用户名: 密码: 验证码:
基于DSP的液压振动台功率谱复现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动环境模拟目前被广泛用于航天航空、兵器国防及汽车等领域,成为检测和提高产品可靠性的重要方法。使用振动实验设备采用一定的控制策略可以对产品在运输和工作过程中所承受的振动环境进行精确模拟,可以及时发现产品结构设计的缺陷,进而对产品的改良具有指导意义。
     本文是以哈工大电液伺服仿真及试验系统研究所承接的“985工程”二期—冗余驱动的六自由度液压振动系统研究为背景,对液压振动台功率谱密度复现进行理论和实验研究。
     液压振动台振动控制系统由液压伺服控制和振动控制组成。液压伺服控制是实现各种振动实验的基础;三参量控制技术是目前使用较为广泛的液压伺服控制技术。液压控制系统阻尼一般很小,通过三参量控制可以提高系统的阻尼比和系统带宽。当基础刚度与液压弹簧刚度相当的条件下,振动台液压位置系统可以近似为二自由度谐振系统,这对发挥液压振动台性能是不利的,并且三参量控制策略的功能也不能充分实现。
     液压振动台功率谱密度复现主要包含功率谱密度估计、驱动谱密度修正和驱动信号生成等内容。功率谱密度估计和驱动信号的生成都可使用AR随机过程进行模拟,但是算法依赖于高精度高斯随机噪声的获得。鉴于高斯噪声获得的难度和随机过程模拟精度需要较高的阶次,这些因素将导致功率谱密度均衡时间较长。本文在功率谱密度复现流程中采用非参数化方法中的平均周期图方法来估计振动台响应加速度信号的功率谱密度,且采用谐波拟合法来获得时域驱动信号。功率谱密度均衡过程中需要用到振动系统的阻抗函数来修正驱动功率谱密度,阻抗函数辨识的愈是精确,功率谱密度复现均衡的时间愈短。子带自适应算法用来辨识系统阻抗有着收敛速率高的特点,而且信号分解的子带数愈多,算法收敛愈迅速。在功率谱密度复现系统阻抗辨识中采用子带自适应算法可以获得优越的性能。时间域的余弦调制滤波器组,可以很好的划分信号的频带而且使得不同频带的重叠较小,被广泛的应用于滤波器组理论和实践相关领域中。
     基于余弦调制滤波器组的子带自适应算法是将信号分解到带宽相等的子频带内,而由小波分析近年来与滤波器组之间的关系被深刻的揭示出来,论文中将子带自适应辨识的思想扩展至将信号分解到不同带宽的子频带内。基于小波滤波器组的子带自适应算法即是该思想的具体体现,该算法既继承了子带自适应算法的优点又具有自身特点,即其辨识的结果是频率域的系统传递函数。随着小波分析理论的发展,种类繁多的小波基被创造出来,不同的小波基具有不同的正交性、对称性和消失矩等特性。小波基的正交性和对称性质对文章中提出的算法具有重要的意义,小波基的正交性保证信号分解至各个子频带的混叠较小,而小波基的对称性则保证了自适应算法过程中使用的滤波器具有线性的相位。
     制约国内振动控制技术快速发展的是数字振动控制器的研制工作远跟不上振动台振动控制策略的理论研究。论文采用美国德州仪器公司(TI)的C2000系列数字信号处理器(DSP)来构建液压振动台功率谱复现的数字振动控制器。数字振动控制器采用分布计算思想将振动控制算法的计算和振动系统驱动和反馈信号的获得分别由算法计算单元与数据采集单元来实现。两个构成单元的核心处理器分别为TMS320F28335和TMS320F2812。算法计算单元和数据采集单元采用双端口RAM(Dual-port RAM,DPRAM)来实现数据共享和控制通讯,通讯信号采用DPRAM的中断逻辑。信号处理系统监控计算机和DSP系统亦采用DPRAM来共享数据,针对监控计算机一方来讲,DPRAM是通过其ISA扩展槽来扩展的。DSP系统采用C语言和汇编混合编程的方式开发控制软件,并有意使用TI公司提供的优化的数字信号处理库函数,充分利用DSP系统的计算资源从而大大提高算法执行速度;而监控单元则采用NI公司LabView图形化语言,来调用基于Windows Driver开发的读写DPRAM的动态联接库,实现计算结果的显示和控制参数的修改。
     液压振动台的伺服控制系统采用基于xPc Target的快速原型技术来实现;而振动控制部分采用文中开发的信号处理系统。在此基础上实验验证了文中提出控制策略和开发的数字信号处理系统在液压振动台功率谱密度复现过程中的有效性。
Vibration environment simulation has been broadly used in the fields of theaspects of aeronautics, astronautics, national defense, automobile industry and so on.Now the vibration environment simulation is an important means for measuring andincreasing the reliability of the products. By simulating the vibration environmentexactly that products will be exposed to in use, transform using the vibrationequipment and specified control strategies, faults of product design can be foundearly and provide the information for adjusting the design process.
