用户名: 密码: 验证码:
三维溢油数值模式研究及其在近海的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溢油事故会对海洋环境造成严重破坏,为了全面了解评估溢油过程,人们对模拟溢油轨迹和归宿的溢油模型开发已经做了大量工作。本文简要介绍了海上石油污染的现状及其危害,并对近海水动力学和海上石油的行为与归宿数值模型的基本理论与发展现状做了详细的综述。在此理论基础上,建立了三维海面溢油迁移转化预报模型。
     近海溢油行为受风、波浪和潮流等环境动力因素影响,因此首先要精确模拟出这些动力因素。为了精确描述近岸复杂流场,本文使用三维水动力模型POM和第三代近海波浪模式SWAN模拟了近海波流耦合作用下的三维水流。首先引入Mellor以线性波理论推导的垂向三维辐射应力公式,讨论了辐射应力在不同水深情况下的垂向变化规律,结果表明辐射应力主要集中在自由面附近。将三维辐射应力加入到三维水动力模型中去,研究了近岸波浪破碎引起的增水和底层离岸流现象。计算结果和实验资料相吻合的结果表明,考虑三维垂向三维辐射应力的水流模型能够对近海水动力现象进行准确的模拟。
     溢油在海上经历着漂移、扩散、扩展、垂向离散、蒸发、乳化、溶解等及其相互作用的复杂过程,这些过程可以简略地概括为输运和风化过程。最近的海洋观测显示海上物体漂移轨迹具有用普通布朗运动无法描述的分形结构,油膜在海水表层运动也有加速扩散的趋势。因此,在模拟扩散过程时,利用分数布朗运动模型来描述油膜的超扩散现象。数值实验表明,当Hurst指数取0.75时,可以取得较好模拟结果。
     在证实了粒子跟踪模型和浓度模型的等价性后,本文提出了粒子跟踪-浓度混合模型来模拟溢油过程。油以油粒子的形式从源强处排放,当油膜厚度或者油滴浓度低于临界值时,油粒子转为所处网格上的浓度。油粒子消失后,以欧拉-拉格朗日模型来计算浓度。为了获得三维溢油模式,利用Langeven方程描述油粒子在垂向的运动。结果表明,浮力和垂向湍流强度是油滴垂向运动的重要因素。将输运模型和风化模型相结合来预测溢油表层运动,油滴的垂向分布,水体中油浓度以及油组分之间的平衡。用此模型模拟大连附近海域“阿提哥”号油轮溢油事故,数值模拟结果和卫星观测数据吻合良好。
Accidental oil spills have the potential to cause serious impact on the marine environment so that considerable amounts of work have been directed towards developing spill models predicting the trajectory and fate of spilled oil in order to understand and quantify the spill processes. In this paper, the present situation of marine oil pollution and damage are briefly introduced, and the comprensive review of coastal hydrodynamics and oil spill numerical modeling is given. On the theory basis, the three-dimension oil spill numerical model is proposed.
     The behavior of oil at sea is determined by the environmental conditions involving sea winds, waves and water currents. Accurate environment information is essential for the reliable prediction of the transport and fate of oil pollution, so forecasting these dynamic factors accurately is the base of the oil spill model. A high-resolution circulation model describing the complex hydrodynamics of coastal waters is required to provide appropriate flow fields. For this purpose, the sigma-coordinate primitive equation Princeton Ocean Model (POM) coupled with a third-generation wave model for coastal regions SWAN (Simulating WAves Nearshore) has been employed. Expressions for depth-dependent radiation stresses derived on the basis of linear wave theory by Mellor are introduced. The radiation stresses at different water depths are discussed, and the result demonstrates that the wave radiation streeses concentrated near the free surface. By adding the depth-dependent radiation stresses to the POM threee dimensional flow model, the wave set-up and undertow are studied. A comparison of the numerical results with the experimental data shows good conformity. It shows that the three dimensional flow model with the depth-dependent radiation stresses can be applid for the coastal hydrodynamic problems.
