response property of polymer melts to thevibration force field are of vital important scientific and practical significance to study theforming mechanism of the electromagnetic dynamic plastics extrusion.
     First, the basic principles of the method of flow induced birefringence to study therheological properties of polymer melts are introduced, and the scientific significance of thestress-optic coefficient is introduced, the method to calculate the stress-optic coefficient isintroduced as well.
     Secondly, the rheological properties of the three used commercial polyethylene materialsin the experiments were characterized. The melt rheological properties in steady shear floware measured by a high pressure capillary rheometer and the extensional viscosity of theLDPEs were calculated using the famous Cogswell model; the molecular weight and itsdistribution of the three materials are determined by the application of a high-temperature gelchromatography; the rheological properties of three in the small oscillatory shear flow aremeasured by the use of a rotational rheometer, the discrete relaxation time spectra of fivemodes are calculated through the nonlinear fitting method making use of the Matlab programpackage, which would be used in the next numerical simulation.
     Thirdly, a mathematical model is built to calculate the entrance length and the entrancelengths are calculated from the steady extrusion experimental data. At the same time, theentrance length at different processing conditions are measured by the application ofbirefringence measurement equipment, useful data will be provide for the optimization of forming parameters and of the designation of the die lip. It is proved by the comparison of thecalculted and measured entrance length that, this mathematical model is able to be used topredict the entrance length from the data of flow rate and the relaxation time of the material.The transient extensional viscosities were obtained from the calculated extensional stress byflow birefringence fringes and the measured velocity by PIV along the symmetry axis of thecontraction die.
     Subsequently, the flow induced birefringence experiments are performed on the vibrationextruder, which equipped with an abrupt contraction die. The flow birefringence fringes areobtained during the extrusion process, the pressure drops along the die symmetry axis aremeasured by applying pressure sensors, the flow rate are measured by catch and measuremethod. The birefringence fringes are obtained in a variation of vibration conditions, byswitching the vibration frequency and vibration amplitude, the corresponding stress state ofthe flow field are analyzed, including shear stress and first normal stress difference, theinfluence of vibration parameters on the stress distribution of the flow field, on the extrusionpressure and flow rate are discussed semi-quantitatively.
     In the end, a novel flow induced birefringence method is proposed on the basis of theconventional equipment. The birefringence fringes obtained from the conventional equipmentcan not be used to calculate the shear stress of the flow field for the lack of the information ofthe orientation angle. Here the obtained pictures contain information not only of isoclinic butalso of isochromatic by rearranged the optic components, which can be used to calculate theshear stress directly.
引文
[1] Cox W P, Merz E H. Correlation of dynamic and steady flow viscosities [J]. Journal ofPolymer Science,1958,28(118):619–622
    [2] Osaki K, Tamura M, Kurata M, et al. Complex modudus of concentrated polymersolutions in steady shear [J]. J Phys Chem,1965,69(12):4183-4191
