用户名: 密码: 验证码:
Holter系统中运动伪差自动识别的关键技术及算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动干扰是动态心电图(Holter)系统中最为普遍、最难处理的噪声干扰类型,已经成为当前影响动态心电图判读准确性与诊断效率最为主要的因素之一。目前,关于动态心电图运动干扰处理技术的研究主要集中在如何有效地消除运动伪差,而同样关键的运动伪差识别技术以及相关算法却存在许多空白。本论文对Holter系统中运动伪差自动识别的关键技术与算法进行了深入研究,其主要的研究内容和创新成果如下:
     1、实现了加速度信号采集模块与Holter记录仪的集成,对不同的健康受试者设计了各种运动实验以探讨加速度信号在运动干扰识别方面的应用。通过在PC上对所采集的三轴加速度信号进行二项式拟合、高通滤波以及均方根求和处理得到运动参考信号(REF)之后,对REF信号进行了光谱映射处理,以辅助临床医生对被检查者的运动时间段进行快速定位。
     2、提出了一种新的运动干扰伪差段自动识别算法。通过分析心拍QRS波形态在运动干扰伪差段中的变化规律,基于全程心拍的形态学模板聚类结果,计算了心拍形态无序畸变特征曲线(Consequent Beats Shape Mutation Curve, cSMC),然后在cSMC曲线上进行模糊逻辑决策与局部积分处理,最终得到运动干扰段的起始与终止位置。经MIT-BIH噪声测试数据库验证,算法的准确度为:灵敏度=97.95%,正常心拍误检率=0.91%,室上性心拍误检率=3.33%。此外,在Intel双核2.5G/2GB PC机上,算法对时长约24小时的临床动态心电图的总识别时间小于4秒。
     3、提出了结合高阶统计量的运动干扰心拍自动识别算法。对临床上四种常见形态类型的干净心拍加入不同信噪比的运动噪声,通过分析它们的峰度系数变化特征,提出了结合峰度系数与心拍特征的多参数分层次的运动干扰心拍判定策略。在基于心拍模板聚类的运动干扰伪差段识别算法上引入该策略后,整体算法在保证识别精度基本不变的前提下,有效地降低了对正常心拍与室上性心拍的误检率:灵敏度=96.66%,正常心拍误检率=0.19%,室上性心拍误检率=1.74%。
     4、结合MIT-BIH噪声测试数据库与临床数据集对本论文的算法进行了验证分析,并按照美国动态心电图机国家标准ANSI/AAMI EC38:1998提出的要求,计算得出了算法的准确度随运动干扰信噪比的变化曲线。实验结果表明,与现有运动干扰伪差识别方法相比较,本论文所提出的运动干扰伪差自动识别算法获得了更高的准确度,并且具有更加高效的运算性能,因此更能适合临床应用。
     本论文所提出的运动干扰伪差自动识别算法已经集成至临床Holter系统,并被应用于各种需要区分运动伪差与干净心拍的分析功能中,比如房颤自动检测、心律失常分类、T波电交替分析等等,大大提高了这些分析算法的抗运动干扰性能。
Among all types of noise occur in the Holter system, motion artifact is the most common type and particularly hard to handle. Currently, motion artifact has already become one of the major factors affecting the interpretation accuracy and diagnosis efficiency of the Dynamic Electrocardiogram (DCG). To handle the motion artifacts, previous computational efforts have largely relied on motion artifacts removal, but significantly paid seldom attention to motion artifacts identification up to now. After analyzing the technical limitations of motion artifact removal and the deficiencies of the existing identification techniques, this thesis has done in-depth researches on the key technologies and algorithms for automatic identification of motion artifact in the Holter system.
     The main contents and innovations of this thesis mainly include:
     1. An acceleration signal acquistion circuit was designed and integrated into the Holter recorders, and a variety of exercise tests were designed for different healthy subjects in order to investigate the application of acceleration signal to motion artifact identification. After processing the collcetced triaxial acceleration signals by binomial fitting, high-pass filter and RMS summation to obtain the motion reference signal (REF), a spectral mapping method was applied to REF to help clinicians quickly locate the examiner's movement periods.
     2. A novel method for automatic identification of motion artifact segments was proposed. This thesis first analyzes the QRS complex shape variation law of the beats located in the motion artifact segments, and then calculates the consequent beats shape mutation curve (cSMC) based on the results of beat template clustering. In the cSMC, fuzzy-logic criterion and local integration were employed to find out the start and end position of the motion artifact segments. Using the optimal threshold analysis in the MIT-BIH Noise Stress Test Database, the accuracy of the proposed method is: sensitivity=97.95%. NFR=0.91%and VFR=3.33%. Moreover, the total cost time of our novel method applied to24hours recordings is less than4seconds using the Intel2.5G/2GB PC machine.