     The main mechanisms which govern the fate of an oil slick are advection, diffusion, mechanical spreading, vertical dispersion, evaporation, emulsification. dissolution and the interactions of these processes, which can also curtly recapitulate two modules- transport and weathering. Recent studies have shown that the trajectories of drifters on the ocean surface have a fractal structure that is far from being described using ordinary Brownian motion. Thus, in modeling the diffusion process, a discrete method has been employed for the generation of fractional Brownian motion (fBm) to illustrate superdiffusive transport. The numerical experiment demonstrates that when the Husr value equals 0.75, the simulated results are more consistent with the observations.
     After proving the equivalence bewteeen a particle tracking model and a concentration model, a hybrid particle tracking/Eulerian-Lagrangian approach for the simulation of spilled oil in coastal areas. Oil discharge from the source is modeled by the release of particles. When the oil slick thickness or the oil concentration reaches a critical value, particles are mapped on slick thicknesses or node concentrations, and the calculations proceed in the Eulerian-Lagrangian mode. To obtain a three-dimensional oil model, a mathematical description of the vertical movement of an oil droplet in the ocean is proposed based on the Langeven equation. The results manifest that the buoyant effect and the vertical turbulent variations are very important mechanisms for vertical movement of oil in the water column. The transport model is used to join other weathering modules for the prediction of the the horizontal movement of surface oil slick, the vertical distribution of oil particles, the concentration in the water column and the mass balance of spilled oil. An accidental "Arteaga" oil spill near Dalian coastal waters is simulated to validate the developed model. Compared with the satellite images of oil slicks on the surface, the numerical results indicate that the model has a reasonable accuracy.
引文
[1]曲维政,邓声贵.灾难性的海洋石油污染[J].自然灾害学报,2001,10(1):69-74.
    [2]策毛文,文剑平.全球环境问题与对策[M].北京:中国科学技术出版社,1993.
    [3]刘鸿亮,韩国刚.中国水环境预测与对策概论[M].北京:中国环境出版社,1988.
    [4]陈建秋.中国近海石油污染现状影响和防治[J].工业安全与环保,2002,28(3):15-17.
    [5]陈士萌,顾家龙,吴宋仁.海岸动力学[M].北京:人民交通出版社,1988.
    [6]李孟国,曹祖德.海岸河口潮流数值模拟的研究与进展[J].海洋学报,1999,21(1):111-125.
    [7]刘桦,何友声.河口三维流动数学模型研究进展[J].海洋工程,2000,18(2):87-93.
    [8]曹祖德.波浪掀沙潮流输沙的数值模拟[J].海洋学报,1993,15(1):107-118.
    [9]张存智,杨连武.极浅海域潮流数值模型[J].海洋与湖沼,1994,25(6):671-676.
    [10]George K J, Stripling S. Improving the simulation of drying and wetting in a two-dimensional tidal numerical model [J]. Applied Mathematical Modelling,1995, 19(1):2-6.
    [11]华秀菁,吕玉麟.二维浅水域潮流数值模拟的ADI-QUICK格式[J].水动力学研究与进展:A辑,1996,11(1):79-92.
    [12]Thompson J F. Boundary-fitted coordinate system for numerical solution of partial differential equations [J]. Journal of Computational Physics,1982, 47:1-108.
    [13]Haidvogel D B. A Semi-spectral Primitive Equation Ocean Circulation Model Using Vertical Sigma and Orthogonal Curvilinear Horizontal Coordinates [J]. Journal of Computational Physics,1991,94:151-185.
    [14]Bao X W, Yan J, Sun W X. A Three-dimensional Tidal Model in Boundary-fitted Curvilinear Grids [J]. Estuarine, Coastal and Shelf Science,2000,50:775-788.
    [15]Shi F Y, Svendsena I A, Kirby J T. A curvilinear version of a quasi-3D nearshore circulation model [J]. Coastal Engineering,2003,49:99-124.
    [16]Gray W G. Finite element analysis of long period water waves [J]. Computer Methods in Applied Mechanics and Engineering,1973,2(2):147-157.
    [17]吕玉麟,赖国章.近海浅水环流问题的数值模拟[J].大连工学院学报,1981,20:39-52.
