用户名: 密码: 验证码:
面向物联网和光纤传感技术的桥梁安全监测技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物联网的核心内容之一是负责信息获取的传感器网络,它是信息的源头,是物联网技术的先导和重要基础设施。随着全球信息化和现代通讯技术的迅猛发展,传统的感测技术已难以满足现代多元化的测试需求,近十年,光纤传感技术在全球已引起高度重视,并得到了迅速发展。光纤传感安全监测物联网技术的应用领域十分广泛。对于恶劣、危险、干扰大的环境,及需远程遥测的大型工程与重要设施,光纤传感安全监测物联网具有独特的优点。桥梁是交通领域的重要命脉,目前影响桥梁安全的灾难性事故在国内外时有发生。因此,桥梁物联网安全监测具有重大意义。本文围绕桥梁结构对光纤物联网技术的应用,开展了以下方面的研究工作:
     (一)总结归纳了既有桥梁安全监测技术特点
     1.归纳了既有桥梁安全监测技术的设计原则,主要构成,系统涉及的主要工作内容,明确了既有桥梁安全监测系统在传感技术可靠性,传感网络健全性及专家系统处于起步阶段的现状及不足;
     2.从应用的角度结合工程实际,给出了两座不同类型,监测需求,监测规模的既有桥梁安全监测系统的运行介绍。
     (二)提出了光纤物联网桥梁安全监测的技术要求
     1.提出了光纤物联网桥梁安全监测应实现传感单元智能性,监测系统联网性,决策评价主动性的技术需求。
     2.明确了光纤物联网桥梁安全监测系统有关数据采集传输,处理控制的设计要求及实现方式,针对物联网联网需求及远程访问功能分析了客户端/浏览器的实现方式。
     (三)研发了光纤物联网桥梁安全监测新技术
     1.对大跨度桥梁的重要承载构件缆索,在既有研究成果的基础上,克服了传感器的安装工艺,实现了适应索工作量程的可调式封装结构,成功研发了基于光纤传感技术的满足物联网传感单元智能性要求的光纤光栅智能索,并将其首次用于实际大桥工程。
     2.对于连续梁预应力损失监测,设计了定制的三光栅结构形式,提出了对钢束预应力损失开展监测的实施工艺,并计算分析了此工艺下测试结果的可靠
     (四)实现了光纤物联网桥梁安全监测系统应用示范1.通过将以光纤传感技术为主的单一大跨度桥梁安全监测系统与互联网相结合,构建了光纤物联网桥梁安全监测系统。应用示范天兴洲公铁两用长江大桥安全监测系统,实现了结构应变、温度场,大桥现场视频等信息的远程查看和监控。
     2.多座采用光纤传感技术的桥梁安全监测系统接入互联网的模式,实现了桥梁群概念的光纤物联网桥梁安全监测新模式。
Sensors network that resoposible for the information acquisition is one of the core things of Internet of Things (IOT). As the information source, sensors network is the pilot and important infrasturcutre of the IOT technology. With the rapid deveoplment of the global information and modern communication technology, it's difficult for the traditional sensor technology to meet the diversity of test requirement in the world of today. In recent ten years, the optical fiber sensing (OFS) technology has already caught worldwide attention and has been developed rapidly. The safety monitoring technology based on IOT and OFS has widely application fields, which has special advantage for the large engineering and important facilities to process remote telemetry in bad, dangerous, interference environment. Bridge is the important lifeblood of the transportation field. The disastrous bridge collapse accidents often occur at home and abroad. Therefore, it's significant to carry out bridge safey monitoring based on IOT and OFS. Focusing on the technology application about IOT and OFS in the bridge strucutrue, this paper carried out the following research work:
     (i) Summarized the existing bridge safety monitoring technology characteristers
     1. Summarized the design principle, main composition, and work content of existing bridge safety monitoring technology. The status quo and shortcomings in reliability of sensing technology, maturity and robustness of sensing network and the initial stage level of expert system were pointed out.
