用户名: 密码: 验证码:
冰晶模板组装蒙脱石多孔材料及传热传质规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决日益严重的工业废气污染问题,对储量丰富的蒙脱石改性研究已成为制备新材料的热点之一。现有技术主要以阳离子交联柱撑和有机模板组装来改性蒙脱石。此技术虽然可以合成微孔丰富、比表面积达200m2/g的纳米蒙脱石粉体,但是,改性后的蒙脱石孔隙结构简单,产品形态单一。大多柱撑剂和有机模板自身含有毒性,对改性蒙脱石和环境造成污染。该类材料也无法同时处理多种废气和固体微粒(PM2.5)。所以,创新合成具有多尺度孔隙结构、环境友好型蒙脱石功能材料的制备方法十分必要。
     本研究根据模板组装以及传热传质原理,系统分析了温和反应条件下,胶体悬浮液浓度小于5%时,蒙脱石多孔材料的制备理论。包括蒙脱石微粒与水中羟基、PVA分子中羟基的氢键结合理论,冰晶模板诱导作用下蒙脱石微粒的超分子组装理论;研究确定了“溶胶-凝胶-真空冷冻干燥”制备蒙脱石多孔材料的主要技术条件;试验验证了所制备蒙脱石多孔材料净化汽车尾气的效率。研究揭示的主要规律如下:
     对冰晶模板组装蒙脱石形成多孔结构的物理化学本质和孔隙特征研究表明,冰晶模板对蒙脱石微粒的诱导动力主要来源于冰晶特有的片状结构以及二者之间存在的氢键和范德华力。其方向性和加合性强化了氢键和范德华力,促成了蒙脱石微粒在冰晶间隙内定向排列,在多孔蒙脱石微粒组装中起决定作用。由此制备的冻干蒙脱石内部宏观孔隙呈层状结构,而且以贯通孔为主。孔隙率>60%,比表面积>150m2/g,孔体积>0.29cm~3/g;大孔孔径约50μm,中孔孔径35nm~45nm,另外在层状骨架壁面有少量孔径小于5nm的微孔。
     研究分析了蒙脱石微粒与聚乙烯醇长链分子间通过氢键结合发生有机化反应的机理,钠基蒙脱石/聚乙烯醇复合多孔材料的孔隙特征。研究表明,聚乙烯醇长链上的羟基与钠基蒙脱石微粒表面的羟基可形成氢键,使两物质之间发生插层反应,氢键在此反应中起着关键作用。在蒙脱石微粒层间域内外,聚乙烯醇浓度梯度所产生的渗透压促使其向层间域内渗透,强化了插层反应,最终生成了钠基蒙脱石/聚乙烯醇复合胶体悬浮液。在此基础上,经冰晶模板组装并冻干的钠基蒙脱石/聚乙烯醇复合材料中,宏观孔隙呈层状结构。其孔隙率>60%,比表面积>213.8m~2/g,孔体积>0.327cm~3/g。内部大孔以贯通孔为主,孔径大于10μm,中孔孔径约7.0nm,在层状骨架壁面也存在着孔径小于5nm的微孔。
     通过建立能量传递和质量传递数学模型并求解,揭示了该过程传热传质耦合规律,冻干蒙脱石内瞬时温度场和浓度场分布规律,真空冷冻干燥时间变化规律。研究表明,冻干蒙脱石的导热系数随其内部水蒸汽浓度的提高而增大;水蒸汽扩散通量与系统提供辐射热量也呈现正相关增加趋势,但是,水蒸汽扩散通量的增加会导致系统的热损失加剧;冻干蒙脱石内的二维温度场、浓度场分布类似于抛物曲线;从样品上表面中心至底部中心位置,温度逐渐降低,而水蒸汽浓度则上升;在同一水平面,从样品内部向外温度逐渐升高,水蒸汽浓度则逐渐下降。模拟计算表明,当环境温度为308K时,蒙脱石冻结体所需理论冻干时间约为39.0h。试验测得冻干时间约为40.0h,模拟计算与实验值基本吻合。
     研究分析了植物淀粉提高蒙脱石多孔材料结构强度内在规律。研究表明,淀粉长分子链中的羟基与蒙脱石微粒表面的羟基可发生氢键作用,它是二者之间紧密粘结的内在动力。淀粉凝胶化过程中形成三维网络结构,引导蒙脱石微粒形成与淀粉凝胶同样的网状结构。冰晶模板引导蒙脱石/淀粉组成的未定型网络凝胶实现有序排列。增强处理后的冻干蒙脱石及其复合多孔材料,其结构强度达1.0MPa以上,原有的层状孔隙特征完好。
     探索了冻干蒙脱石多孔材料作为催化剂的作用机理。研究表明,蒙脱石多孔制品内含有的多尺度孔隙,表面存在的大量不平衡键、断裂键,以及所具有的高离子交换量,形成了层状骨架表面的棱角、突起和缺陷,构成了蒙脱石催化剂的活性中心。冻干蒙脱石层间域内和表面上能够释放出丰富质子,使蒙脱石多孔材料成为一种较强的固体酸催化剂。冻干蒙脱石的催化机理为吸附、离子交换、过滤、分离四种物理化学过程的综合作用。对汽车尾气中CO、HC(碳氢化合物)、NOx、PM2.5、以及CO2的综合净化效率可达25%以上。利用该材料作汽车尾气净化剂,综合作用优于目前先进的铂金电氧化型净化器。
In order to solve the increasingly serious exhaust pollution, modification ofmontomorillonite (MMT) in rich reserves has become a focus in the field of newmaterials. The current techniques for modifying MMT mainly depend on cationiccross-linked pillar holding and organic template assembling to synthesize nano-MMTswith abundant micro-pores and a specific surface area of over200m2/g. However, thiskind of nano-MMT usually just has a single microstructure and size and could becontaminated by toxic pillaring agents or organic templates furthermore polluteenvironment. It also cannot purify various exhausts and adsorb PM2.5particlessimultaneously. Thus, it is necessary to develop a new technique for preparing anenvironment-friendly MMT material with multi-scale pores.