    [18]李吴麟,项有法.河口汉道不稳定流有限元数值计算[J].水利学报,1983,4:16-25.
    [19]谭维炎,赵棣华.二维浅水渐变不恒定明流的有限元算法及程序包[J].水利学报,1984,:1-13.
    [20]Robert J L, Julie D P. A fully three dimensional unstructured grid non-hydrostatic finite element coastal model [J]. Ocean Modelling,2005,10: 51-67.
    [21]谭维炎.浅水动力学的回顾和当代前沿问题[J].水科学进展,1999,10(3):296-303.
    [22]Dick E. Introduction to finite-volume techniques in computational fluid dynamics [M]. In:Wendt J F ed. Computaional Fluid Dynamics. New York:Springer,1994.
    [23]Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model [M]. In:Heaps N (Ed.), Three-Dimensional Coastal Ocean Models, 1987,4:1-16.
    [24]李庆红,赵军方,张永刚.大连附近海域潮汐潮流的三维数值模拟[J].海洋测绘,2003,23(2):48-52.
    [25]孙洪亮,黄卫民,赵俊生.北部湾潮致风生和热盐余流的三维数值计算[J].海洋与湖沼,2001,32(5):561-568.
    [26]Oey L Y. A wetting and drying scheme for POM [J]. Ocean Modelling,2005,9:133-150.
    [27]Korres G, Hoteit I, Triantafyllou G. Data assimilation into a Princeton Ocean Model of the Mediterranean Sea using advanced Kalman filters [J]. Journal of Marine Systems,2007,65:84-104.
    [28]Blumberg A F. A primer for Ecom-si [R]. Technical report, HydroQual, Inc 1994.
    [29]朱建荣.ECOM模式的改进及在长江口,杭州湾及临近海区的应用[J].海洋与湖沼,2003,34(4):364-374.
    [30]张越美,孙英兰.渤海湾三维变动边界潮流数值模拟[J].青岛海洋大学学报,2002,3(3):337-344.
    [31]Casulli V. A semi-implicit finite difference method for non-hydrostatic free-surface flows [J]. International Journal for Numerical Methods in Fluids, 1999,30:425-440.
    [32]Chen C, Liu H, Beardsley R C. An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model:Application to Coastal Ocean and Estuaries [J]. Journal of Atmospheric and Oceanic Technology,2003,20:159-186.
    [33]Huang H, Chen C, Blanton J, et al. A numerical study of tidal asymmetry in Okatee Creek, South Carolina [J]. Estuarine, Coastal and Shelf Science, 2008,78:190-202.
    [34]宋德海.基于FVCOM的钦州湾三维潮流数值模拟[J].热带海洋学报,2009,28(2):7-14.
    [35]Zhang Y L, Baptista A M, Myers E P. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems:I. Formulation and skill assessment [J]. Continental Shelf Research,2004,24:2187-2214.
    [36]Baptista A M, Zhang Y L, Chawl A, et al. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems:Ⅱ. Application to the Columbia River [J]. Continental Shelf Research,2005,25:935-972.
    [37]Gong W P, Shen J, Cho K 0, et al. A numerical model study of barotropic subtidal water exchange between estuary and subestuaries (tributaries) in the Chesapeake Bay during northeaster events [J]. Ocean Modelling,2009,26:170-189.
    [38]Gong W P. Mean water level setup setdown in the inlet-lagoon system induced by tidal action-a case study of Xincun Inlet, Hainan Island in China [J]. Acta Oceanologica Sinica,2008,27(5):63-80.
    [39]Haidvogel D B, Arango H, Hedstrom K, et al. Model evaluation experiments in the North Atlantic Basin:simulations in non-linear terrain-following coordinates [J]. Dynamics Atmospheres and Oceans,2000,32:239-281.
    [40]Shchepetkin A F, McWilliams J C. The Regional Ocean Modeling System:A split-explicit, free-surface, topography following coordinates ocean model [J]. Ocean Modelling,2005,9:347-404.