     Upon the background of “985Project” Phase II to develop redundancy-drivenhydraulic vibration system of six degrees of freedom (DOF), which is developed byIEST (Institute of Electro-hydraulic Servo Simulation&Test System) of HarbinInstitute of Technology, the key control methods of power spectral density (PSD)replication through electro-hydraulic shaking table (EHST) has been theoreticallyand experimentally studied in this thesis.
     The shaking control system of EHST consists of the servo controller and thevibration controller. The servo controller is the control basic to realize lots ofvibration environment simulation with a digital control loop. Due to the lowfrequency band and small damp ratio of the hydraulic dynamic structure, the ThreeVariable Controller (TVC) is widely introduced in the servo system of EHST toextend the response band and improve the system stability. Given that thefoundation stiffness is similar to the hydraulic spring stiffness, the servo system ofEHST can be equivalent to2degree of freedom resonator system. In this case, thefunction of EHST would be difficult to be realized fully, and the performance ofTVC may be not achieved.
     The PSD replication of EHST mainly comprises the estimation of PSD, updateof driven PSD and generation of time-domain drive signal. In the literature, both thePSD estimation of control acceleration and the generation of time domain drivesignal can be accomplished by modern parameter methods. This paper takes theAuto-Regressive (AR) model as typical to describe the use of these numericalsimulation technologies in PSD replication. It is shown that these methods aredependent on the high precise Gaussian random signal. As it is difficult to get the stationary, ergodic and independent Gaussian White Noise, furthermore, the orderof these random processes must be very large to assure the precision of PSDreplication. Because of this, the loop time of PSD replication is increased. In viewof above consideration, this paper adopts the average period-gram method (Welchmethod) which is traditional non-parameter technology to estimate the PSD of theresponse acceleration signal of EHST. Meanwhile, sine-wave fitting is presented togenerate the time-domain drive signal in the flow of PSD replication. Systemimpedance is needed to modify the drive PSD, therefore, the system impedance isestimated more accurate, the loop time of PSD replication is less. To acquire thehigh rate of convergence of frequency response function (FRF) esitmaiton of EHST,subband adaptive system identification algorithm is proposed in this thesis. Thesimulation results show that estimation signal is divided into more bands, the rate ofconvergence of FRF estimation is higher. Cosine-modulated filter banks (CMFB)are time-domain filter banks, and the overlap between different bands is small. Thispaper takes the CMFB as the filter banks in subband adaptive system identificationalgorithm.