    [3] Isayev A I, Wong C M. Parallel superposition of small and large amplitude oscillationsupon steady shear flow of polymer fluids [J]. J Polym Sci Polym Phys.,1988,26:2303-2327
    [4] Wong C M, Isayev A I. Oscillations upon steady shear flow of polymeric fluids [J].Rheol Acta,1989,28:176-189
    [5] Booij H C. Influence of Superimposed Steady Shear Flow on the Dynamic Properties ofNon-Newtonian Fluids I. Measurements on Non-Newtonian Solutions [J]. Rheol Acta,1966,5:215-221
    [6] Laufer Z, Jalink H L. Dynamic properties of some polymer solutions subject to a steadyshear superimposed on an oscillatory shear flow I. Experimental results[J]. Rheol Acta,1975,14:641-649
    [7] Laufer Z, Jalink H L.Dynamic properties of some polymer solutions subject to a steadyshear superimposed on an oscillatory shear flow II. Comparison with some theoreticaltreatments [J]. Rheol Acta,1975,14:650-655
    [8] Tanner R I, Simmons J M. An instability in some rate-type viscoelastic constitutiveequations [J], Chem Eng Sci.1967,22:1079-1082
    [9] Simmons J M. Dynamic Modulus of Polyisobutylene Superposed Steady Shear Flow [JRheol Acta,1968,7:184-188
    [10] Fridman M L, Peshkovsky S L. The rheology of thermoplastics under conditions ofspiral flow and vibrations on extrusion [J]. Polym Eng and Sci.1981,21(12):755-767
    [11]彭响方.毛细管动态流变仪的研制及聚合物熔体在振动力场作用下的行为和响应[D].广州:华南理工大学,1998
    [12] Kazakia J Y, Rivlin R S. The influence of vibration on Poiseuille flow of anon-Newtonian fluid I [J].Rheol Acta.1978,17(3):210-226
    [13] Kazakia J Y, Rivlin R S. The influence of vibration on Poiseuille flow of anon-Newtonian fluid II [J]. Rheol Acta,1979,18(2):244-255
    [14] Casulli J, Clermont J R. The oscillating die: a useful concept in polymer extrusion [J].Polym Eng and Sci.1990,30(23):1551-1556
    [15] Isayev A I, Wong C M, Zeng X. Effect of oscillations during extrusion on rheology andmechanical properties of polymers [J]. Adv in polym technol.1990,10(1):31-45
    [16] Isayev A I, Wong C M, Zeng X. Flow of thermoplastics in an annular die underorthogonal oscillations [J]. J Non-Newtonian Fluid Mech.,1990,34(3):375-397
    [17] Peshkovsky S L, Fridman M L, Tukachinskii T,et al. Acoustic cavitation and its effecton flow in polymers and filled systems[J]. Polym Composite.,1983,4(2):126-134
    [18] Liu Yuejun, Li Xianggang, Huang Yugang. Development of multi-function andall-electric rheometer.2010International Conference on Mechanic Automation andControl Engineering[C]. Wuhan,2010:2221-2224
    [19] Zeng G., Xu C., Liu Y. Lower Temperature Plasticizing and Extrusion of Polymer inSpherical Screw Extruder under Vibration Force Field [J]. Int Polym Proc.,2011,26(1):40-47
    [20] Khellaf S., Khoffi F., Tabet H.Study of iPP Crosslinking by Means of Dynamic andSteady Rheology Measurements [J].JAppl Polym Sci,2012,124(4):3184-3191
    [21]瞿金平.电磁动态塑化挤出方法及设备[P],中国专利:CN90101034.0,1992-11-25
    [22]瞿金平,吴启保,彭响方,等.振动挤出对LDPE熔融结晶行为的影响[J],工程塑料应用,2000,28(3):10-13
    [23] Zeng Guangsheng, Jiang Taijun, Qu Jinping. Amplitude-Frequency Characteristics ofPolymer Electro-Magnetic Dynamic Tri-Screw Extrusion [J].JAppl Polym Sci.H2011,122(3):1778-1784
    [24] Qu JinPing. European Patent0443,06B1,1995
    [25] Qu Jinping, Xu Baiping. Performance of filled polymer system under novel dynamicextrusion processing [J]. Plast Rubber Compos.,2002,31(10):432-435
    [26]何光建,瞿金平,何克智.动态毛细管流变仪中正弦脉动挤出流场对聚丙烯结晶结构的影响[J].中国塑料,2004,18(8):60-64
    [27]刘跃军,瞿金平,曹贤武.振动力场作用下高分子熔体表观粘度的计算[J].上海交通大学学报,2004,38(6):1003-1006
    [28]刘跃军,瞿金平.振动挤出过程中毛细管内聚合物熔体剪切应力分析[J].振动与冲击,2004,23(1):55-58