     2. From the view of the engineering application, the operation status of two existing bridge safety monitoring systems which had some differences in type, requirement and scale were introduced.
     (ii) Put forward the bridge safety monitoring technology requirement based on IOT and OFS
     1. The technology requirements of bridge safety monitoring system based on IOT and OFS were elicited, namely intelligent sensor unit, networking of monitoring system and initiative in decision making and evaluation.
     2. The design and realization manner about data acquisition, data transmission and processing control of bridge safety monitoring based on IOT and OFS were elicited. Also the framework of browser/client serving for the remote access functional requirement was analyzed.
     (ⅲ) Developed the new technology about bridge safety monitoring based on IOT and OFS
     1. Cable is the most important bearing structure of large span bridge. Based on the existing research results, the sensor installation method was overcome and an adjustable range encapsulation structure was designed which made the study about smart cable come true successfully. And the designed smart cable using OFS technology met the intelligent sensor unit requirement of IOT and has been used in real bridge engineering for the first time.
     2. For continuous beam prestress losing monitoring, a customization fiber with three optical fiber Bragg grating was designed and the corresponding test implementation art for prestressed steel wire was proposed. Also the test result reliability based on the proposed art was caculated and analyzed.
     (ⅳ) Realize the application demonstration of bridge safety monitoring system based on IOT and OFS
     1. By combining the OFS-based single bridge safety monitoring system with internet, a bridge safety monitoring system with IOT and OFS concept was set up. The application demonstration engineering, namely, Tian Xingzhou Yangtze River bridge safety monitoring system realized the remote manage and control about structural strain, temperature field, and video information of bridge work field etc.
     2. The mode that linking multiple OFS-based bridge safety monitoring systems with internet, realized the bridge complex concept safety monitoring based on IOT and OFS technology.
引文
[1]欧进萍.重大工程结构的累积损伤与安全评定[R].走向21世纪的中国力学—中国科协第9次青年科学家论坛报告文集.北京:清华大学出版社,1996.
    [2]Timothy J Thorp. A critical analysis of the Saint Anthony Falls (I-35W) Bridge, Minneapolis [C]. Proceedings of Bridge Engineering 2 Conference 2009, April 2009, University of Bath, Bath, UK.
    [3]Brent M Phares, Terry J Wipf, et al. Health monitoring of bridge structures and componets using smart-structure technology:volume I [R]. Center for Transportation Research and Education, Iowa State University, January 2005.
    [4]Brent M Phares, Terry J Wipf, et al. Health monitoring of bridge structures and componets using smart-structure technology:volume II [R]. Center for Transportation Research and Education, Iowa State University, January 2005.
    [5]John T De Wolf, Paul F D'Attilio, et al. Bridge monitoring network-installation and operation [R]. University of Connecticut & Connecticut Department of Transportation, December 2006.
    [6]Ebrahim Mehrani, Ashraf Ayoub. Remote health monitoring of the first smart bridge in Florida. Strucutures Congress 2006:Structural Engineering and Public Safety, Proceedings of the 2006 Strucutures Congress.
    [7]Michael Fraser, Ahmed Elgamal, et al. UCSD Powell Laboratory smart bridge testbed. University of California, San Diego, Department of Strucutral Engineering, Report NO. SSRP 06/06, La Jolla, CA, March 2006.
    [8]Peter C Chang, Alison Flatau, et al. Review paper: health monitoring of civil infrastrucuture [J]. Strucutural Health Monitoring,2003,2(3):257-267.
    [9]Carden E Peter, Paul Fanning. Vibration based condition monitoring:a review [J]. Strucutural Health Monitoring,2004,3(4):355-377.
    [10]Barke D, Chiu W K. Structural health monitoring in the railway industry: a review [J]. Strucutural Health Monitoring,2005,4(1):81-94
    [11]姜德生,Richard O. Claus著.智能材料、器件、结构与应用[M].武汉:武汉工业大学出版社,2000.