     In the present study, according to the principle of template assembling and heat andmass transfer, the synthesis of porous MMT materials by the MMT colloidal suspensionof below5%concentration was investigated systematically. Hydrogen bonding betweenthe MMT particles and hydroxyl group of H2O molecules or PVA long-chain molecules,supramolecule-assembling induced by ice template are included. A new preparationmethod of porous MMT materials called “sol-gel-vacuum freeze drying” was developed.It was proved that automobile exhaust could be efficiently purified using porous MMTmaterials prepared by this method. The findings are described below.
     The physical-chemical process and characteristics of the porous MMT materialassembled by ice template were investigated. The results displayed that the mainadditive force comed from hydrogen bonding and Van der Waals force between uniquesheet-like structure in ice and surface of MMT micro-particles. The directivity andadditivity strengthened hydrogen bonding and Van der Waals force and resulted in theorientation of the MMT particles in ice crystal gaps. The force added was decisive in theassembling of porous MMT material. The macro-pores were layered, with a porosity ofover60%, a specific surface area of over150m2/g and a pore volume of over0.29cm~3/g.The sizes of the internal macro-pores and meso-pores are50μm and35~45nm,respectively. In addition, a small amount of micro-pores with sizes of less than5nmcould be found.
     The mechanism of the organic reaction between MMT particles and polyvinylalcohol (PVA) long-chain molecules by hydrogen bonding was revealed and pore characteristics of freeze-dried MMT/PVA composite was also disclosed. It has beenreported that the hydroxyl groups of PVA long chains and the hydroxyl groups ofsodium MMT particle surfaces can form hydrogen bonds. The hydrogen bonds played avital role in the intercalative reaction between the two substances. Osmotic pressurecaused by concentration gradients of PVA within and outside the MMT layer helped thePVA long-chain molecules to infiltrate the inter-layer domain of MMT, and reinforcedthe intercalative reaction. In the end, the two reactants generated sodium MMT/PVAcomposite colloidal suspension. By means of ice template assembly, macro-pores of thelyophilized MMT/PVA composite showed a lamellar structure, with its porosity of over60%, specific surface area of over213.8m2/g and pore volume of over0.327cm3/g. Thesizes of the internal macro-pores and meso-pores were10μm and7.0nm respectively.Some micro-pores (aperture below5nm) were also found in the mesh skeleton of thelyophilized MMT/PVA composites.