    [41]Shchepetkin A F, McWilliams J C. A method for computing horizontal pressure-gradient force in an oceanic model with nonaligned vertical coordinate [J]. Journal of Geophysical Research,2003,108(C3):3090-4023.
    [42]李孟国,王正林,蒋德才.近岸波浪传播变形数学模型的研究与进展[J].海洋工程,2002,20(4):43-57.
    [43]Munk W H, Arthur R S. Wave intensity along a refracted ray [C]. Proceedings of the NBS Semicentennial Symposium on Gravity Waves held at the NBS on June 18-20, 1951.
    [44]Li B, Fleming C A. A three-dimensional multigrid model for fully nonlinear water waves [J]. Coastal Engineering,1997,30:235-258.
    [45]高学平,赵子丹.直立堤前为任意地形时立波运动的数值分析[J].海洋学报,1995,14(1):46-50.
    [46]王永学.VOF方法数模直墙式建筑物前的波浪破碎过程[J].自然科学进展,1993,3(6):553-559.
    [47]Bradford S F. Numerical simulation of surfzone dynamics [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000,126(1):1-13.
    [48]Li B, Fleming C A. Three-Dimensional Model of Navier-Stokes Equations for Water Waves [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2001, 127(1):16-25.
    [49]Monaghan J J. Smoothed particle hydrodynamics [J]. Reports on Progress in Physics, 2005,68:1703-1759.
    [50]Monaghan J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics,1994,110:399-406.
    [51]Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method [J]. Coastal Engineering,2006,53:141-147.
    [52]李孟国,王正林,蒋德才.关于波浪Boussinesq方程的研究[J].青岛海洋大学学报,2002,32(3):345-354.
    [53]陈阳,严以新.Boussineq方程波浪数学模型的应用[J].海洋工程,1999,17(4):85-94.
    [54]邹志利.水波理论及其应用[M].北京:科学出版社,2005.
    [55]林建国,邱大洪,邹志利.新型Boussinesq方程的进一步改善[J].海洋学报,1998,20(2):113-119.
    [56]邹志利.适合复杂地形高阶Boussinesq水波方程[J].海洋学报,2001,23(1):109-119.
    [57]Chen Q, Madsen P A, Schaffer H A. Wave-current interaction based on an enhanced Boussinesq approach [J]. Coastal Engineering,1998,33:11-39.
    [58]Ren X, Wang K H, Jin K R. A Boussinesq model for simulating wave and current interaction [J]. Ocean Engineering,1997,24(4):335-350.
    [59]李绍武,王尚毅,柴山知也.一种近岸区波浪破碎模型[J].海洋学报,1999,21(1):103-110.
    [60]李孟国,蒋德才.关于缓坡方程的研究[J].海洋通报,1999,18(4):70-92.
    [61]Radder A C. On the parabolic equation method for water-wave propagation [J]. Journal of Fluid Mechanics,1979,95:159-176.
    [62]Copeland, G J. A practical alternative to the mild-slope wave equation [J]. Coastal Engineering,1985,9:125-149.
    [63]唐军.近岸波浪场的缓坡模型数值模拟及波流场中污染物输运的研究[D].大连:大连理工大学,2005.
    [64]Kirby J T, Dalrymple R A. An approximate model for nonlinear dispersion in chromatic wave propagation models [J]. Coastal Engineering,1987,9:545-561.
    [65]Zhao Y, Anastasiou K. Economical random wave propagation modeling taking into account nonlinear amplitude dispersion [J]. Coastal Engineering,1993,20:59-83.
    [66]Kirby J T, Dalrymple R A. Modelling waves in the surfzones and around islands [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1986,112(1):78-93.
    [67]Chamberlain P G, Porter D. The modified mild-slope equation[J]. Journal of Fluid Mechanics,1995,291:393-407.
    [68]Whitham G B. Linear and nonlinear waves [M]. Wiley, New York,1974.
    [69]袁业立,潘增弟,华锋,等.LAGFD-WAM海浪数值模式[I]基本物理模型[J].海洋学报,1992,14(5):1-7.