    [12]Nellen P M, Bronnimann R, Frank A et al. Structurally Embedded Fiber Bragg Gratings: Civil Engineering Application, SPIE,1999,3860:44-54.
    [13]Fiebele P. Fiber Bragg Grating Strain Sensors:Present and Future Applications in Smart Structures [J]. Optics and Photonics News,1998,9:33-37.
    [14]KERSEY ALAN D. A review of Recent Developments in Fiber Optic Sensor Technology [J]. Optical Fiber Technology,1996,2(3):291-317.
    [15]LEE BYOUNGHO. Review of the Present Status of Optical Fiber Sensors [J]. Optical Fiber Technology,2003,9(2):57-79.
    [16]Housner G W, Bergman LA, Caughey T K et al. Structural Control:Past, Present, and Future [J]. Journal of Engineering Mechanics,1997,123(2):897-971.
    [17]SOHN H, FARRAR C R, HEMEZ F, et al. A Review of Structural Health Monitoring Literature:1996-2001, Los Alamos National Laboratory Report, LA-13976-MS,2003.
    [18]Peeters B, Roeck G. One year monitoring of the Z24 bridge:environmental influences versus damage events [C]. Proceedings. IMAC 18, San Antonio, US, February 2000:1570-1576.
    [19]Peeters B, Maeck J, Roeck G Monitoring of the Z24 bridge:separating temperature effects from damage [C]. F3-2000,2000:377-386.
    [20]Catbas F Necati, Aktan A Emin. Condition and damage assessment:issues and some promising indices [J]. Journal of Strucutural Engineering,2002,128(8):1026-1036.
    [21]Aktan A E, Catbas F Necati, Grimmelsman K A. Issues in infrastructure health monitoring for management [J]. Journal of Engineering Mechanics,2000,126(7):711-724.
    [22]Catbasa F Necati, MelihSusoyb, et al. Strucutural health monitoring and reliability estimation:long span truss bridge application with environmental monitoring data [J]. Engineering Strucutures,2008,30:2347-2359.
    [23]Aktan A E, Catbas F Necati, et al. Health monitoring for effective management of infrastructure [C]. Smart Systems for Bridges, Structures and Highways Conference, San Diego CA 2002,4696:17-29.
    [24]欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):4549,64.
    [25]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [26]李惠,周文松,欧进萍,杨永顺.大型桥梁结构智能健康监测系统集成技术研究[J].土木工程学报,2006,39(2):46-52.
    [27]孙俊清,陈辉堂,史家钧.卢浦大桥健康监测系统通信网络设计[J].同济大学学报(自认科学版),2004,32(9):1225-1228.
    [28]李爱群,缪长青,李兆霞,韩晓林等.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003,9,33(5):544-548.
    [29]赵翔,李爱群,韩晓林,李兆霞等.润扬长江大桥结构健康监测系统传感器测点布置[J].工业建筑,2005,35(1):82-85.
    [30]缪长青,李爱群,韩晓林,李兆霞等.润扬大桥结构健康监测策略[J].东南大学学报(自然科学版),2005,9,35(5):780-785.
    [31]丁幼亮,李爱群,缪长青,韩晓林.基于环境振动测试的润扬斜拉桥索塔的有限元模拟 [J].公路交通科技,2006,23(7):57-63.
    [32]朱晓文,赵启林,岳建平,吉林.大跨度悬索桥地基基础安全监控系统[J].公路交通科技,2005,22(6):98-100+107.
    [33]邱法维,杜文博,钱稼茹等.虎门大桥应变监测数据处理系统设计[J].桥梁建设,2003,2:66-69.
    [34]姜德生,郝义昶,刘胜春.光纤Brgg光栅测力环在系杆拱桥中的应用[J].仪表技术与传感器,2006,2:43-44.