     The mathematical models of heat and mass transfer in the vacuum freeze-dryingprocess of MMT were built up to reveal the coupling of heat and mass transfer, thedistribution of instantaneous temperature field and concentration field of freeze-driedMMT and time variation of vacuum freeze-drying. The results showed that the thermalconductivity of the lyophilized MMT increased with the increase of its internal vaporconcentration; the water vapor diffusion flux increases with the increase of radiant heatof the system absorbed from the external environment, but the increased water vapordiffusion flux could increase heat loss of the system; the two-dimensional distribution ofthe temperature field and concentration field within the freeze-dried MMT is similar tothe parabolic curve; The sample temperature dropped gradually from its top center tothe bottom center, while the water vapor concentration was on the rise; In the samehorizontal plane, the sample temperature rise gradually from the inside to outward, andthe water vapor concentration was on the decline. The calculation results showed thatthe simulation freeze-drying time required for about39.0h when the ambienttemperature was308K, while time measured was40.0h. The calculated time wasbasically consistent with the experimental time.
     The inherent reason of starch to improve the structural strength of lyophilizedporous MMT material was researched. Previous studies report that the hydroxyl groupson the long-chains of starch molecules and on the surface of freeze-dried MMT particlescan generate hydrogen bonding reaction. In turn, the reaction can promote closerbonding between starch molecules and MMT particles. The process in which starch sol changes into gel helps form a three-dimensional network and makes MMT particlesform a mesh structure similar to gel matrix above. The ice templates were found toguide the MMT/starch amorphous gels to form the porous MMT materials, whichstrength was over1.0MPa and the lamellar pore structure was retained.
     The mechanism of the lyophilized porous MMT products used as a catalyst wasexplored. The results showed that some multi-scale pores, large number of unbalancebonds, broken bonds, and high ion-exchange capacity existed in the freeze-dried MMT.These may result in the edges, protrusions and defects on the lamellar surface of theMMT skeleton, which may become active centers for the MMT catalyst. Thelyophilized porous MMT material which we developed could be used as a strong solidcatalyst for acid because its crystal surface was capable of releasing large amount ofprotons. The catalytic mechanism of MMT is combined by adsorption, ion exchange,filtration and separation. It was found that the purifying efficiency of such porouscomposite was more than25%for CO, HC (hydrocarbons), NOx, PM2.5and CO2inautomobile exhaust, even better than the current state-of-the-art exhaust purifier ofplatinum electro-oxidation.
引文
[1]2010年国家环境统计年报.中华人民共和国环境保护部网址[EB/OL]. http://zls.mep.gov.cn/hjtj/nb/2010tjnb/
    [2]卢光平.城市空气质量控制应用技术研究[D].沈阳:东北大学博士学位论文,2004.
    [3]王帅杰.城市空气颗粒物开放源污染防治理论探讨[D].天津:南开大学博士文,2005.
    [4]荆晶.英年均5000人死于交通污染超过事故死亡两倍多[N].新华网,http://news.xinhuanet.com/world/2012-04/19/c_123002974.htm
    [5]邓玉芳.汽油车尾气排放污染物数据分析[J].科技与生活,2011(6):198-199.
    [6]康新婷,汤慧萍,张健.汽车尾气净化用贵金属催化剂研究进展[J].稀有金属材料与工程,2006,35(Suppl.2):442-447.
    [7]姜桂兰,张培萍.膨润土加与应用[M].北京:化学工业出版社,2005.
    [8]郭瓦力,张德金,于桂香.多功能原料-膨润土[J].辽宁化工,1999,28(4):191-194.
    [9]王鸿禧.膨润土[M].北京:地质工业出版社,1980.
    [10]蒙脱石.百度百科[EB/OL]. http://baike.baidu.com/view/377160.htm.
    [11]乔放,李强,漆宗能.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,(3):135-144.
    [12] D.J.Pruissen, P.Capkova, R.A.J. Driessen. Structure analysis of intercalated smectites usingmolecular simulations[J]. Applied Catalysis A,2000,193:103–112.
    [13]朱利中.有机膨润土及其在污染控制中的作用[M].北京:科学出版社,2006.
    [14]孙红娟,彭同江,刘颖.蒙脱石的晶体化学式计算与分类[J].人工晶体报,2008,37(2):350-356.
    [15]钟山,孙世群,陈天虎.盐酸酸溶对蒙脱石结构的影响[J].硅酸盐学报,2006,34(9):1162-1166.
    [16]那平,张帆,李燕妮.水化Na-蒙脱石和Na/Mg-蒙脱石的分子动力学模拟[J].物理化学学报,2006,22(9):1137-1143.
    [17]宫宝安,齐少梅.水在蒙脱石中的吸附与脱除[J].物理学报,1995,44(1):157-163.
    [18]杨晋涛,范宏,卜志杨.蒙脱石的溶胀、蒙脱石-水悬浮液及悬浮乳液的流变特性[J].硅酸盐学报,2005,33(12):1457-1463.