     The CMFB divide signal into identical bandwidth bands, the interior relationbetween wavelet transforms and filter banks has been unvealed recently. Signaldivided into different bandwidth bands by wavelet transforms is considered in thisthesis. Subband adaptive system identification algorithm based on wavelettransforms not only inherits the properties of that based on identical bandwidthbands signal division, but also has its own features, that is, the results of subbandadaptive system identification based on wavelet transforms is representation infrequency domain. As the development of wavelet theory, lots of wavelet basis areconstructed, which have different characteristics of orthogonality, symmetry andvanishing moment. The orthogonality and symmetry of wavelet basis play vital rolein the algorithm mentioned above, because they guarantee the signal divided intodifferent bands has little overlap and the subband filter banks have the linear phase.The constraint of domestic shking control techonology is that development ofdigital contoller is slower than the theoretical research. which has hardwaremultiplier, Havard bus structure and pipeline technique, is popular in the field ofsignal processing. Texas instruments’(TI) C2000series digital signal processors(DSPs) are used in this paper to construct the digital controller for PSD replication of EHST.The concept of distributed computing is adopted to develop the digitalcontroller, which is composed of algorithm computation unit and data acquireunit.The algorithm computation unit is in charge of the shaking control strategycomputation, and the data acquire unit is used to get the driven and feedback signalsof EHST. The dual port RAM (DPRAM) is used to communication between twofunctional units, and the handshake signal is generated by the interrupt arbitrationlogic of DPRAM. The monitor unit of signal processing platform expands DPRAMusing its ISA bus to share data with the DSPs system. The DSPs system softwaredevelopment with C language and assembly language, and intends to use the TI’sDSP library to improve processing speed. National instruments GUI languageLabview is adopted to develop the monitor software. Labview calls the dynamiclinking library (DLL) created by Windows Driver to read from or write to theDPRAM and display the results or adjust the control parameters.
     The servo system of EHST is realized by xPc Target Rapid Control Prototyping(RCP) technology, and the vibration controller is realized by the signal processingplatform designed before. The experimental results of PSD replication of EHSTverify the effectiveness of the approaches presented above and the signal processingplatform.
引文
[1]赵于鉴,马栋.多点控制在导弹随机振动试验中的应用[J].国外电子测量技术,2005,24(10):37-40.
    [2]陈章位,于慧君.振动控制技术现状与进展.振动与冲击[J].2009,28(3):73-77.
    [3] Tony Keller, Marcos Underwood.An Application of MIMO Techniques toSatellite Testing[J]. IEST,2001:130-136.
    [4]陈章位,陈家焱,陈冬娇.振动试验控制技术与系统研究进展[C]//第十届全国振动理论及应用学术会议论文集(2011)上册.2011.
    [5]佟富强,张勇,张飞虎,顾立志等.振动切削中应力波对裂纹及成屑机理影响研究[J].振动与冲击,2008,27(6):136-139.
    [6]唐贞云,李振宝,纪金豹,等.地震模拟振动台控制系统的发展[J].地震工程与工程振动,2009,29(006):162-169.
    [7]刘辉,项昌乐,孙恬恬.车辆动力传动系统弯扭耦合振动模型的建立及复模态分析[J].机械工程学报,2010(024):67-74.
    [8]王坷晟,类勇军,朱晓莹.系统及产品振动试验的探讨与研究[J].振动与冲击,2004,(4):68-72.
    [9]郭继峰,任万滨,康云志,等.电动振动台模型辨识方法及其应用的研究[J].振动与冲击,2011,30(7):241-244.
    [10]杨志东.液压振动台振动环境模拟的控制技术研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [11]李大海.电液伺服振动台的随机振动控制[D].西安:西安交通大学硕士学位论文,2004:1-4.
    [12]关广丰.六自由度液压振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学博士论文,2007:1-2.
    [13]夏益霖.多轴振动环境试验的技术、设备和应用[J].导弹与航天运载技术,1996,6(221):52-59.
    [14]张正平,王宇宏,朱曦全.动力学综合环境试验技术现状和发展[J].装备环境工程,2006,3(4):7-11.
    [15]曲颖.六自由度振动试验台伺服控制系统设计[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011:2-5.
    [16] Klaus L. Vibration Testing System. United States Patent:4011749.1977-03-15
    [17]夏益霖,吴家驹,李志绩.多轴低频振动试验技术与设备[J].航天出国考察技术报告,1996,(1):83-89.