    [70]袁业立,华锋,潘增弟,等.LAGFD-WAM海浪数值模式[Ⅱ]区域性特征线嵌入网格及其应用[J].海洋学报,1992,14(6):1-24.
    [71]Komen G J, Cavaleri L, Donelan M, et al. Dynamics and Modelling of Ocean Waves [M]. London:Cambridge University Press,1994.
    [72]Tolman H L. A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depths and currents [J]. Journal of Physical Oceanography, 1991,21(6):782-797.
    [73]Booij N, Ris R C, Holthuijsen L H. A third-generation wave model for coastal regions, Part 1. Model description and validation [J]. Journal of Geophysical Research,1999,104 (C4):7649-7666.
    [74]Ris R C, Holthuijsen L H, Booij N. A third-generation wave model for coastal regions Part 2. Verification [J]. Journal of Geophysical Research,1999,104(C4): 7667-7681.
    [75]Wolf J, Prandle D. Some observations of wave-current interaction [J]. Coastal Engineering,1999,37:471-485.
    [76]张弛,王义刚,郑金海.波生流垂向结构研究综述[J].水科学进展,2009,20(5):739-746.
    [77]Peregrine D. H. Calculations of the development of an undular bore [J]. Journal of Fluid Mechanics,1966,25:321-331.
    [78]Zeltj A. The run-up of nonbreaking and breaking solitary waves [J]. Coastal Engineering,1991,15:205-246.
    [79]Schaffer H A, Madsen P A, Deigaard R. A Boussinesq model for waves breaking in shallow water [J]. Coastal Engineering,1993,20:185-202.
    [80]Pechon P, Teisson C. Numerical modelling of three-dimensional wave-driven currents in the surf-zone [C]. Proceedings of the 24th International Conference on Coastal Engineering, New York:ASCE,1994.
    [81]ZHAO Q, Armfield S, Tanimoto K. Numerical simulation of breaking waves by a multi2scale turbulence model [J]. Coastal Engineering,2004,51:53-80.
    [82]Lin PZ, Li C W. A σ-coordinate three-dimensional numerical model for surface wave propagation [J]. International Journal for Numerical Methods in Fluids, 2002,38:1045-1068.
    [83]Longuest-Higgins M S, Stewart R W. Radiation stresses in water waves:A physical discussion with application [J]. Deep Sea Research,1964,11(5):529-562.
    [84]Longuest-Higgins M S. Longshore Currents Generated by Obliquely Incident Sea Waves 1 [J]. Journal of Geophysical Research,1970,75(33):6778-6789.
    [85]Dalrymple R A, Lozano C J. Wave-current interaction models for rip currents [J]. Journal of Geophysical Research,1978,83(C12):6063-6071.
    [86]郑永红,沈永明,游亚戈,等.波浪增减水的实用数学模型及其数学模型[J].海洋学报,2002,24(2):121-126.
    [87]Xie L, Wu K, Leonard R, et al. A numerical study of wave-current interaction through surface and bottom stresses:Wind-driven circulation in the South Atlantic Bight under uniform winds [J]. Journal of Geophysical Research,2001, 106(C8):16841-16855.
    [88]曹祖德,王桂芬.波浪掀沙-潮流输沙的数值模拟[J].海洋学报,1993,15(1):107-118.
    [89]Zheng J H, Yan Y X. Vertical variations of wave-induced radiation stress tensor [J]. Acta Oceanologica Sinica,2001,20(4):597-605.
    [90]Zhang D. Numerical simulation of large-scale wave and currents [D]. SingaPore: National University of SingaPore,2004.
    [91]Xia H Y, Xia Z W, Zhu L S. Vertical variation in radiation stress and wave-induced current [J]. Coastal Engineering,2004,51:309-321.
    [92]Mellor G. The three-dimensional current and surface wave equations [J]. Journal of Physical Oceanography,2003,33:1978-1990.
    [93]Ardhuin F, Jrnkins A D, Belibassakis K A. Comments on "The Three-Dimensional Current and Surface Wave Equations" [J]. Journal of Physical Oceanography,2008, 38:1340-1351.