    [19]郭宝利,谢克俊,刘同茹.膨润土水化膨胀与温度压力的关系[J].钻井液与完井液,1998,15(5):19-21.
    [20]刘玉芹,吕宪俊.膨润土水化性能及影响因素研究[J].中国非金属矿工业导刊,2007,64:97-101.
    [21]侯梅芳,高原雪,夏钟文.我国各地膨润土的水理特性[J].生态环境,2003,12(2):166-169.
    [22] S.Lantenois,R.Champallier,J.-M.Bény. Hydrothermal synthesis and characterization ofdioctahedral smectites: A montmorillonites series[J]. Applied Clay Science,2007(5):1-14.
    [23] Etelka Tombácz, Márta Szekeres. Colloidal behavior of aqueous montmorillonite suspensions:the specific role of pH in the presence of indifferent electrolytes[J]. Applied Clay Science,2004,27:75-94.
    [24] M.Victoria Villar, Antonio Lloret. Influence of dry density and water content on the swellingof a compacted bentonite[J]. Applied Clay Science,2007(4):1-12.
    [25]惠会清,张生录.阳离子型添加剂改良膨胀土研究[J].建筑科学与工程学报,2007,24(3):61-64.
    [26] Eng-Poh Ng,Svetlana Mintova. Nanoporous materials with enhanced hydrophilicity and highwater sorption capacity[J]. Microporous and Mesoporous Materials,2008,114:1-26.
    [27]王进,曾凡桂,王军霞.钠蒙脱石水化膨胀及层间结构的分子动力学模拟[J].硅酸盐学报,2005,33(8):996-1001.
    [28]徐永福,孙德安,董平.膨润土及其与砂混合物的膨胀试验[J].岩石力学与工程学报,2003,22(3):451-455.
    [29] Fabrice Salles, Isabelle Beurroies, Olivier Bildstein. A calorimetric study of mesoscopicswelling and hydration sequence in solid Na-montmorillonite[J]. Applied Clay Science,2008,39:186-201.
    [30]李天杰,赵烨,张科利.土壤地理学(第三版)[M].北京:高等教育出版社,2004.
    [31] Mykola Seredych, Albert V.Tamashausky, Teresa J. Bandosz. Surface features of exfoliatedgraphite/bentonite composites and their importance for ammonia adsorption [J]. Carbon,2008,46:1241-1252.
    [32]曹明礼.蒙脱石层间化合物的制备表征及其液相吸附特性研究生[D].武汉:武汉理工大学博士论文,2004.
    [33]唐雅静,姜廷顺,张蓉仙.膨润土为原料微波辐射法合成高稳定性介孔分子筛[J].纳米技术与精密工程,2008,6(3):185-189.
    [34] Li-Wang, Ai qin Wang. Adsorption properties of Congo Red from aqueous solution ontosurfactant-modified montmorillonite[J]. Journal of Hazardous Materials,2008,160:173-180.
    [35] D.Malferrari, M.F.Brigatti, A.Laurora. Sorption kinetics and chemical forms of Cd(II)sorbed by thiol-functionalized2:1clay minerals[J]. Journal of Hazardous Materials,2007,143:73-81.
    [36]叶玲.配位化合物改性蒙脱石的结构及吸附性能[J].华侨大学学报(自然科学版),2006,27(1):50-53.
    [37] Eng-Poh Ng, Svetlana Mintova. Nanoporous materials with enhanced hydrophilicity and highwater sorption capacity[J]. Microporous and Mesoporous Materials,2008,114:1-26.
    [38] Tim J.Tambach, Emiel J.M.Hensen. Molecular Simulations of Swelling Clay Minerals[J].J.Phys.Chem.B2004,108:7586-7596.
    [39] M.Benjelloun, P.cool,T.Linssen.Acidic porous clay heterostructures: study of their cationexchange capacity[J]. Microporous and Mesoporous Materials,2001,49:83-94.
    [40] Fa za Annabi-Bergaya. Layered clay minerals.Basic research and innovative compositeapplications[J]. Microporous and Mesoporous Materials,2008,107:141-148.
    [41]蒋引珊,董振亮.蒙脱石细微结构对其水体系ζ电势的影响[J].物理化学学报,1994,10,(2):158-162.
    [42]莫伟.新型粒状膨润土复合吸附剂的制备及其吸附性能[D].沈阳:东北大学博士论文,2008.