     3. A combined Higher-order statistics method for motion artifacts identification was proposed. By analyzing the kurtosis variation characteristics of the four common clinical morphological types of heart beats contaminated by the motion artifacts with different signal-to-noise ratio levels, a multi-parameter hierarchical strategy combined kurtosis and beat features was porposed to classify motion artifacts and clean beats. Combine the strategy with the previous motion artifact segment identification method, the NFR and VFR have been effectively reduced while the identification sensitivity keeps alomost unchanged:sensitivity=96.66%, NFR=0.19%and VFR=1.74%.
     4. Using the MIT-BIH Noise Stress Test Database and the clinical data gathering from the ECG department of the hospital, the identification performance of the whole method was evaluated, and the accuracy was characterized as a function of signal-to-noise ratio comply with the ANSI/AAMI EC38:1998recommended practice. Compared with the existing identification methods, the results show that the proposed method achieves higher accuracy, and is highly efficient that can be conveniently used in clinical applications.
     The proposed method for automatic identification of motion artifacts has been integrated into the clinical Holter system and has been used for many DCG diagnosis applications in need of discrimination between clean and motion artifact contaminated segments, such as atrial fibrillation detection, classification of cardiac arrhythmias and so on.
引文
[1]胡大一.警惕中国心脑血管疾病第二次浪潮.医学研究杂志.2007
    [2]郭继鸿.心电学进展.北京医科大学出版社,2002
    [3]黄大显.现代心电图学.人民军医出版社,1998
    [4]苗建宁,朱宇.Holter技术发展展望.医学信息.2006,19(2)
    [5]韦正光.动态心电图与常规心电图的比较及临床应用. 中国社区医师.2012,14 (14)
    [6]陈传广.动态心电监测的临床诊断价值.右江医学.2000,4:033
    [7]付国红.单道动态心电监测,监护及回放分析系统研究与开发:中南大学.2004
    [8]刘群,洪大庆.动态心电图仪的临床应用与进展.医疗装备.2003,16(7):22-22
    [9]何军.动态心电监护系统的发展和现状浅析.中国医疗器械信息.1997,3(6):11-12
    [10]严筱刚.Holter技术发展回顾.中国医疗器械杂志.1991,15(1):26
    [11]易测位,昌玮.动态心电仪国内外发展动向和各种Holter特点及优缺点.医学信息:医学与计算机应用.1999,12(3):27-30
    [12]张焱.心律失常检测及十二导联心电Holter系统的研究:重庆大学.2009
    [13]卢喜烈,朱力华,卢亦伟.Holter软件技术的基本要求.实用心电学杂志.2007,16(3):163-164
    [14]庄天戈.计算机在生物医学中的应用.东南大学出版社,1991
    [15]张开兹,郭继鸿,刘海洋.临床心电信息学.长沙:湖南科学技术出版社.2002,594
    [16]郑源庞.动态心电图的临床应用.浙江中医杂志.1994,6
    [17]张启红.动态心电图的临床应用价值.甘肃科技纵横.2002,31(5):43-44
    [18]周晓丽,肖雨枫.动态心电图的临床应用进展.医学信息.2012,25(6)
    [19]胡火英,陈峰.动态心电图检测的临床意义.中国社区医师:医学专业.2010(032):155-155
    [20]刘明安,李亚林,于海芬,周佳丽.动态心电图仪的临床应用现状.实用心电学杂志.2005,14(3):199
    [21]姜冬红,姜小妹,李秀征.动态心电图在临床中的应用价值.JOURNAL OF PRACTICAL ELECTROCARDIOLOGY JS.2007,16 (3)
    [22]齐兵,毛锐.动态心电图的临床应用.中国社区医师:医学专业.2010(035):149-150
    [23]J. Pan, W. J. Tompkins. A Real-Time Qrs Detection Algorithm. Biomedical Engineering, IEEE Transactions on.1985 (3):230-236
    [24]V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, S. Luo. Ecg Beat Detection Using Filter Banks. Biomedical Engineering, IEEE Transactions on. 1999,46 (2):192-202
    [25]J. D. Wilson, R. Govindan, J.0. Hatton, C. L. Lowery, H. Preissl. Integrated Approach for Fetal Qrs Detection. Biomedical Engineering, IEEE Transactions on.2008,55 (9):2190-2197
    [26]Y.-C. Yeh, W.-J. Wang. Qrs Complexes Detection for Ecg Signal:The Difference Operation Method. Computer methods and programs in biomedicine.2008,91 (3):245-254