    [18] http://www.mts.com MTS公司
    [19] http://www.mts.com/ucm/groups/public/documents/library/dev_004858.pdf
    [20] http://www.teamcorporation.com TEAM公司
    [21] http://www.bbkco.com.cn/about/AboutBBK BBK主页
    [22] http://www.servotest.com Servo test公司
    [23] http://www.servotestsystems.com/images/stories/documents/multi_axis_shake_table.pdf
    [24] http://wwwcn.saginomiya.co.jp鹭宫制作所
    [25]陈良.多轴振动试验台结构设计与分析[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010:6-7.
    [26] Gang S, Dacheng C, Jingfeng H, et al. Research on three-axis six-DOF shakingtable based on rapid prototyping of DSP algorithms usingSIMULINK[C]//Systems and Control in Aerospace and Astronautics,2008.ISSCAA2008.2nd International Symposium on. IEEE,2008:1-6.
    [27]胡志强,法庆衍,洪宝林等.随机振动试验应用技术[J].中国计量出版社,1996:40-50.
    [28] Edwin A. Sloane. System for Digitally Controlling a Vibration TestingEnvironment or Apparatus. United States Patent:3710082.1973-01-09.
    [29] Fisher D.K. Theoretical and Practical Aspects of Multiple-Actuator ShakerControl.43th Shock and Vibration Bulletin.1973:153-174.
    [30] Fisher D.K. and Posehn M.R. Digital Control System for a Multiple-ActuatorShaker.47th Shock and Vibration Bulletin. NM: Albuquerque,1977:79-96.
    [31] David O. Smallwood. Multiple Shaker Random Vibration with Cross Coupling.Proceedings of the IEST.1978:341-347
    [32] Smallwood D O. Random Vibration Testing of a Single Test Item with aMultiple Input Control System. Proceedings of the Institute of EnvironmentalSciences’28th Annual Technical Meeting. USA, Dallas, TX,1982:42-49
    [33] Stroud R.C. and Hamma G.A. Multiexciter and Multiaxis Vibration ExciterControl Systems[J]. Sound and Vibration,1988,22(4):18-28.
    [34] http://www.mts.com MTS公司主页
    [35] http://www.wyle.com Wyle主页
    [36] http://www.lmschina.com LMS公司主页
    [37] Marcos A. Underwood. Digital Signal Synthesizer. United States Patent:4782324.1988-11-01
    [38] Marcos A. Underwood. Calibration Method and Programmable Phase-GainAmplifier. United States Patent:4937535.1990-06-26
    [39] Yan Z T, Ding S C. Coherence Analysis and Control of Multi-Exciter VibrationTest System[J]. Applied Mechanics and Materials,2013,401:1005-1009.
    [40]赵勇.液压振动台高精度正弦振动的控制策略研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009:17-18.
    [41] http://www.servotestsystems.com/images/stories/documents/15_Servotest_PULSAR_Digital_Control_System.pdf
    [42]刘小勇.基于自适应逆控制的冲击振动控制新方法[J].中山大学学报(自然科学版),2008,47(5):49-53.
    [43]刘小勇.振动系统的实时信号处理与控制[D].西安:西安交通大学博士学位论文,2003:58-60
    [44]沈国重,路甬祥.多分辨随机振动控制算法[J].机械工程学报.2001,37(10):14-18
    [45]陈章位,沈国重.随机振动控制的低频控制精度问题探讨[J].振动工程学报,2001,14:119-122.
    [46] Lingyun Ye, Kaichen Song, Ying Chen.Precise motion control for multiaxisusing real time forecast cross-coupling controller[C]//The8th InternationalConference on Control, Automation, Robotics and Vision.2004:2138-2143.
    [47]王述成.振动试验实时控制系统的研究[D].杭州:浙江大学博士学位论文,2006:53-71.
    [48]韩军,陈怀海,许峰等.基于遗传算法的多振动台随机振动控制方法[J].航空学报,2003,24(1):39-41.
    [49] Jianjun Y, Shenghai H, Wei F, et al. Harmonic cancellation forelectro-hydraulic servo shaking table based on LMS adaptive algorithm[J].Journal of Vibration and Control,2011,17(12):1862-1868.
    [50] Yang Z, Huang Q, Han J, et al. Adaptive inverse control of random vibrationbased on the filtered-X LMS algorithm[J]. Earthquake engineering andengineering vibration,2010,9(1):141-146.