    [43]马福善,秦永宁,梁珍成.蒙脱石端面电荷改性研究[J].硅酸盐学报,1996,24(3):317-321.
    [44] Suna Balci, Elif G k ay. Effects of drying methods and calcination temperatures on thephysical properties of iron intercalated clays[J]. Materials Chemistry and Physics,2002,76:46-51.
    [45] M.J.Sánchez-Martin, M.C.Dorado. Influence of clay mineral structure and surfactant natureon the adsorption capacity of surfactants by clays[J]. Journal of Hazardous Materials,2007(4):1-9.
    [46] H.Hosono,Y.Mishima,H.Takezoe.Nanomaterial from research to application[M]. Great Britain:Elsevier Ltd.publisher,2006:349-382.
    [47] Zagorka Radojevi, Aleksandra Mitrovi. Study of montmorillonite and cationic activatorssystem rheological characteristic change mechanism[J]. Journal of the European CeramicSociety,2007,27:1691–1695.
    [48]王胜杰,李强,王新宇.聚苯乙烯/蒙脱土熔融插层复合的研究[J].高分子学报,1998(2):129-133.
    [49]丁运生,张志成.辐照法制备PVAc/蒙脱土纳米复合材料及其表征[J].高分子学报,2002(4):504-508.
    [50] James P.Olivier. Mario L.Occelli. Surface area and microporosity of pillared rectoritecatalysts from a hybrid density functional theory method[J]. Microporous and MesoporousMaterials,2003,57:291-296.
    [51]王新宇,漆宗能,王佛松.聚合物-层状纳米复合材料制备及应用[J].工程塑料应用,1999,27(2):1-5.
    [52] Seung Y.Lee,Won J. Cho,Pil S. Hahn. Microstructural changes of reference montmorillonitesby cationic surfactants[J]. Applied Clay Science,2005,30:174-180.
    [53] M.Kadle ková, J.Breza, K.Jesenák. The growth of carbon nanotubes on montmorillonite andzeolite (clinoptilolite)[J]. Applied Surface Science,2008,254:5073-5079
    [54]王景芹,李丹东,郑连波.烷基季铵盐改性膨润土的膨胀性[J].辽宁化工石油大学学报,2006,26(3):27-30.
    [55]庹必阳,张一敏,张覃.鄂东Ca基蒙脱土制备大孔复合材料的研究[J].IM&P化工矿物与加工,2006,(6):27-30.
    [56]杨洋,姚海林,陈守义.广西膨胀土的孔隙结构特征[J].岩土力学,2006,27(1):155-158.
    [57] Wen-Tien Tsai, Ting-Yi Su, Hsin-Chieh Hsu. Preparation of mesoporous solids by acidtreatment of a porphyritic and esite (wheat–rice–stone)[J]. Microporous and MesoporousMaterials,2007,102:196-203.
    [58] Peng Yuan,Fa za Annabi-Bergaya,QiTao. A combined study by XRD, FTIR, TG andHRTEM on the structure of delaminated Fe-intercalated/pillared clay[J]. Journal of Colloidand Interface Science,2008,32(4):142–149.
    [59]吴玲,沈毅.模板剂自组装含钛介孔材料的研究[J].江苏陶瓷,2008.41(3):8-11.
    [60]邓凤萍,岂兴红,武胜岩.模板法合成介孔材料的研究进展[J].长春理工大学学报(自然科学版),2007,30(3):110-113.
    [61] Pingxiao Wu, Honghai Wu, Rong Li. The microstructural study of thermal treatmentmontmorillonite from Heping, China[J]. Spectrochimica Acta Part A,2005,61:3020–3025.
    [62]吴平霄.蒙脱石活化及其与微结构变化关系研究[D].广州:中国科学院广州地球化学研究所博士论文,1998.
    [63]曾少雁,吴平霄.锆基柱撑蒙脱石研究进展[J].矿物岩石地球化学通报,2005,24(2):165-172.
    [64]戴劲草,肖子敬,叶玲.粘土层间交联和多孔材料的形成条件[J].无机材料学报,1999,14(1):90-94.
    [65]闫树芳,余江,王晨静.纳米复合层柱粘土材料的研究进展[J].化学通报,2006,69:1-8.
    [66]张增志,杨春卫,牛俊杰.多孔碳柱撑膨润土的制备与表征[J].硅酸盐学报,2008,36(7):1009-1013.
    [67]朱建喜,何宏平,杨丹.柱撑蒙脱石及其热处理产物孔性研究[J].无机材料学报,2004,19(2):324-328.