    [94]Mellor G. Some consequences of the three-dimensional current and surface wave equations [J]. Journal of Physical Oceanography,2005,35:2291-2298.
    [95]Mellor G. The depth-dependent current and wave interaction equations:A revision [J]. Journal of Physical Oceanography,2008,38:2587-2596.
    [96]Daling S, Brandvik J, Mackay D, et al. Characterization of crude oils for environmental purposes [J]. Oil and Chemical Pollution,1990,7:199-224.
    [97]Spaulding, M L. A state-of-the-art review of oil spill trajectory and fate modeling [J]. Oil and Chemical Pollution,1988,4:39-55.
    [98]ASCE Task Committee on modeling of oil spills of the water resources engineering division. State-of-the-art review of modeling transport and fate of oil spills [J]. Journal of Hydraulic Engineering,1995,122:594-609.
    [99]Reed M, Johansen 0, Brandvik P J, et al. Oil spill modeling towards the close of the 20th century:Overview of the state of the art [J]. Spill Science and Technology Bulletin,1999,5:3-16.
    [100]Fay J A. Physical processes in the spreading of oil on a water surface [C]. In: Proceedings of the Joint Conference on Prevention and Control of Oil Spills, Washington DC,1971.
    [101]Lehr W J, Fraga R J, Belen M S, et al. A new technique to estimate initial spill size using a modified Fay-type spreading formula [J]. Marine Pollution Bulletin, 1984,15:326-329.
    [102]Mackay D, Buist I, Mascarenhas R, et al. Oil spill processes and models. Environment [R]. Canada Report,1980.
    [103]Shen H T, Yapa P D. A simulation model for oil slick transport in lakes [J]. Water Resource Research,1987,23(10):1949-1957.
    [104]杨小庆,沈洪道,汪德胜.油在河流中传输的双层数学模型[J].水利学报,1996,8:71-76.
    [105]李炜.水环境科学进展[M].武汉:武汉水利水电大学出版社,1999.
    [106]Papadimitrakis J M, Psaltaki M, Christolis M, et al. Simulating the fate of an oil spill near coastal zones:The case of a spill (from a power plant) at the Greek Island of Lesvos [J]. Environmental Modelling & Software,2006,21:170-177.
    [107]Talichk P, Huda M K, Gin K H. A multiphase oil spill model [J]. Journal of Hydraulic Research,2003,41:115-125.
    [108]Johansen 0. Dispersion of oil from drifting slicks [R]. Spill Technology Newsletter,1982.
    [109]Elliott A J. Shear diffusion and the spread of oil in the surface layers of the North Sea [J]. Ocean Dynamics,1986,39:113-137.
    [110]Al-Rabeh A H, Cekirge H M, Gunay N. A stochastic simulation model of oil spill fate and transport [J]. Applied Mathematical modelling,1989,13:322-329.
    [111]张存智,窦振兴,韩康.三维溢油动态预报模式[J].海洋环境科学,1997,16(1):22-29.
    [112]Korotenko K A, Mamedov R M, Mooers C N K. Prediction of the Transport and Dispersal of Oil in the South Caspian Sea Resulting from Blowouts [J]. Environmental Fluid Mechanics,2002,1:383-414.
    [113]Korotenko K A, Mamedov R M, Konta A E. Particle tracking method in the approach for prediction of oil slick transport in the sea:modelling oil pollution resulting from river input [J]. Journal of Marine Systems,2004,48:159-170.
    [114]Wang S D, Shen Y M, Zheng Y H. Two-dimensional numerical simulation for transport and fate of oil spills in seas [J]. Ocean Engineering,2005,32(13):1556-1571.
    [115]徐洪磊.海上溢油动态数值模拟的研究[D].大连:大连海事大学,2000.
    [116]Tkalich P, Huda K, Gin K. A multiphase model of oil spill dynamics [C]. Proceedings of XXVIII IAHR Congress Graz Austria,1999.
    [117]Chao X B,Shankar N H, Cheong H F. Two- and three-dimensional oil spill model for coastal waters [J]. Ocean Engineering,2001,28:1557-1573.