    [35]JIANG De-sheng, LI Sheng. Design and Research Structural Health Monitoring System for an Existing Bridge Based on Optical Fiber Sensing Technology [C]. The Second International Conference on Structural Condition Assessment, Monitoring and Improvement, November 19-21, 2007, Changsha, China, Vol.Ⅱ:959-965. (ISTP)
    [36]LI Sheng, JIANG De-sheng. Bridge external prestressing monitoring based on FBG [C]. Twentieth International Conference on Optical Fibre Sensors (OFS20), October 5-9,2009, Edinburgh, United Kingdom.
    [37]YUE Li-na, JIANG De-sheng, WANG Jun-jie. Application of Differential Fiber Bragg Grating Displacement Cell in Bridge Crack Monitoring[C].Photonics and Optoelectronics Meetings(POEM) 2008,November 24-27,2008,Wuhan,China.
    [38]YUE Li-na, HUANG Jun, YANG Yan. Application of FBG Sensors in Strengthing and Maintenance Monitoring of Old Bridges [C]. Twentieth International Conference on Optical Fibre Sensors (OFS20), October 5-9,2009, Edinburgh, United Kingdom.
    [39]李盛,姜德生,岳丽娜等.光纤传感技术在预应力砼箱形梁桥加固监测中的应用[J].仪表技术与传感器,2009,7:96-98.
    [40]南秋明,姜德生,梁磊.光纤光栅测力环的应用[J].华中科技大学学报(自然科学版),2006,34(9):63-65.
    [41]南秋明.光纤光栅测力环在悬索桥索力监测中的应用[J].公路交通科技,2010,27(3):64-68.
    [42]秦顺全.武汉天兴洲公铁两用长江大桥关键技术研究[J].工程力学,2008,25(增刊Ⅱ):99-105.
    [43]高宗余.武汉天兴洲公铁两用长江大桥总体设计[J].桥梁建设,2007,1:5-9.
    [44]Li Sheng. Study and application about differential fiber Bragg grating force-testing ring [C]. 2010 International Conference on Measuring Technology and Mechatronics Automation,2010, Vol.3:519-522.
    [45]岳丽娜,黄俊,刘胜春.荆岳长江公路大桥运营期监测系统设计[J].武汉理工大学学报,2009,31(1):116-119.
    [46]张东生,郭丹,罗裴.基于匹配滤波解调的光纤光栅振动传感器研究[J].传感技术学报,2007,20(2):311-313.
    [47]王俊杰,姜德生,梁宇飞.差动式光纤Bragg光栅土压力计及其温度特性的研究[J].光电子·激光,2007,18(4):389-391.
    [48]王俊杰,付晓红,姜德生.差动式光纤光栅位移计及其温度特性的研究[J].武汉理工大学学报,2007,29(12):112-115.
    [49]李盛.基于光纤光栅传感原理的桥梁索力测试方法研究与应用[D]:[博十学位论文].武汉:武汉理工大学,2009.
    [50]梁磊.光纤光栅智能材料与结构理论和应用研究[D]:[博士学位论文].武汉:武汉理工大学,2005.
    [51]姜德生,李盛,刘胜春.光纤光栅传感系统在桥梁重载车识别中的应用[J].中外公路,2007,27(3):153-155.
    [52]王应军.大型斜拉桥长期健康监测系统的关键技术研究[D]:[博士学位论文].武汉:武汉理工大学,2006.
    [53]范剑锋.桥梁健康状态的智能评估方法研究[D]:[博士学位论文].武汉:武汉理工大学,2006.
    [54]符晶华.光纤光栅智能材料、结构的应用与研究[D]:[博士学位论文].武汉:武汉理工大学,2006.
    [55]王保云.物联网技术研究综述[J].电子测量与仪器学报,2009,23(12):1-7.
    [56]International Telecommunication Union UIT. ITU Internet Reports 2005:The Internet of Things [R].2005.
    [57]AMARDEO C, SARMA, J G. Identities in the Future Internet of Things [J]. Wireless Pers Commun 2009,49:353-363.