    [68]王浩,赵大方,李效东.有序大孔材料的研究进展[J].硅酸盐学报,2006,34(1):107-113.
    [69] H.Y.Zhu,Z.Ding,C.Q.Lu. Molecular engineered porous clays using surfactants[J]. AppliedClay Science,2002,20:165-175.
    [70]毛辉麾.具有规整孔道结构的蒙脱土柱撑杂化材料的制备及催化性能研究[D].北京:北京化工大学博士论文,2009.
    [71]刘洪杰,邹榕,李春桃.层状硅酸盐插层、柱撑研究[J].应用化工,2009,38(1):120-125.
    [72]管俊芳,陆琦,汤中道.柱撑粘土材料的环境化学行为[J].安全与环境工程,2002,9(2):13-16
    [73]曾秀琼.柱撑蒙脱石的制备、表征及其在废水处理中的作用[D].杭州:浙江大学博士论文,2003.
    [74]李昊,赵晨,张娇霞.(软模板)模板自组装技术的研究进展[J].粘接,2011,(5):077-081
    [75]李鹏,何文.模板法制备纳米介孔二氧化锆的研究[J],山东轻工业学院学报,2008.22(2):25-27.
    [76]谷林茂,刘晓芳.介孔材料的研究进展[J].云南大学学报(自然科学版),2008.30(S1):369-372.
    [77]倪星元,张志华. SiO2纳米多孔材料制备及其保温隔热特性研究[J].原子能科学技术,2004.38增刊:129-133.
    [78]段祥,王德平.胶晶模板法制备三维有序多孔羟基磷灰石[J].无机材料学报,2009.24(1):161-165.
    [79] Huai-Ping Cong,Shu-Hong Yu. Self-assembly of functionalized inorganic-organic hybrids[J].Current Opinion in Colloid&Interface Science,2008.9(3):1-10.
    [80] Qihui Shi,Hongjun Liang,Dan Feng. Porous Carbon and Carbon/Metal Oxide Microfiberswith Well-Controlled Pore Structure and Interface[J]. Journal of American Chemical Society,2008.130:5034–5035.
    [81] Zhong-He Wen,Yong-Sheng Han,Long Liang. Preparation of porous ceramics withcontrollable pore sizes in an easy and low-cost way[J]. MATERIALS CHARACTERIZATION,2008.59:1335-1338.
    [82] Lei Qian, Adham Ahmed,Alison Fostered. Systematic tuning of pore morphologies and porevolumes in macroporous materials by freezing[J]. Journal of Materials Chemistry,2009.19:5212-5219.
    [83]周春晖,李庆伟,葛忠华.介孔硅层柱蒙脱石材料合成的新方法与表征[J].高等学校化学学报,2003.24(8):1351-1355.
    [84]周春晖.新型纳孔粘土基复合材料的制备和催化性能研究[D].杭州:浙江工业大学博士学位论文,2003.
    [85]时拓,苏彬.模板法制备多孔无机材料的研究进展[J].陶瓷科学与艺术,2008.(3):12-18.
    [86]周春晖,李庆伟,葛忠华.层间模板剂导向合成新型多孔蒙脱石材料的研究[J].无机材料学报,2003.18(6):1299-1306.
    [87] P.J.Reseéndiz-Hernández, O.S.Rodríguez-Fernández. Synthesis of poly(vinyl alcohol)–magnetite ferrogel obtained by freezing–thawing technique[J]. Journal of Magnetism andMagnetic Materials,2008.320:e373–e376.
    [88] K. E. Strawhecker and E. Manias. AFM of Poly(vinyl alcohol)Crystals Next to an InorganicSurface[J]. Macromolecules,2001.34:8475-8482.
    [89]范悦,嵇培军,徐坚.聚乙烯醇高分子表面活性剂的研究[J].化工冶金,1997.18(3):216-230.
    [90]彭人勇,张英杰.聚乙烯醇/蒙脱石纳米复合材料的制备工艺研究[J].塑料科技,2005.169(5):5-8.
    [91] Qihui Shi, Zesheng An, Chia-Kuang Tsung. Ice-Templating of Core/Shell Microgel Fibersthrough‘Bricks-and-Mortar’Assembly[J]. Advanced. Material research,2007.19:4539-4543.
    [92] KENNETH O. BENNINGTON. SOME CRYSTAL GROWTH FEATURES OF SEAICE[J]. JOURNAL OF GLACIOLO GY,1963.(5):669-688.