    [27]F. Zhang, Y. Lian. Qrs Detection Based on Multiscale Mathematical Morphology for Wearable Ecg Devices in Body Area Networks. Biomedical Circuits and Systems, IEEE Transactions on.2009,3 (4): 220-228
    [28]Z.-E. Hadj Slimane, A. Nait-Ali. Qrs Complex Detection Using Empirical Mode Decomposition. Digital Signal Processing.2010,20 (4):1221-1228
    [29]S. Chouakri, F. Bereksi-Reguig, A. Taleb-Ahmed. Qrs Complex Detection Based on Multi Wavelet Packet Decomposition. Applied Mathematics and Computation.2011,217 (23):9508-9525
    [30]D. A. Coast, R. M. Stern, G. G. Cano, S. A. Briller. An Approach to Cardiac Arrhythmia Analysis Using Hidden Markov Models. Biomedical Engineering, IEEE Transactions on.1990,37 (9):826-836
    [31]Y.H. Hu, S. Palreddy, W.J. Tompkins. A Patient-Adaptable Ecg Beat Classifier Using a Mixture of Experts Approach. Biomedical Engineering, IEEE Transactions on.1997,44 (9):891-900
    [32]S. C. Wu, Y. X. Qian, Z. Y. Gao, J. R. Lin. A Novel Method for Beat-to-Beat Detection of Ventricular Late Potentials. IEEE transactions on biomedical engineering.2001,48 (8):931-935
    [33]P. De Chazal, M. O'Dwyer, R. B. Reilly. Automatic Classification of Heartbeats Using Ecg Morphology and Heartbeat Interval Features. Biomedical Engineering, IEEE Transactions on.2004,51 (7): 1196-1206
    [34]L. Y. Shyu, Y. H. Wu, W. Hu. Using Wavelet Transform and Fuzzy Neural Network for Vpc Detection from the Holter Ecg. Biomedical Engineering, IEEE Transactions on.2004,51 (7):1269-1273
    [35]M.I. Vai, L.G. Zhou. Beat-to-Beat Ecg Ventricular Late Potentials Variance Detection by Filter Bank and Wavelet Transform as Beat-Sequence Filter. Ieee Transactions on Biomedical Engineering. 2004,51 (8):1407-1413
    [36]N. Acir. Classification of Ecg Beats by Using a Fast Least Square Support Vector Machines with a Dynamic Programming Feature Selection Algorithm. Neural Comput ing & Applications.2005,14 (4): 299-309
    [37]P. de Chazal, R.B. Reilly. A Patient-Adapting Heartbeat Classifier Using Ecg Morphology and Heartbeat Interval Features. Biomedical Engineering, IEEE Transactions on.2006,53 (12):2535-2543
    [38]0. T. Inan, L. Giovangrandi, G. T. A. Kovacs. Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features. Biomedical Engineering, IEEE Transactions on.2006,53 (12): 2507-2515
    [39]W. Jiang, G. Seong Kong. Block-Based Neural Networks for Personal ized Ecg Signal Classification. Neural Networks, IEEE Transactions on. 2007,18 (6):1750-1761
    [40]M. Boix, B. Canto, D. Cuesta, P. Mico. Using the Wavelet Transform for T-Wave Alternans Detection. Mathematical and Computer Modelling.2009,50 (5-6):738-742
    [41]D. Cuesta-Frau, P. Mico-Tormos, M. Aboy, M.O. Biagetti, D. Austin, R. A. Quinteiro. Enhanced Modified Moving Average Analysis of T-Wave Alternans Using a Curve Matching Method:A Simulation Study. Medical & Biological Engineering & Computing.2009,47 (3):323-331
    [42]T. Ince, S. Kiranyaz, M. Gabbouj. A Generic and Robust System for Automated Patient-Specific Classification of Ecg Signals. Biomedical Engineering, IEEE Transactions on.2009,56 (5): 1415-1426
    [43]M. Faezipour, A. Saeed, S. C. Bulusu, M. Nourani, H. Minn, L. Tamil. A Patient-Adaptive Profiling Scheme for Ecg Beat Classification. Information Technology in Biomedicine, IEEE Transact ions on.2010, 14 (5):1153-1165