    [118]Chao X B, Shankar N H, Sam S Y. Development and Application of Oil Spill Model for Singapore Coastal Waters [J]. Journal of Hydraulic Engineering,2003, 129:495-503.
    [119]汪守东.基于Lagrange追踪的海上溢油预报模型研究[D].大连:大连理工大学,2008.
    [120]Mellor G. Users Guide fora three-dimensional primitive equation numerical ocean model [R]. Princeton:Princeton University,2004.
    [121]Mellor G, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers [J]. Journal of the Atmospheric Sciences,1974,31:1791-1806.
    [122]Madala R V, Piacsek S A. A semi-implicit numerical model for baroclinic oceans [J]. Journal of Computational Physics,1977,23:167-178.
    [123]Phillips N A. A coordinate system having some special advantages for numerical forecasting [J]. Journal of the Atmospheric Sciences,1957,14(2):184-185.
    [124]The SWAN team. SWAN USER MANUL (SWAN Cycle Ⅲ version 40.51AB) [R]. Delft University of Technology,2007.
    [125]The SWAN team. SWAN TECHNICAL DOCUMENTATION (SWAN Cycle Ⅲ version 40.51AB) [R]. Delft University of Technology,2007.
    [126]Wu J. Wind-stress coefficients over sea surface from breeze to hurricane [J]. Journal of Geophysical Research,1982,87:9704-9706.
    [127]Cavaleri L, Malanotte-Rizzoli P. Wind wave prediction in shallow water:Theory and applications [J]. Journal of Geophysical Research,1981(C11):10961-10973.
    [128]Hasselmann S, Hasselmann K, Allender J H, et al. Computations and parameterizations of the linear energy transfer in a gravity wave spectrum, Part II:Parameterizations of the nonlinear transfer for application in wave models [J]. Journal of Physical Oceanography,1985,15:1378-1391.
    [129]Eldeberky Y, Battjes J A. Spectral modeling of wave breaking:Application to Boussinesq equations [J]. Journal of Geophysical Research,1996,102:1253-1264.
    [130]Hasselmann S, Hasselmann K. A symmetrical method of computing the non-linear transfer in a gravity-wave spectrum[M]. Hamburg:University of Hamburg,1981.
    [131]WAMDI Group. The WAM model-a third generation ocean wave prediction model[J]. Journal of Physical Oceanography,1988,18:1775-1810.
    [132]Tolman H, Chalikov D. Source terms in a third-generation wind wave model[J]. Journal of Physical Oceanography,1996,26:2497-2518.
    [133]Grant W D, Madsen O S. Combined wave and current interaction with a rough bottom [J]. Journal of Geophysical Research,1979,84:1797-1808.
    [134]Signell R R, Beardsley R C, Graber H C, et al. Effects of wave-current interaction on wind-driven circulation in narrow, shallow embayments [J]. Journal of Geophysical Research,1990,95:9671-9678.
    [135]Jing L, Peter V R. Wave-current bottom shear stresses and sediment resuspension in Cleveland Bay, Australia [J]. Coastal Enginerring,1996,29:169-186.
    [136]吴永胜,练继建,张庆河,等.波浪水流作用下的紊动边界层数值分析[J].水利学报,1999,9(9):68-74.
    [137]Davies A M, Lawrence J. Examining the influence of wind and wind wave turbulence on tidal currents, using a three-dimensional hydrodynamics model including wave-current interaction [J]. Journal of Physical Oceanography,1994, 24:2441-2460.
    [138]Ting F C K, Kirby J T. Observation of undertow and turbulence in a laboratory surf zone[J]. Coastal Enginerring,1994,24:51-80.
    [139]Wu X Z, Zhang Q H. A Three-Dimensional Nearshore Hydrodynamic Model with Depth-Dependent Radiation Stresses[J]. China Ocean Enginerring,2009, 23:291-302.
    [140]Samuels W B, Huang N E, Amstutz D. E. An oil spill trajectory analysis model with a variable wind deflection angle [J]. Ocean Engineering,1982,9:34-60.