    [93] Walter Mahler, Max F. Bechtold. Freeze-formed silica fibres[J]. Nature,1980.285(1):27-28.
    [94]王立久,徐海珣.冷冻干燥法制备纳米Ti02多孔材料的研究[J].新型建筑材料,2010.(6):5-9.
    [95] Shin R.Mukai,Hirotomo Nishihara,Hajime Tamon. Formation of monolithic silica gelmicrohoneycombs(SMHs)using pseudosteady state growth of microstructural ice crystals[J].Chem.Commun,2004.(3):874–875.
    [96] G.-W.厄特延,P黑斯利著,徐成海等译.冷冻干燥[M].北京:化学工业出版社,2005.
    [97]徐成海,张世伟,关奎之.真空干燥[M].北京:化学工业出版社,2004.
    [98]张纪尧,沈志刚,陈建峰.水溶胶冻干法制备微粉化辛伐他汀[J].高校化学工程学报,2006.20(5):814-819.
    [99]房星星,吕晓东.真空冷冻干燥技术的应用研究[J].食品与药品,2007.9(8):57-58.
    [100]刘相东.干燥过程原理研究概况[J].干燥技术与设备,2004.2(3):3-5.
    [101](日)江本胜.水知道答案[M].海口:南海出版社,2009.
    [102] María. C.Gutiérrez,María L.Ferrer. Ice-Templated Materials: Sophisticated StructuresExhibiting Enhanced Functionalities Obtained after Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly[J]. Chem. Mater.,2008,20:634–648.
    [103]蒋子珺,刘晓云.以冰晶体为模板使温敏性微凝胶自组装形成纤维的研究[J].电子显微学报,2009.28(3):235-240.
    [104] Shin R. Mukai, Hirotomo Nishihara, Hajime Tamon. Porous properties of silica gels withcontrolled morphology synthesized by unidirectional freeze-gelation[J]. Microporous andMesoporous Materials,2003.63:43–51.
    [105] J.Halloran. Making better ceramic composites with ice[J]. Science,2006.311:479-280.
    [106]曹阳,贺军辉.以冰为模板制备超轻多孔氧化锆块材[J].材料研究学报,2009.23(5):518-524.
    [107]黄毅华,江东亮,张景贤.凝胶冷冻干燥法制备透明氧化钇陶瓷[J].无机材料学报,2008.23(6):1135-1140.
    [108]李晓锋,金焱,郭兴林.冷冻方法制备定向规则微通道多孔材料[J].2007年全国高分子学术论文报告会(论文集)4-8.
    [109]席晓丽,聂祚仁,翟立力.冷冻干燥技术制备非晶态粉体的机理研究[J].北京工业大学学报,2007.33(11):1207-1211.
    [110]张洁,徐烈.冻干支架孔隙形态的影响因素[J].低温工程,2002.126(2):38-43.
    [111]张洁,华泽钊.模拟生物组织冻结过程计算分析[J].低温工程,2000.113(1):53-59.
    [112]翟立力,席晓丽,童培云.冷冻干燥技术在新材料领域中的应用[J].材料导报,2006.20(8):104-106.
    [113] HAIFEI ZHANG1, IRSHAD HUSSAIN, MATHIAS BRUST. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles[J].naturematerials,2005,4(5):787-793.
    [114] Ildefonse P, Cop in E, Velde B. A Soil Ver miculite Formed from aMeta2gabbro, Lorie2Atlantique, France [J]. Clay Minerals,1979,14(4):201-209.
    [115]陈武,季寿元.矿物学导论[M].地质出版社,1985:284-287.
    [116]李贞.蒙脱石质复合材料的制备及表征[M].重庆:重庆大学硕士论文,2011
    [117]吴选军,余永富.钠基蒙脱石的制备及有机改性研究[J].非金属矿,2008年9月.
    [118]高熙英,任飞.优质钠基膨润土制备新工艺[J].化学工程师,2005年4月.
    [119] MOHAPATRA D. Use of oxide minerals to abate fluoride from water [J]. Journal of Colloidand Interface Science2004,275:355-399.
    [120]孙红娟,彭同江,梁志勇.微波法制备有机蒙脱石实验研究[J].非金属矿,2006.29(2):9-11.
    [121]王红强,蔡敏,李庆余.真空冷冻干燥法在微孔淀粉制备过程中的应用[J].食品工业科技,2008.29(10):192-194.
    [122]何俊升,冯小明,艾桃桃.基于冰晶模板导向的A1203多孔陶瓷制备[J].铸造技术,2011.32(3):373-377.