    [29]邹国享,瞿金平.Giesekus流体在环形流道中脉动挤出的应力分析[J].振动与冲击,2006,25(6):1-4
    [30]瞿金平.振动力场作用下聚合物熔体输送和挤出过程及其行为与响应研究[D].成都:四川大学,1999
    [31]瞿金平.聚合物成型原理及成型技术[M].北京:化学工业出版社.2001
    [32]吴启保.聚合物熔体广义螺旋挤出机理研究[D].广州:华南理工大学,2000
    [33]陈开源,周南桥,刘斌,等.振动挤出HDPE管材的结构与力学性能[J].合成树脂及塑料,2008,25(6):50-54
    [34]陈开源,步玉磊,周南桥等.振动力场下PP增强管材的制备及性能研究[J].工程塑料应用,2009,37(5):31-34
    [35]陈开源,周南桥,刘斌,等.振动挤出对HDPE管材耐慢速裂纹增长性能的影响[J].塑料科技,2009,37(10):58-61
    [36] Boger D V, Hur D U, Binnington B J. Further observations of elastic effects in tubularentry flows [J]. J Non-Newtonian Fluid Mech.,1986,20:31-49
    [37] Goddard J D. Tensile stress contribution of flow-oriented slender particles innon-newtonian fluids [J]. J Non-Newtonian Fluid Mech.,1976,1:1-17
    [38] Cogswell F N. Converging flow of polymer melts in extrusion dies [J]. Polym EngSci.,1972,12(1):64-73
    [39] Bersted B.H. Refinement of the converging flow method of measuring extensionalviscosity in polymers [J]. Polym Eng Sci.,1993,33(16):1079-1083
    [40] White J L, Kondo A. Flow patterns in polyethylene and polystyrene melts duringextrusion through a die entry region: Measurement and interpretation [J]. JNon-Newtonian Fluid Mech.,1977,3:41-64
    [41] Ma C Y, White J L, Weissert F C, et al. Flow patterns in carbon black filledpolyethylene at the entrance to a die [J]. J Non-Newtonian Fluid Mech.,1985,17:275-287
    [42] White S A, Baird D G. Importance of extensional flow properties on planar entry flowpatterns of polymer melts [J]. J Non-Newtonian Fluid Mech.,1985,20:93-101
    [43] Boles R L, Davis H L, Bogue D C. Entrance flows of polymeric materials. pressuredrop and flow patterns[J].Polym Eng Sci.,1970,10:24-31
    [44] Hasegawa T, Iwaida T. Experiments on elongational flow of dilute polymer solutions:Part II: Velocity field for the flow through small apertures [J]. J Non-Newtonian FluidMech.,1984,15:279-307
    [45] Binding D M. An approximate analysis for contraction and converging flows [J]. JNon-Newtonian Fluid Mech.,1987,27:173-189
    [46] Tramblay B. Visualisation of the flow of linear low density polyethylene/low densitypolyethylene blends through sudden contration [J]. J Non-Newtonian Fluid Mech.,1992,43:1-29
    [47] Debbaut B, Crochet MJ. Extensional effects in complex flows [J]. J Non-NewtonianFluid Mech.,1998,30:169-184
    [48] Ballenger T F, White J L. An experimental study of flow patterns in polymer fluids inthe reservoir of a capillary rheometer [J]. Chem Eng Sci.,1970,25(7):1191-1195
    [49] Wassner E. Entry flow of a low density polyethylene melt into a slit die: Anexperimental study by laser-Doppler velocimetry [J]. J Rheol.1999,43(6):1339-1353
    [50] Hertel D, Munstedt H. Dependence of the secondary flow of a low-density polyethyleneon processing parameters as investigated by laser-Doppler velocimetry [J]. JNon-Newtonian Fluid Mech.,2008,153:73-81
    [51] Schwetz M, Munstedt H, Heindl M. Investigations on the temperature dependence ofthe die entrance flow of various long-chain branched polyethylenes using laser-Dopplervelocimetry [J]. J Rheol.,2002,46(4):797-815
    [52] Col1is M W, Mackley M R. The melt processing of monodisperse and polydispersepolystyrene melts within a slit entry and exit flow [J]. J Non-Newtonian Fluid Mech.,2005,128(1):29-41
    [53] Valette R, Mackley M R. Matching time dependent pressure driven flows with a RoliePolynumerical simulation [J]. J Non-Newtonian Fluid Mech.,2006,136(2-3):118-125
    [54] Lee K, Mackley M R, Mcleish T C B, et al. Experimental observation and numericalsimulation of transient stress fangs within flowing molten polyethylene[J]. JRheol.,2001,45(6):1261-1277