    [51]叶凌云.多轴向多激励随机振动高精度控制研究[D].杭州:浙江大学博士学位论文,2006:80-90.
    [52] Shen G, Zheng S T, Ye Z M, et al. Adaptive inverse control of time waveformreplication for electrohydraulic shaking table[J]. Journal of Vibration andControl,2011,17(11):1611-1633.
    [53] Shen G, Zheng S T, Ye Z M. Tracking control of an electro-hydraulic shakingtable system using a combined controller for real-time testing[J]. Proceedingsof the Institution of Mechanical Engineers, Part I: Journal of Systems andControl Engineering,2011,225(5):647-666.
    [54] Shen G, Zhu Z, Tang Y, et al. Combined control strategy using internal modelcontrol and adaptive inverse control for electro-hydraulic shaking table[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2012.
    [55] Johnston J. A filter family designed for use in quadrature mirror filterbanks[C]//Acoustics, Speech, and Signal Processing, IEEE InternationalConference on ICASSP'80. IEEE,1980,5:291-294.
    [56] Smith M, Barnwell III T. Exact reconstruction techniques for tree-structuredsubband coders[J]. Acoustics, Speech and Signal Processing, IEEETransactions on,1986,34(3):434-441.
    [57]杲秀芳.多速率滤波器组的设计方法与应用研究[D].成都:西南交通大学硕士学位论文,2007:1-3.
    [58] Koilpillai R D, Vaidyanathan P P. Cosine-modulated FIR filter banks satisfyingperfect reconstruction[J]. Signal Processing, IEEE Transactions on,1992,40(4):770-783
    [59] Li B, Gao X, Xiao F. Reversible design of the starting block in lattice structureof arbitrary-length linear phase paraunitary filter banks[J]. AEU-InternationalJournal of Electronics and Communications,2011,65(6):599-601
    [60] Zhong W, Xie X, Shi G, et al. Design of M-channel uniform linear-phase filterbanks with near-perfect-reconstruction property[C]//Audio, Language andImage Processing (ICALIP),2012International Conference on. IEEE,2012:903-908
    [61] Xu Z, Makur A. On the arbitrary-length M-channel linear phase perfectreconstruction filter banks[J]. IEEE Transactions on Signal Processing,2009,57(10):4118-4123
    [62] Kha H H, Tuan H D, Nguyen T Q. Efficient design of cosine-modulated filterbanks via convex optimization[J]. Signal Processing, IEEE Transactions on,2009,57(3):966-976.
    [63]彭彬.多通道线性相位均匀滤波器组与近似小波滤波器组[D].西安:西安电子科技大学硕士学位论文,2009:1-3.
    [64] Tran T D, Kelly D, Prusty B G, et al. Micromechanical modelling for onset ofdistortional matrix damage of fiber reinforced composite materials[J].Composite Structures,2012,94(2):745-757.
    [65] Tanaka Y, Ikehara M, Nguyen T Q. A lattice structure of biorthogonallinear-phase filter banks with higher order feasible building blocks[J]. Circuitsand Systems I: Regular Papers, IEEE Transactions on,2008,55(8):2322-2331.
    [66] Hou Y. A compactly supported, symmetrical and quasi-orthogonal wavelet[J].International Journal of Wavelets, Multiresolution and Information Processing,2010,8(06):931-940.
    [67] Mallat S G. Multiresolution approximation and wavelets. Department ofComputer and Information Science, School of Engineering and AppliedScience, University of Pennsylvania,1987.
    [68] Ramanathan R, Soman K P. Improved Technique for the Construction ofParametric M-Band Wavelets[C]//Advances in Recent Technologies inCommunication and Computing,2009. ARTCom'09. International Conferenceon. IEEE,2009:823-825.
    [69] Wang H, Yang Q, Wang C. High-order balanced M-band orthogonalmultiwavelet: Construction and application[J]. International Journal ofPhysical Sciences,2012,7(12):1884-1902.