    [44]M. Kor"'rek, B. Dogan. Ecg Beat Classification Using Particle Swarm Optimization and Radial Basis Function Neural Network. Expert Systems with Applications.2010,37 (12):7563-7569
    [45]L. Makarov, V. Komoliatova. Microvol t T-Wave Alternans During Holter Monitoring in Children and Adolescents. Annals of Noninvasive Electrocardiology.2010,15 (2):138-144
    [46]S. Dash, K. Chon, S. Lu, E. Raeder. Automatic Real Time Detection of Atrial Fibrillation. Annals of biomedical engineering.2009,37 (9):1701-1709
    [47]C. Huang, S. Ye, H. Chen, D. Li, F. He, Y. Tu. A Novel Method for Detection of the Transition between Atrial Fibrillation and Sinus Rhythm. Biomedical Engineering, IEEE Transactions on.2011,58 (4): 1113-1119
    [48]纪承寅.临床心电图快速解读.北京:军事医学科学出版社,2001
    [49]黄宛.临床心电图学.北京:人民卫生出版社,1998
    [50]陈清启,杨庭树,卢喜烈.心电图学.山东科学技术出版社,2002
    [51]周群一.Ecg心拍建模与分析识别:浙江大学.2004
    [52]何伟,陈良迟.心电信号及各组分的频率分布和有效带宽研究.生物医学工程学杂志.1996,13(4):336-340
    [53]曹细武,邓亲恺.心电图各波的频率分析.中国医学物理学杂志.2001,18 (1)
    [54]罗乔.动态心电采集装置与运动伪迹抑制方法研究2011
    [55]马婵.心电信号预处理算法研究:杭州电子科技大学.2009
    [56]H. Tam, J. G. Webster. Minimizing Electrode Motion Artifact by Skin Abrasion. Biomedical Engineering, IEEE Transactions on.1977 (2): 134-139
    [57]J. G. Webster. Reducing Motion Artifacts and Interference in Biopotential Recording. Biomedical Engineering, IEEE Transactions on.1984 (12):823-826
    [58]孙京霞,白延强,杨玉星.一种抑制心电信号50hz工频干扰的改进Levkov方法.航天医学与医学工程.2000,13(3):196-199
    [59]江峰,管庶安,孙莉红.一种抑制心电信号50hz工频干扰的新方法.武汉工业学院学报.2012,31(1):55-58
    [60]朱伟芳,齐春.一种实用的去基线漂移滤波算法.苏州大学学报(工科版).2006,1:013
    [61]J. Mateo, C. Sanchez, C. Vaya, R. Cervigon, J. Rieta. A New Adaptive Approach to Remove Baseline Wander from Ecg Recordings Using Madeline Structure. In:Computers in Cardiology,2007:IEEE,2007: 533-536
    [62]汪家旺,吴玲燕,杨涛,苑颐萍,林宛华.几种去心电基线漂移算法的实现和比较.中国医疗器械信息.2008,14(006):30-33
    [63]X. Hu, Z. Xiao, N. Zhang. Removal of Baseline Wander from Ecg Signal Based on a Statistical Weighted Moving Average Filter. Journal of Zhejiang University SCIENCE C.2011,12 (5):397-403
    [64]S. Poornachandra. Wavelet-Based Denoising Using Subband Dependent Threshold for Ecg Signals. Digital Signal Processing.2008,18 (1): 49-55
    [65]毛玲.基于层次因子图的心电图自动诊断方法研究:国防科学技术大学.2009
    [66]L. Sharma, S. Dandapat, A. Mahanta. Ecg Signal Denoising Using Higher Order Statistics in Wavelet Subbands. Biomedical Signal Processing and Control.2010,5 (3):214-222
    [67]D.P. Burbank, J. G. Webster. Reducing Skin Potential Mot ion Artefact by Skin Abrasion. Medical and Biological Engineering and Computing. 1978,16 (1):31-38
    [68]O. Rompelman, H. Ros. Coherent Averaging Technique:A Tutorial Review Part 1:Noise Reduction and the Equivalent Filter. Journal of biomedical engineering.1986,8 (1):24-29
    [69]M. A. D. Ray a, L. G. Si son. Adaptive Noise Cancelling of Motion Artifact in Stress Ecg Signals Using Accelerometer:IEEE,2002:1756-1757 vol.1752
    [70]D. Tong, K. Bartels, K. Honeyager. Adaptive Reduction of Motion Artifact in the Electrocardiogram. In:Engineering in Medicine and Biology,2002.24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference,2002. Proceedings of the Second Joint:IEEE,2002:1403-1404
    [71]M. Milanesi, N. Martini, N. Vanello, V. Positano, M. F. Santarelli, R. Paradiso, D. De Rossi, L. Landini. Multichannel Techniques for Motion Artifacts Removal from Electrocardiographic Signals. In: Engineering in Medicine and Biology Society,2006. EMBS'06.28th Annual International Conference of the IEEE,2006:3391-3394