    [55] Clemeur N, Rutgers R P G, Debbaut B. Numerical simulation of abrupt contractionflows using the double convected pom-pom model[J].J Non-Newtonian FluidMech.,2004,117:193-209
    [56] Soulages J, Schweizer T, Venerus D C, et al. Lubricated optical rheometer for the studyof two-dimensional complex flows of polymer melts [J]. J Non-Newtonian Fluid Mech.,2007,150:43-55
    [57] Mitsoulis E, Schwetz M, Miinstedt H. Entry flow of LDPE melts in a planar contraction[J]. J Non-Newtonian Fluid Mech.,2003,111(1):41-61
    [58] Sirakov I, Ainser A, Haouche M, et al. Three-dimensional numerical simulation ofviscoelastic contraction flows using the Pom-Pom differential constitutive model [J]. JNon-Newtonian Fluid Mech.,2005,126(2):163-173
    [59] Hassell D G, Auhl D, McLeish T C B, et al. The effect of viscoelasticity on stress fieldswithin polyethylene melt flow for a cross-slot and contraction-expansion slit geometry[J]. Rheol Acta,2008,47:821-834
    [60] Luo X-L, Mitsoulis E. A numerical study of the effect of elongational viscosity onvortex growth in contraction flows of polyethylene melts [J]. JRheol.,1990,34(3):309-342
    [61] Feigl K, Ottinger H C. A numerical study of the flow of a low density polyethylene meltin a planar contraction and comparison to experiments [J]. J Rheol.,1996,40(1):21-35
    [62] Olley P, Coates P D.An approximation to the KBKZ constitutive equation [J]. JNon-Newtonian Fluid Mech.,1997,69:239-254
    [63] Olley P. An adaptation of the separable KBKZ equation for comparable response inplanar and axisymmetric flow [J]. J. Non-Newtonian Fluid Mech.,2000,95:35-53
    [64] Olley P. A study of the quadratic molecular stress function constitutive model insimulation [J]. J Non-Newtonian Fluid Mech.,2005,125:171-183
    [65] Olley P, Wagner M H. A modification of the convective constraint release mechanism inthe molecular stress function model giving enhanced vortex growth [J]. JNon-Newtonian Fluid Mech.,2006,135:68-81
    [66] Jeong J H, Leonov A I. A quasi-1D model for fast contraction flows of polymer melts[J]. J Non-Newtonian Fluid Mech.,2004,118:157-173
    [67] Barakos G, Mitsoulis E. A convergence study for the numerical simulation of theIUPAC-LDPE extrusion experiments [J]. J Non-Newtonian Fluid Mech.,1995,58:315-329
    [68]朱复华,郭奕崇,袁明君等.聚合物挤出理论与形态结构研究的有机结合—宏观及微观可视化在线研究[J]。中国塑料.1998,12(3):94~102
    [69] Sombatsompop N, Dangtungee R. Flow Visualization and Extrudate Swell of NaturalRubber in a Capillary Rheometer: Effect of Die/Barrel System[J]. J. Appl Polym Sci,2002,82:2525-2533
    [70] Sombatsompop N, Tan M C and Wood A K. Flow Analysis of Natural Rubber in aCapillary Rheometer.2: Flow Patterns and Entrance Velocity Profiles in the Die[J].Polym Eng Sci,1997,37(2):281-290
    [71] Sombatsompop N, Tan M C and Wood A K. Flow Analysis of Natural Rubber in aCapillary Rheometer.1: Rheological Behavior and Flow Visualization in the Barrel[J].Polym Eng Sci,1997,37(2):270-280
    [72] Lawler J V, Muller S J, Brown R A, and Armstrong R C.Laser doppler velocimetrymeasurements of velocity fields and transitions in viscoelastic fluid flows. j. NonNewtonian Fluid Mech,1986,20:51-92
    [73] Tremblay B, J. Non Newtonian Fluid Mech.,1994,52:323-331
    [74] Further remarks on the lip-vortex mechanism of vortex enhancement inplanar-contraction flows. J. Non Newtonian Fluid Mech.,1989,32:95-105
    [75] Lee K Y, Wen S H and Liu T J. Vortex formation in a dual-cavity coat-hanger die [J].Polym Eng Sci,1990(30):1220-1227
    [76] Wen S H and Liu T J. Three-dimensional finite element analysis of polymeric fluid flowin an extrusion die [J]. Part I: Entrance effect. Polym.Eng.Sci,34(1994):827