    [70] Juan S, Xinhan D, Hongyue Q. An algorithm for the construction of M-bandsymmetric orthogonal multi-band wavelets[C]//Computer Science andAutomation Engineering (CSAE),2011IEEE International Conference on.IEEE,2011,2:59-63.
    [71] Nayebi K, Barnwell III T P, Smith M J T. Time-domain filter bank analysis: Anew design theory[J]. Signal Processing, IEEE Transactions on,1992,40(6):1412-1429.
    [72] Chen C K, Lee J H. Design of quadrature mirror filters with linear phase in thefrequency domain[J]. Circuits and Systems II: Analog and Digital SignalProcessing, IEEE Transactions on,1992,39(9):593-605.
    [73]张珺,魏学业.余弦调制滤波器组的设计研究[J].北方交通大学学报,2004,28(3):103-105.
    [74] Aguiar-Conraria L, Soares M J, Aguiar-Conraria L, et al. The continuouswavelet transform: A primer[J]. University of Minho,2010.
    [75] Cho S H, Jang G, Kwon S H. Time-frequency analysis of power-qualitydisturbances via the Gabor–Wigner transform[J]. Power Delivery, IEEETransactions on,2010,25(1):494-499.
    [76] INTO D O F H F, SHAPE S I W O F C, GROSSMANN A, et al.51AM J.MATH ANAL[J]. Fundamental Papers in Wavelet Theory,2009:126.
    [77]武涛.汽车安全气囊控制系统及碰撞分析系统的设计[D].合肥:中国科学技术大学硕士学位论文,2011:7-8.
    [78] Huang Y, Meyer D, Nemat-Nasser S. Damage detection with spatiallydistributed2D continuous wavelet transform[J]. Mechanics of Materials,2009,41(10):1096-1107.
    [79] Peilin P, Guangbin D. Vibration diagnosis method based on wavelet analysisand neural network for turbine-generator[C]//Control and Decision Conference,2009. CCDC'09. Chinese. IEEE,2009:5234-5237.
    [80] Daubechies I. Orthonormal bases of compactly supported wavelets.Communications on pure and applied mathematics,1988,41(7):909-996
    [81] Mallat S.A theory for Multiresolution Signal Decomposition:The WaveletRepresentation[J].IEEE Trans.Patt Recog and Math.Intell,1989,11(7):674-693.
    [82] R.R.Coifman,Y.Meyer,and M.V.Wickerhauser.Wavelet analysis and signalprocessing.In M.B.Ruskai et al,editor,Wavelets and their Applications.Jonesand Barlett,Boston,1992:153-178.
    [83] Karimi H R, Zapateiro M, Luo N. Wavelet-based parameter identification of anonlinear magnetorheological damper[J]. International Journal of Wavelets,Multiresolution and Information Processing,2009,7(02):183-198.
    [84] Chen S L, Liu J J, Lai H C. Wavelet analysis for identification of dampingratios and natural frequencies[J]. Journal of Sound and Vibration,2009,323(1):130-147.
    [85] Yang Li,Hua-liang Wei,and S.A.Billings.Identification of Time-VaryingSystems using Multi-Wavelet Basis Functions[J].IEEE Trans.on ControlSystems Technology,2011,19(3):656-663.
    [86] Wei H L, Billings S A, Zhao Y F, et al. An adaptive wavelet neural network forspatio-temporal system identification[J]. Neural Networks,2010,23(10):1286-1299.
    [87] Le T H, Tamura Y. Modal Identification of ambient vibration structure usingfrequency domain decomposition and wavelet transform[C]//Proceedings ofthe7th Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan.2009.
    [88] Nagarajaiah S, Basu B. Output only modal identification and structural damagedetection using time frequency&wavelet techniques[J]. EarthquakeEngineering and Engineering Vibration,2009,8(4):583-605.
    [89]鲍成浩,水鹏朗.利用直接矩阵求逆和临界采样子带自适应滤波器的快速系统辨识[J].电子与信息学报,2008,30(1):139-143.