    [58]AKYILDIZ L F, et al. Wireless sensor networks:A survey [J]. Computer Networks,2002, 38:393-422.
    [59]IBM. A Smarter planet [R]. http://www.ibm.com/smarter-planet,2010.
    [60]Pierre Jean Benghozi, Sylvain Bureau, et al. The Internet of Things:What Challenges for Europe [R]. http://www.vox-internet.org/,2008.
    [61]中国RFID产业联盟,北京时代计世资讯有限公司.中国RFID与物联网发展2009年度报告[R].2010,3.
    [62]房夏.中国物联网的现状及其发展因素分析[J].电子技术与应用,2010,6:6-7.
    [63]朱绍玮,张宇峰,樊可清等.江阴大桥结构健康监测系统升级改造及初步数据分析[J].公路,2007,4:69-72.
    [64]谢峻,王国亮,郑晓华.大跨度预应力混凝土箱梁桥长期下挠问题的研究现状[J].公路交通科技,2007,24(1):47-50.
    [65]Abdel Wahab M, De Roeck G Damage detection in bridges using modal curvatures: application to a real damage scenario [J]. Journal of Sound and Vibration,1999,226(2):217-235.
    [66]Peeters B. System identification and damage detection in civil engineering [D]. PhD thesis, K. U. Leuven, Civil Engineering, December 2000.
    [67]李爱群,丁幼亮.工程结构损伤预警理论及其应用[M].北京:科学出版社,2007.
    [68]任伟新,韩建刚等.小波分析在土木工程结构中的应用[M].北京:中国铁道出版社,2006.
    [69]Hearn G, Testa R B. Modal analysis for damage detection in structures [J]. Journal of Structural Engineering, ASCE,1991,117(10):3042-3063.
    [70]Pandey A K; Biswas M. Damage detection in structures using changes in flexibility [J]. Journal of Sound Vibration,1994,169(1):3-17.
    [71]张启伟,周艳.桥梁健康监测技术的适用性[J].中国公路学报,2006,19(6):54-58.
    [72]张启伟.桥梁结构模型修正与损伤识别[D]:[博士学位论文].上海:同济大学,1999.
    [73]李兆霞,李爱群等.大跨桥梁结构以健康监测和状态评估为目标的有限元模拟[J].东南大学学报(自然科学版),2003,33(5):562-572.
    [74]Gysin, H. P. Critical application of the Error Matrix Method for Localization of Finite Element Modeling Inaccuracies, Proceedings IMAC-4,1986.
    [75]费庆国,张令弥,李爱群等.基于不同残差的动态有限元模型修正的比较研究[J].振动与冲击,2005,24(4):24-27.
    [76]孙宗光,倪一清,高赞明等.基于斜拉索振动测量与神经网络技术的斜拉桥损伤位置识别方法[J].工程力学,2003,20(3):26-30.
    [77]孙宗光,高赞明,倪一清.基于神经网络的桥梁损伤位置识别[J].工程力学,2004,21(1):42-47.
    [78]孙宗光,高赞明,倪一清.斜拉桥桥面结构损伤位置识别的指标比较[J].工程力学,2003,20(1):27-31.
    [79]Ni YQ, Hua XG.State-of-the-art and state-of-the-practice in bridge monitoring systems:a review. Research report NO. SHMASES-01. Hong Kong, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University:2004.
    [80]Farrar CR, Jauregui DA. Comparative study of damage identification algorithms applied to a bridge: Ⅰ.experiment. Smart Materials and Structures 1998,7(5):704-719.
    [81]孙立军,杨阳等.上海市城市桥梁管理系统研究[J].华东公路,2000,2:34-37.
    [82]Zhou Y., Li S., Jin R. A new fuzzy neural network with fast learning algorithm and guaranteed stability for manufacturing process control [J]. Fuzzy Sets and Systems,2002,132: 201-216.
    [83]谌润水,胡钊芳等.公路既有桥梁加固技术与实例[M].北京:人民交通出版社,2002:93-95.