    [72]J. Webster. Reducing Motion Artifacts and Interference in Biopotential Recording. Biomedical Engineering, IEEE Transactions on.2007 (12):823-826
    [73]S. W. Yoon, H. S. Shin, S. D. Min, M. Lee. Adaptive Motion Artifacts Reduction Algorithm for Ecg Signal in Textile Wearable Sensor. IEICE Electronics Express.2007,4 (10):312-318
    [74]D.-U. Jeong, S.-J. Kim. Development of a Technique for Cancelling Motion Artifact in Ambulatory Ecg Monitoring System. In: Convergence and Hybrid Information Technology,2008. ICCIT'08. Third International Conference on:IEEE,2008:954-961
    [75]S. W. Yoon, S. D. Min, Y. H. Yun, S. Lee, M. Lee. Adaptive Motion Artifacts Reduction Using 3-Axis Accelerometer in E-Textile Ecg Measurement System. Journal of Medical Systems.2008,32 (2): 101-106
    [76]A. K. Barros, A. Mansour, N. Ohnishi. Removing Artifacts from Electrocardiographic Signals Using Independent Components Analysis. Neurocomputing.1998,22 (1):173-186
    [77]T. He, G. Clifford, L. Tarassenko. Application of Independent Component Analysis in Removing Artefacts from the Electrocardiogram. Neural Computing & Applications.2006,15 (2): 105-116
    [78]M. Milanesi, N. Martini, N. Vanello, V. Positano, M. F. Santarelli, L. Landini. Independent Component Analysis Applied to the Removal of Motion Artifacts from Electrocardiographic Signals. Medical & Biological Engineering & Computing.2008,46 (3):251-261
    [79]A. Hyv rinen, J. Karhunen, E. Oja. Independent Component Analysis. Wiley-Interscience,2001
    [80]卞玉萍,杨浩,何为,汪金刚.基于最小二乘法原理的动态心电信号伪差识别.生物医学工程学杂志.2007,24(005):1031-1035
    [81]李永亭,齐咏生, 肖志云.基于小波变换的动态心电信号伪差识别.计算机工程.2009,35(18):3
    [82]J. Lee, D. D. McManus, S. Merchant, K. H. Chon. Automat ic Mot ion and Noise Artifact Detection in Holter Ecg Data Using Empirical Mode Decomposition and Statistical Approaches. Biomedical Engineering, IEEE Transactions on.2012,59 (6):1499-1506
    [83]G. B. Moody, R. G. Mark. The Impact of the Mit-Bih Arrhythmia Database. Engineering in Medicine and Biology Magazine, IEEE.2001,20 (3): 45-50
    [84]G. B. Moody, W. Muldrow, R. G. Mark. A Noise Stress Test for Arrhythmia Detectors. Computers in Cardiology.1984,11 (3):381-384
    [85]"Ansi/Aami Ec38-1998", American National Standard for Ambulatory Electrocardiographs.1998
    [86]杨宝清.现代传感器技术基础.北京:中国铁道出版社,2001
    [87]王存玲.新型压阻式加速度传感器的研究:西安科技大学.2011
    [88]J. P. Martinez, S. Olmos. Methodological Principles of T Wave Alternans Analysis:A Unified Framework. Biomedical Engineering, IEEE Transactions on.2005,52 (4):599-613
    [89]A. J. Camm, M. Malik, J. Bigger, G. Breithardt, S. Cerutti, R. Cohen, P. Coumel, E. Fallen, H. Kennedy, R. Kleiger. Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation.1996,93 (5):1043-1065
    [90]黄晓东,黄晓华.微电子机械系统Adxl345的应用研究.企业技术开发.2012,31 (6)
    [91]唐渝,赵干青.简单整系数递归数字滤波器及其在生物医学中的应用(一).中国医疗器械杂志.1989,13(2):99-101
    [92]唐渝,赵干青.简单整系数递归数字滤波器及其在生物医学中的应用(三).中国医疗器械杂志.1989,13(6):358-362
    [93]唐渝,赵干青.简单整系数递归数字滤波器及其在生物医学中的应用(二).中国医疗器械杂志.1989,13(4):226-230
    [94]P. Lynn. Recursive Digital Filters for Biological Signals. Medical and biological engineering.1971,9 (1):37-43