    [90] Petraglia M R, Alves R G, Diniz P S R. New structures for adaptive filtering insubbands with critical sampling[J].IEEE Transactions on SignalProcessing.2000,48(12):3316-3327.
    [91] Narayan S.S.,Peterson.A.M.,and Narasimha M.J.,Transform domain LMSalgorithom[J].IEEE Trans.Acoust.,Speech,Signal Process.Jun,1983,31:609-614
    [92] Gilloire A.and Vetterli M.Adaptive filtering in subbands with criticalsampling:analysis,ecperiments,and application to acoustic echocancellation[J].IEEE Trans.on Signal Processing.Aug,1992,40:1862-1875.
    [93] Yasukawa H, Shimada S, Furukawa I. Acoustic echo canceller with highspeech quality[C]//Conference on ICASSP'87. IEEE,1987,12:2125-2128.
    [94] M.Harteneck,J.M.paez-Borrallo,R.W.Stewart.An oversampled subbandadaptive filter without cross adaptive filters[J].SignalProcessing.1998,64:93-101.
    [95] M.TAHERNEZHADI and J.LIU.A Subband Approach to Adaptive AcousticEcho Cancellation[J].Computers Elect.Engng.1997,23(4):205-215
    [96] Petraglia M R, Mitra S K. Adaptive FIR filter structure based on thegeneralized subband decomposition of FIR filters[J]. Circuits and Systems II:Analog and Digital Signal Processing, IEEE Transactions on,1993,40(6):354-362.
    [97] SangGyun Kim,Chang D.Yoo,and Truong Q.Nguyen.Alias-Free SubbandAdaptive Filtering with Critical Sampling[J].IEEE Trans.on SignalProcessing.2008,56(5):1894-1904.
    [98] S.Sandeep Pradhan and V.U.Reddy.A new Approch to Subband AdaptiveFiltering[J].IEEE Trans.on Signal Processing.1999,47(3):655-664.
    [99] Noskoski O A, Bermudez J C M, de Almeida S J M. Region-BasedWavelet-Packet Adaptive Algorithm for Identification of Sparse ImpulseResponses[J].2013.
    [100]Underwood M.A.and Keller T.Recent System Developments forMulti-Actuator Vibration Control[J].Sound and Vibration.2001,35(10):16-23.
    [101]Underwood M A, Keller T. Applying coordinate transformations to multi-DOFshaker control. Sound and Vibration,2006,40(1):14-27.
    [102]Underwood,M.A.Multi-exciter Testing Applications:Theory andPractice.Proceedings-Institute of Environmental Sciences andTechnology,April2002
    [103]乔涛.冗余驱动振动台内力分析与控制[D].哈尔滨:哈尔滨工业大学硕士学位论文.2008:26-30.
    [104]李洪人.液压控制系统[M].北京:国防工业出版社,1990:162-167,188-199
    [105]马军辉.吊篮刚度对离心机振动台控制特性的影响[D].哈尔滨:哈尔滨工业大学硕士学位论文,2011:26-28.
    [106]王鸿飞.结构刚度对液压振动台频率特性的影响研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2012:24-26.
    [107]韩俊伟.三向六自由度大型地震模拟振动台的研制.哈尔滨:哈尔滨工业大学博士后研究报告,1996:33-39.
    [108]杨志东.三轴六自由度液压振动试验系统控制策略的研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2004:4-6.
    [109]Zhou B, Duan G R, Li Z Y. Gradient based iterative algorithm for solvingcoupled matrix equations[J]. Systems&Control Letters,2009,58(5):327-333.
    [110]Eller E, Garcia T A. VIBRATION CONTROL SYSTEM: U.S. PatentApplication13/347,249[P].2012-1-10.
    [111]Pfau D A, Whitton D M. Vibration control system: U.S. Patent7,904,210[P].2011-3-8.
    [112]Fisher D.K. and Posehn M.R. Digital Control System for a Multiple-ActuatorShaker.47th Shock and Vibration Bulletin. NM: Albuquerque,1977:79-96.