    [77] Chang Y H, Wen S H and Liu T J. experimental observation on entrance flow insideextrusion dies [J]. Polym Eng Sci,1996(36):2663-2675
    [78]黄汉雄.高性能自增强聚烯烃材料挤出及流场的研究[D].华南理工大学博士学位论文,1995
    [79]梁基照.LDPE熔体在挤出口模流动时入口区流型的观测[J].合成树脂及橡胶,2003,20(1):53-56
    [80] Lodge A S. Variation of flow birefringence with stress [J]. Nature,1955,176:838
    [81] Doi M, Edwards S F. The theory of polymer dynamics [M]. Clarendon Press, Oxford,1986
    [82] Katoyama K, Amano T, Nakamura K. Applied Polymer symposia,1973,20:237-246
    [83] Maiti P, Okamoto M, Kotaka T. Elongational flow and birefringence of low densitypolyethylene and its blends with ultrahigh molecular weight polyethylene [J]. Polymer,1998,39(11):2149-2153
    [84] Maiti P, Okamoto M, Kotaka T. Elongational flow birefringence ofethylene-tetracyclododecene copolymer [J]. Polymer,2001,42:3939-3942
    [85] Maiti P, Okamoto M, Kotaka T. Flow birefringence and strain-induced hardening ofcycloolefin copolymers under longational flow [J]. Polymer,2001,42:9827~9835
    [86] R.dell’Erba. Rheo-mechanical and Rheo-optical Characterization of Ultra HighMolecular Mass Poly (methylmethacrylate) in Solution [J]. Polymer,2001,42:2655-2663
    [87] Humbert C, Decruppe J P. Stress optical coefficient of viscoelastic solutions ofcetyltrimethylammonium bromide and potassium bromide [J]. Colloid Polym Sci.,1997,276:160-168
    [88] Ahmed R, Liang R F, Mackley M R. The experimental observation and numericalprediction of planar entry flow and die swell for molten polyethylenes [J]. J.Non-Newtonian Fluid Mech.,1995,59:129-153
    [89] Chai C K, Creissel J, Randrianantoandro H. Flow-induced birefringence of linear andlong chain-branched metallocene polyethylene melts subject to steady start-up flow [J].Polymer,1999,40:4431-4436
    [90] Baaijens F P T, Selen S H A, Baaijens H P W, et al. Viscoelastic flow past a confinedcylinder of a low density polyethylene melt [J]. J. Non-Newtonian Fluid Mech.,1997,68:173-203
    [91] Combeaud C, Vergnes B, Merten A,et al. Volume defects during extrusion ofpolystyrene investigated by flow induced birefringence and laser-Dopplervelocimetry[J]. J Non-Newtonian Fluid Mech.,2007,145:69-77
    [92] Quinzani L M, Armstrong R C, Brown R A. Birefringence and laser-Dopplervelocimetry(LDV)studies of iscoelastic flow through a planar contraction [J]. JNon-Newtonian Fluid Mech.,1994,52:1-36
    [93] Quinzani L M, Armstrong R C, Brown R A. Use of coupled birefringence and LDVstudies of flow through a planar contraction to test constitutive equations forconcentrated polymer solutions [J]. J Rheol.,1995,39(6):1201-1229
    [94] Martyn M T, Groves D J, Coates P D. In process measurement of apparent extensionalviscosity of low density polyethylene melts using flow visualization [J].Plast Rubber Compos.,2000,29(1):14-22
    [95] Martyn M T, Nakason C, Coates P D. Stress measurement for contraction flows ofviscoelastic polymer melts [J]. J Non-Newtonian Fluid Mech.,2000,91:123-142
    [96] Martyn M T, Nakason C, Coates P D. Measurement of apparent extensional viscositiesof polyolefin melts from process contraction flows [J]. J Non-Newtonian Fluid Mech.,2000,92:203-226
    [97] Gough T, Spares R, Coates P D. In-process measurements of full field stressbirefringence and velocities in polymer melt flows [J]. Plast Rubber Compos.,2005,34(9):393-402
    [98] Genieser L H, Brown R A, Armstrong R C. Comparison of measured centerplane stressand velocity fields with predictions of viscoelastic constitutive models [J]. J Rheol.,2003,47(6):1331-1351