    [95]P. Van Gerwen, W. Mecklenbrauker, N. Verhoeckx, F. Snijders, H. van Essen. A New Type of Digital Filter for Data Transmission. Communications, IEEE Transactions on.1975,23 (2):222-234
    [96]P. Lynn. Economic Linear-Phase Recursive Digital Filters. Electronics Letters.1970,6 (5):143-145
    [97]P. Lynn. Online Digital Filters for Biological Signals:Some Fast Designs for a Small Computer. Medical and Biological Engineering and Computing.1977,15 (5):534-540
    [98]P. Lynn. Fir Digital Filters Based on Difference Coefficients:Design Improvements and Software Implementation. IEE Proceedings E (Computers and Digital Techniques).1980,127 (6):253-258
    [99]P. Lynn. Transversal Resonator Digital Filters:Fast and Flexible Online Processors for Biological Signals. Medical and Biological Engineering and Computing.1983,21 (6):718-730
    [100]P. S. Hamilton. Open Source Ecg Analysis Software Documentation. EP Limited, Somerville, MA, USA.2002
    [101]W. Craelius, M. Restivo, N. E1-Sherif. Techniques for Processing of Cardiac Signals:Fiducial Formulae for Fidel ity. High Resolution Electrocardiography. Mount Kisco:Futura.1992:21-49
    [102]P. Lander, E. J. Berbari. Principles and Signal Processing Techniques of the High-Resolution Electrocardiogram. Progress in cardiovascular diseases.1992,35 (3):169
    [103]程小明,林金森,张正国.高分辨心电图中模板匹配算法的改进.中国生物医学工程学报.1999,18(1):98-96
    [104]段会龙,冯靖祎,洪玮.基于模板匹配和特征识别相结合的心室期前收缩波形分类算法.航天医学与医学工程.2002,15(2):98-102
    [105]W. G. Baxt. Application of Artificial Neural Networks to Clinical Medicine. The lancet.1995,346 (8983):1135-1138
    [106]M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. Sornmo. Clustering Ecg Complexes Using Hermite Functions and Self-Organizing Maps. Biomedical Engineering, IEEE Transact ions on. 2000,47 (7):838-848
    [107]Z. Dokur, T. Olmez. Ecg Beat Classification by a Novel Hybrid Neural Network. Computer Methods and Programs in Biomedicine.2001,66 (2-3):167-181
    [108]F. Melgani, Y. Bazi. Classification of Electrocardiogram Signals with Support Vector Machines and Particle Swarm Optimization. Information Technology in Biomedicine, IEEE Transact ions on.2008, 12 (5):667-677
    [109]R. Ceylan, Y. Ozbay, B. Karlik. A Novel Approach for Classificat ion of Ecg Arrhythmias:Type-2 Fuzzy Clustering Neural Network. Expert Systems with Applications.2009,36 (3):6721-6726
    [110]H. G. Goovaerts, H. H. Ros, T. J. Van Den Akker, H. Schneider. A Digital Qrs Detector Based on the Principle of Contour Limiting. Biomedical Engineering, IEEE Transactions on.1976 (2):154-160
    [111]符新伟.基于高阶统计量和小波分析的特征提取:西安:西北工业大学.2004
    [112]张贤达.现代信号处理.清华大学出版社有限公司,2002
    [113]J.M. Mendel. Tutorial on Higher-Order Statistics (Spectra) in Signal Processing and System Theory:Theoretical Results and Some Applications. Proceedings of the IEEE.1991,79 (3):278-305
    [114]D. DiPietroPaolo, H.-P. Muller, G. Nolte, S. Erne. Noise Reduction in Magnetocardiography by Singular Value Decomposition and Independent Component Analysis. Medical and Biological Engineering and Computing.2006,44 (6):489-499
    [115]R. Mark, R. Wallen. Aami-Recommended Practice:Testing and Reporting Performance Results of Ventricular Arrhythmia Detection Algorithms. Association for the Advancement of Medical Instrumentation, Arrythmia Monitorring Subcommittee, AAMI ECAR. 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700