    [113]Peeters B. and Debilie J. Multi-axial Random Vibration Testing: a6Degrees-of-freedom Test Case. Proceedings of the21st Aerospace TestingSeminar, Manhattan Beach, CA, USA,2003:4.47-4.62.
    [114]Guan G, Wang H, Xiong W, et al. Vibration control of multiaxis hydraulicshaking table[C]//Fluid Power and Mechatronics (FPM),2011InternationalConference on. IEEE,2011:179-184.
    [115]S.M.凯依.现代谱估计原理与应用[M].黄建国,武延祥,杨世兴译.北京:科学出版社,1999:81-120.
    [116]Allaix D L, Carbone V I. Numerical discretization of stationary randomprocesses[J]. Probabilistic Engineering Mechanics,2010,25(3):332-347.
    [117]王述成,陈章位.随机振动试验中时域随机化技术的研究[J].机械工程学报,2005,41(5):230-233.
    [118]李东风.频域再现式随机振动的信号综合[J].环境试验,2007:8-15.
    [119]程伟,刘光栋,易伟建.平稳地震动过程功率谱拟合及收敛性分析[J].世界地震工程,2002,18(2):43-47.
    [120]奎克勒.多采样率系统—采样率转换和数字滤波器组[M].王德海,步兮瑶译.北京:电子工业出版社,2009:6-18222-234.
    [121]Lollmann H W, Vary P. Least-squares design of DFT filter-banks based onallpass transformation of higher order[J]. Signal Processing, IEEETransactions on,2010,58(4):2393-2398.
    [122]Lin Y P, Phoong S M, Vaidyanathan P P. Filter bank transceivers for OFDMand DMT systems[M]. Cambridge University Press,2010.
    [123]张子敬,焦李成.余弦调制滤波器组的原型滤波器设计[J].电子与信息学报,2002,24(3):308-313.
    [124]Chang Y S, Phoongy S M, Lin Y P. Subband adaptive filtering usingapproximately alias-free cosine modulated filterbanks[C]//APCCAS2008.IEEE Asia Pacific Conference on. IEEE,2008:1438-1441.
    [125]Abadi M S E, Kadkhodazadeh S. A family of proportionate normalizedsubband adaptive filter algorithms[J]. Journal of the Franklin Institute,2011,348(2):212-238.
    [126]Mallat S. A wavelet tour of signal processing: the sparse way[M]. Academicpress,2008.
    [127]杨建国.小波分析及工程应用[M].北京:机械工业出版社,2005.
    [128]I.Daubechies.小波十讲[M].李建平,杨万年译.北京:国防工业出版社,2004.
    [129]Stark H G. Wavelets and signal processing: an application-based introduction.Springer,2005:128-130.
    [130]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,1999:82-86.
    [131]Wang N. Balanced multiple description subband coding based on multifilterbanks[J]. Science China Information Sciences,2011,54(11):2359-2372.
    [132]Xin J, Sano A. Adaptive system identification based on generalized waveletdecomposition[J]. Applied mathematics and computation,1995,69(1):97-109.
    [133]吴君.多轴运动控制系统的设计与应用[D].上海:上海交通大学硕士学位论文,2011:28-30.
    [134]http://www.ti.com/product/tms320f28335
    [135]Peltola S M, Melchels F P W, Grijpma D W, et al. A review of rapidprototyping techniques for tissue engineering purposes[J]. Annals of medicine,2008,40(4):268-280.
    [136]Song W, Dyke S. Development of a cyber-physical experimental platform forreal-time dynamic model updating[J]. Mechanical Systems and SignalProcessing,2013.
    [137]Bannach D, Lukowicz P, Amft O. Rapid prototyping of activity recognitionapplications[J]. Pervasive Computing, IEEE,2008,7(2):22-31.
    [138]Simnacher M, Spoerri R, Rauter G, et al. Development and application of adynamometric system for sport climbing[J]. Journal of Biomechanics,2012,45:S625.
    [139]Chin C S, Lum S H. Rapid modeling and control systems prototyping of amarine robotic vehicle with model uncertainties using xPC Target system[J].Ocean Engineering,2011,38(17):2128-2141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700