    [99] White S A, Baird D G. Flow visualization and birefringence studies on planar entry flowbehavior of polymer melts [J]. J Non-Newtonian Fluid Mech.,1988,29:245-267
    [100] Takahashi Y, Noda M, Ochiai Net al. Shear-rate dependence of first normal stressdifference of poly (isoprene-b-styrene) in solution near the order-disorder transitiontemperature [J]. Polymer,1996,37(26):5943-5945
    [101] Lavrenko P N, Strelina I A, Schulz B. Dynamo-optical Properties of Poly(naphthyleneoxadiazole) in Sulphuric Acid [J]. Eur Polym J.,1997,33(6):805-809
    [102] Boukany P E, Wang S Q. Use of particle-tracking velocimetry and flow birefringence tostudy nonlinear flow behavior of entangled wormlike micellar [J]. Macromolecules,2008,41:1455-1464
    [103] Chaari F, Chaouche M, Benyahia L, et al. Investigation of the crystallization ofm(LLDPE)under shear flow using rheo-optical techniques[J]. Polymer,2006,47:1689-1695
    [104] Berret J-F, Corrales R G, Lerouge S, et al. Shear-thickening transition in surfactantsolutions: New experimental features from rheology and flow birefringence [J]. TheEuropean Physical Journal E,2000,2:343-350
    [105] Clemeur N, Rutgers R P G, Debbaut B. Numerical evaluation of three dimensionaleffects in planar flow birefringence [J]. J Non-Newtonian Fluid Mech.,2004,123:105-120
    [106]金日光.高聚物流变学及其在加工中的应用[M].化学工业出版社,北京,1986,404-425
    [107]赵清澄.光测力学教程[M].高等教育出版社,北京,1996
    [108]赖俊维.电磁动态挤出机流动双折射系统的建立及其可视化实验研究[D].华南理工大学.广州,2008年
    [109] Xia Y, Callaghan P. Study of shear thinning in high polymer solutions using dynamicNMR microscopy [J]. J Rheol.,1991,24:4777-4786
    [110] Gottlieb M. Ph D Dissertation. Chem Eng University of Wisconsin-Madison.1978
    [111] Okubo S, Hori Y. Shear stress at wall and mean normal stress difference in capillaryflow of polymer melts [J]. J Rheol.,1979,23:625-649
    [112] Leonor P-T, Arturo F M-S, Jose P-G, et al. Influence of polymer conformation on theentrance length in capillary flow [J]. Rheol Acta,1996,35:194-201
    [113] Han C D. Rheology in polymer processing. New York: Academic Press,1976
    [114] Wong A C-Y. Factors affecting extrudate swell and melt flow rate, J Mater Process Tech.,1998,79(1-3):163-169
    [115] Kiriakidis D G, Mitsoulis E, Viscoelastic simulations of extrudate swell for an HDPEmelt through slit and capillary dies, Adv Polymer Tech.,1993,12(2):107-117
    [116] Woei-Shyong Lee, Hsueh-Yu Ho, Experimental study on extrudate swell and diegeometry of profile extrusion[J], Polym Eng Sci.,2000,40(5):1085-1094
    [117] Sombatsompop N, O-Charoen N, Experimental studies on extrudate swell behavior ofPS and LLDPE melts in single and dual capillary dies, J Appl Polym Sci.,2003,87(10):1713-1722
    [118] Xiaoping Yang, Shi-qing Wang, C. Chai. Extrudate swell behavior of polyethylenes:capillary flow, wall slip, entry/exit effects and low-temperature anomalies, J Rheol.,1998,42(5):1075一1094
    [119] Young-Cheol Ahn, Ryan M E. Analysis of nonisothermal extrudate swell [J], Chem EngComm.,1992,116:201-225
    [120] Garcia-Rejon A, DiRaddo, R W, Ryan M E. Effect of die geometry and flowcharacteristics on viscoelastic annular swell, J Non-Newtonian Fluid Mech.,1995,60(2-3):107-128
    [121] Bush M B. Method for approximate prediction of extrudate swell[J], Polym Eng Sci.,1993,33(1S):950-958
    [122] Sombatsompop N. Investigation of swelling behavior of NR vulcanisates[J],PolymerPlast Tech Eng.,1998,37(1):19-39
    [123] Sombatsompop N, Dangtangee R. Effect of die design on flow visualization and dieswell of NR in a capillary rheometer, J Mater Sci Lett.,2001,20(15):1405-1408
    [124] Sombatsompop N. Swelling characteristics of some natural rubber based elastomers,Progr Rubber Plast Tech.,1998,14(4):208-225