    [141]Delvigne G A L, Sweeney C E. Natural dispersion of oil [J]. Oil and Chemical Pollution,1988,4:281-310.
    [142]Pavlo T, Chan E S. Vertical mixing of oil droplets by breaking waves [J]. Marine Pollution Bulletin,2002,44:1219-1229.
    [143]Stiver W, Mackay D. Evaporation rate of spills of hydrocarbons and petroleum mixtures [J]. Environment Science and Technology,1984,18:834-840.
    [144]Cohen Y, Mackay D, Shiu W Y. Mass transfer rates between oil slicks and water [J]. The Canadian Journal of Chemical Engineering,1980,58:569-574.
    [145]Mackay D, Buist I, Mascarenhas R, et al. Oil spill processes and models [R]. Environmental Protection Service, Canada Report,1980.
    [146]Ficher H B, Imberger J, List E J, et al. Mixing in inland and coastal waters [M]. New York:Academic Press,1979.
    [147]Okubo A. Oceanic diffusion diagrams[J]. Deep-Sea Research,1971,18:789-802.
    [148]Mandelbrot B B, Van N J W. Fractional Brownian motions, fractional noises and applications[J]. SIAM Review,1968,10:422-437.
    [149]Peitgen H O, Saupe D. The Science of Fractal Images [M]. New York:Springer,1988.
    [150]Addison P S, Qu B, Nisbet A, et al. A non-Fickian, particle-tracking diffusion model based on fractional Brownian motion[J]. International Journal for Numerical Methods in Fluids,1997,25:1373-1384.
    [151]Osborne A R, Kirwan A D, Provenzale A, et al. Fractal drifter trajectories in the Kuroshio extension [J]. Tellus,1989,41A:416-435.
    [152]Sanderson B G, Booth D A. The fractal dimension of drifter trajectories and estimates of horizontal eddy-diffusivity [J]. Tellus,1991,43A:334-349.
    [153]List E J, Gartrell G, Winant C D. Diffusion and dispersion in coastal waters [J]. Journal of Hydraulic Engineering,1990,116:1158-1179.
    [154]Thomas F, Russell M. An overview of research on Eulerian-Lagrangian localized adjoint methods [J]. Advances in Water Physics,1994,106:366-376.
    [155]Hunter J R, Craig P D, Phllips H E. On the use of random walk models with spatially variable diffusivity [J]. Journal of Computational Hydrology,2006,87:277-305.
    [156]Rovelstad A L. The effects of interpolation errors on the Lagrangian analysis of simulated turbulent channel flow [J]. Journal of Computational Physics,1994, 110:190-195.
    [157]Collivier-Gooch M V A. A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation [J]. Journal of Computational Physics,2002,181:729-752.
    [158]Peter S, Daniel F G. A review and numerical assessment of the random walk particle tracking method [J]. Journal of Contaminant Hydrology,2006,87:277-305.
    [159]Hassan A E, Mohamed M M. On using particle tracking methods to simulate transport in single-continuum and dual continua porous media [J]. Journal of Hydrology, 2003,275:242-260.
    [160]Pavlo T, Kamrul H, Karina G. A multiphase oil spill model [J]. Journal of Hydraulic Research,2003,41:115-125.
    [161]Lonin S A. Lagrangian model for oil spill diffusion at sea [J]. Spill Science and Technology Bulletin,1999,5:331-336.
    [162]Proctor R, Elliot A J, Flather R A. Forecast and hindcast simulations of the Braer oil spill [J]. Marine Pollution Bulletin,1994,28:219-229.
    [163]王世澎.波浪对潮流影响的数值模拟研究[D].大连:大连理工大学,2007.
    [164]Addison P S, Ndumu A S, Qu B. A fast non-Fickian particle-tracking diffusion simulator and the effect of shear on the pollutant diffusion process [J]. International Journal for Numerical Methods in Fluids,2000,34:145-166.
    [165]Li M. Estimating horizontal dispersion of floating particles in wind-driven upper ocean [J]. Spill Science and Technology Bulletin,2000,6:255-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700