    [84]李昌铸,王丽云等.省市级公路桥梁管理系统的设计与实施[J].公路交通科技,1992,14(3):31-37.
    [85]黄永强译.可望使用的桥梁管理系统(BMS)[M]. Better road,1988,11.
    [86]王学智.桥梁损伤评估及专家系统(BEES)[D]:[博士学位论文].上海:同济大学,1990.
    [87]陈少文等.公路桥梁损伤等级评级与处治对策系统研究[J].中南公路工程,1997,22(4):4-10.
    [88]任宝双,钱稼茹.在用钢筋混凝士简支桥面梁受弯承载力估算[J].工业建筑,2000,30(11):29-33.
    [89]叶培伦等.应用曾侧分析法评判混凝土桥梁综合性能[J].公路与汽运,2004,3:71-73.
    [90]张永清,冯忠居.用层次分析法评价桥梁的安全性[J].西安公路交通大学学报,2001,21(3):52-56.
    [91]王永平,张宝银等.桥梁事使用性能模糊评估专家系统[J].中国公路学报,1996,9(2):62-67.
    [92]徐家云等.模糊理论在桥梁评估中的应用[J].武汉理工大学学报,2003,25(7):7-11.
    [93]禹智涛,韩大建.既有桥梁可靠性的综合评估方法[J].中南公路工程,2003,28(3):8-12.
    [94]Melham H. G. Bridge condition rating using an eigenvector of priority settings [J]. Microcomputers in Civil Engineering,1996, Vol.50(5/6):923-934.
    [95]张玲玲,马建勋.服役结构可靠性的模糊综合评判方法及其应用[J].土木工程学报,2001,34(5):20-23.
    [96]卢哲安,王二磊,邱怀中等.在役混凝土桥梁结构可靠度评估的模糊类比法[J].武汉理工大学学报,2003,25(13):108-109+115.
    [97]季征宇,林少培.建立了基于模糊层次分析法的结构破损评估专家系统[J].计算结构力学及其应用,1994,11(3):232-240.
    [98]王会利,李海滨,黄才良,石磊.两级模糊优选模型及非结构性模糊决策理论在桥梁方案必选中的应用[J].公路交通科技,21(7):79-82.
    [99]Zhao Z, Chen C. A Fuzzy System for Concrete Bridge Damage Diagnosis [J].Computers & Structures,2002,80:629-641.
    [100]Zhao Z, Chen C. Concrete Bridge Deterioration Diagnosis Using Fuzzy Inference System [J]. Advances in Engineering Software,2001,32:317-325.
    [101]胡雄,吉祥,陈兆能等.拉索桥梁安全性与耐久性评估的专家系统设计[J].应用力学学报,1998,15(4):122-126.
    [102]Kawamura K, Miyamoto A. Conodition State Evaluation of Existing Reinforced Concrete Bridges Using Neuro-Fuzzy Hybrid System [J]. Computers & Structures,2003,81:1931-1940.
    [103]潘黎明.大型桥梁结构安全性与耐久性评定研究[D]:[硕士学位论文].上海:同济大学,1997.
    [104]刘沐宇,袁卫国.基于模糊神经网络的大跨度钢管混凝土拱桥安全性评价方法研究[J].中国公路学报,2004,17(4):55-58.
    [105]中华人民共和国行业标准.公路旧桥承载能力鉴定方法[S].北京:人民交通出版社,2007.
    [106]任宝双,钱稼茹,聂建国等.在用钢筋混凝土简支梁桥结构综合评估方法[J].土木工程学报,2002,35(2):97-102.
    [107]武汉理工光科股份有限公司.晴川桥系杆换索施工索力现场监测测试误差分析报告[R].武汉:武汉理工光科股份有限公司,2004.
    [108]张嵩.分布式网络化桥梁结构安全监测系统研究[J].武汉理工大学学报,2007,29(11):115-118.