    [125] Dangtangee R, Sombatsompop N. Effects of the actual diameters and diameter ratios ofbarrels and dies on the elastic swell and entrance pressure drop of natural rubber incapillary die flow, J Appl Polym Sci.,2002,86(7):1762-1772
    [126]赵良知.不同长径比圆锥口模的挤出胀大分析.轻工机械,2005,3:27-29
    [127]hHttp://www.mpcc.com.cn/products/index.html
    [128] Tanner R I, Walters K. Rheology: An historical perspective [M]. Amsterdam:Elsevier,1998
    [129]梁基照.聚合物材料加工流变学[M].北京:国防工业出版社,2008
    [130]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002
    [131] Gibson A G. Die entry flow of reinforced polymers [J]. Composites.1989,20:57-64
    [132] Gotsis D A, Odriozola A. The relevance of entry flow measurements for the estimationof extensional viscosity of polymer melts [J]. Rheology Acta.1998,37:430-437
    [133] Binding D M, Couch M A, Walters K. The pressure dependence of the shear andelongational properties of polymer melts [J]. Journal of Non-Newton FluidMechanics.1998,79:137-155
    [134] Liang J Z. Determination of the entry region length of viscoelastic fluid flow in achannel [J]. Chem. Eng. Sci.1998,53(17):3185-3187
    [135] Liang J Z. Planar entry converging flow during extrusion of polymer melts[J].Polymer-Plastics Technol. Eng.2007,46(5):475-480
    [136]周持兴.聚合物流变实验与应用[M].上海交通大学出版社,上海,2003
    [137]翟元明,杨伟,王宇等.分子结构对LLDPE动态流变行为的影响[J].高分子材料科学与工程,2010,26(l):88-91.
    [138] Yan D, Wang W J, Zhu S. Effect of chain branching properties of metallocenepolyethylene[J]. Polymer,1999,40(7):1737-1744.
    [139] Baumgaertel M, Winter H H. Determination of discrete relaxation and retardation timesspectra from dynamic mechanical data[J], Rheol Acta,1989,28:511-519
    [140] Doi M, Edwards S F, The theory of polymer dynamics [M]. Oxford: ClarendonPress,1986
    [141] Eirich F R. Science and technology of rubber [M]. New York: Academic Press,1978
    [142] Osaki K. On the damping function of shear relaxation modulus for entangled polymers[J]. Rheol Acta,1993,32(5):429-437
    [143] Papanastasiou A C, Scriven L E, Macosko C W. An integral constitutive equation formixed flows: viscoelastic characterization [J]. J Rheol.,1983,27(4):387-410
    [144] Macosko C W. Rheology principles, measurements, and applications[M], NewYork:Wiley-Vch,1994
    [145] Wagner M H. Analysis of time-dependent non-linear stress growth data for shear andelongational flow of a low-density branched polyethylene melt [J]. Rheol Acta,1976,15(2):136-142
    [146] Laun H M. Description of the non-linear shear behaviour of a low density polyethylenemelt by means of an experimentally determined strain dependent memory function [J].Rheol Acta,1978,17(1):1-15
    [147] Honerkamp J, Weese J. Determination of the relaxation spectrum by a regularizationmethod [J]. Macromolecules,1989,22:4372-4377
    [148] Baumgaertel M, Winter H H. Determination of the discrete relaxation and retardationtime spectra from dynamic mechanical data [J]. Rheol Acta,1989,28(3):511-519
    [149] Jensen E A. Determination of discrete relaxation spectra using Simulated Annealing [J].J Non-Newtonian fluid mech.,2002,107:1-11
    [150] Orbey N, Dealy J M. Determination of the relaxation spectrum from oscillatory sheardata [J]. J Rheol.,1991,35(6):1035-1049
    [151] Malkin A Y, Masalova I. From dynamic modulus via different relaxation spectra torelaxation and creep functions [J]. Rheol Acta,2001,40(3):261-271
    [152] Winter H H. Analysis of dynamic mechanical data: inversion into a relaxation timespectrum and consistency check [J]. J Non-Newtonian fluid mech.,1997,68:225-239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700