    [109]宋雨.文晖大桥健康监测与评估管理系统主要问题研究[D]:[博士学位论文].杭州:浙江大学,2003.
    [110]许佳,黄登山,陈斌.基于TCP/IP的分布式通用网管平台的研究与实现[J].计算机工程与设计,2009,30(15):3540-3543+3683.
    [111]马春光,杨义先,许维平.一种TCP/IP网络与LonWorks网络的集成方案[J].计算机工程,2003,29(5):183-185.
    [112]樊鹤红,张明德,孙小菡.多工作状态环形光网络的可靠性评估[J].东南大学学报(自然科学版),2005,35(5):673-677.
    [113]杨军,苑立波.白光干涉双环传感网络理论与实验研究[J].光学学报,2005,25(6):731-736.
    [114]李爱群,缪长青编著.桥梁结构健康监测[M].北京:人民交通出版社,2009.
    [115]叶小艳.无线远程终端系统的设计与实现[J].计算机时代,2010,12:9-10.
    [116]葛从兵,鲍亮.基于智能客户端的GPS大坝变形监测资料整编与分析系统[J].水利水电科技进展,2010,30(5):53-56.
    [117]夏忠华,张东亮.基于B/S模式的港口煤炭信息监管系统的设计与实现[J].煤炭技术,2011,30(2):154-156.
    [118]付军,严新平,初秀民.基于智能C/S架构的桥梁健康监测系统分析[J].武汉理工大学学报(交通科学与工程版),2005,29(5):743-746.
    [119]李光宇,李延新,袁爱进.基于C/S模型的OPC客户端实现远程监控[J].微型计算机系统,2007,23(43):25-26+189.
    [120]张燕.基于C/S模式的远程数据监测系统设计[J].计算机与网络,2008,34(17):68-70.
    [121]张东生,李微,郭丹.基于光纤光栅振动传感器的桥梁索力实时监测[J].传感技术学报,2007,20(12):2720-2723.
    [122]邓年春,欧进萍,周智等.一种新型平行钢丝智能拉索[J].公路交通科技,2007,24(3):82-85.
    [123]欧进萍,周智.纤维增强塑料-光纤光栅复合筋[P].中国专利:CN1484456A,2004.
    [124]邓年春,周智,龙跃等.光纤光栅冷铸镦头锚拉索及其在桥梁中应用[J].预应力技术,2007,3:3-7.
    [125]李冬生,邓年春,周智等.拱桥吊杆的光纤光栅监测与健康诊断[J].光电子.激光,2007,18(1):81-84.
    [126]LI Sheng, JIANG De-sheng. Structural Large Strain Monitoring Based On FBG Sensor [C]. Symposium on Photonics and Optoelectronics (SOPO2009), August 14-16,2009, Wuhan, China.
    [127]GBT18365-2001,国家技术监督总局.斜拉桥热挤聚乙烯高强钢丝拉索技术条件[S].北京:中国标准出版社,2001.
    [128]JTG/T D65-01-2007,中华人民共和国交通部.公路斜拉桥设计细则[S].北京:人民交通出版社,2007.
    [129]李盛,程健,丁莉等.高应力工作状态下FBG应变传感器的封装方法研究[J].武汉理工大学学报,2009,31(12):113-116.
    [130]GBT17101-2008,国家技术监督总局.桥梁缆索用热镀锌钢丝[S].北京:中国标准出版社,1998.
    [131]李盛,程健,刘胜春.基于FBG的平行钢丝智能斜拉索研究初探[J].武汉理工大学学报,2009,31(5):75-78.
    [132]法尔胜集团有限公司,江苏法尔胜新日制铁缆索有限公司,武汉理工大学.内置光纤光栅传感器的试验索疲劳试验报告[R].总装工程兵科研一所结构、传动、多波谱性能检测实验室,2010,6.
    [133]荆岳长江公路大桥(主桥上部构造部分)施工图设计汇报材料[R].湖北省交通规划设计院,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700