    [123]马渊,彭晓峰.单向冷冻过程溶液中冰晶界面的竞争现象[J].化工学报,2008.59(11):2857-2866.
    [124]刘涛.含Ti蒙脱石纳米复合材料基质研制—蒙脱石分散及提纯研究[M].武汉:武汉科技大学硕士论文,2004.
    [125] YU Li-qiong,HUANG Ru-dan,CHI Ying-nan. Preparation,Structure and Properties of3DSupramolecular Architecture.on the Basis of Hydrogen Bonds and7r一7r Stacking Between2D Layers,with W indmill Building Blocks[J]. CHEM.RES.CHINESE UNIVERSITIES,2008.24(3):251-254.
    [126]侯涛.徐仁扣.胶体颗粒表面双电层之间的相互作用研究进展[J].土壤,2008.40(3):377-381.
    [127]柴寿喜,韩文峰,王沛.用冻干法制备微结构测试用土样的试验研究[J]煤田地质与勘探,2005.33(2):46-48.
    [128] G. S. Armatas, C. E. Salmas, M. Louloudi. Relationships among Pore Size, Connectivity,Dimensionality of Capillary Condensation, and Pore Structure Tortuosity of FunctionalizedMesoporous Silica[J]. Langmuir,2003.19(8):3128-3136.
    [129] Dmitrii Efremov, Tatyana Kuznetsova, Vladimir Doronin. Models of (ZrO2)n ComplexesIntercalated into Montmorillonite[J]. J. Phys. Chem. B,2005.109(15):7451-7459.
    [130] Yili Wang, Baiyu Du, Jie Liu. Surface analysis of cryofixation-vacuum-freeze-driedpolyaluminum chloride–humic acid (PACl–HA) flocs[J]. Journal of Colloid and InterfaceScience,2007.316:457–466.
    [131]陆现彩,尹琳,赵连泽.常见层状硅酸盐矿物的表面特征[J].硅酸盐学报,2003.31(1):60-65.
    [132]彭同江,孙红娟,刘福生.层状硅酸盐矿物晶体结构的多体性组装模式与构筑原理[J].矿物学报,2006.26(2):121-129.
    [133] Hongyan Tian,Hideyoki Tagaya. Dynamic mechanical property and photochemical stabilityof perlite/PVA and OMMT/PVA nanocomposites[J]. J. Mater Sci.,2008.43:766–770.
    [134] Shu Huang, Xi Cen, Hongdan Peng. Heterogeneous Ultrathin Films of Poly(vinyl alcohol)/Layered Double Hydroxide and Montmorillonite Nanosheets via Layer-by-Layer Assembly[J]. J. Phys. Chem. B2009.113:15225–15230.
    [135]李中皇,辛梅华,李明春.聚合物共混材料中氢键的研究进展[J].化工进展,2008,27(8):1162-1170.
    [136]杨海洋,朱平平,何平笙.利用全范德华力作用原理制备仿生干型高分子粘合材料—"壁虎胶带"[J].功能高分子学报,2004,17(4):684-670.
    [137]孙晓慧.膨润土的固定化及其对水中污染物的吸附行为[M].杭州:浙江大学硕士论文,2006.
    [138]李世慧,杜海燕,杨铎.粉煤灰为原料利用淀粉原位固化成型技术制备多孔莫来石[J].材料工程,2010,(增刊2):230-234.
    [139]戚建强,黄勇,欧阳世翕.淀粉原位固化制备氧化铝多孔陶瓷[J].稀有金属材料与工程,2007,36(增刊1):337-342.
    [140] Toshiaki Nakao, Masayuki Nogami. Influence of polyvinyl alcohol on the synthesis ofsilica-pillared clay[J]. Materials Chemistry and Physics,2005,94:360–364.
    [141]李伟东,黄建国,许承晃. MONT—PVA夹层复合物原位合成β-sialon[J].华侨大学学报(自然科学版),1997,18(3):243-246.
    [142] P.J.Reséndiz-Hernández, O.S. Rodríguez-Fernández, L.A. García-Cerda. Synthesis of poly(vinyl alcohol)–magnetite ferrogel obtained by freezing–thawing technique[J] Journal ofMagnetism and Magnetic Materials,2008,320:e373–e376.
    [143] Takashi Takada, Toshihiro Hirai. The PVA solution structure-change effect for α-amylasespecific activation[J]. Polymer Bulletin.2004,53:63–71.
    [144]吴小清,姚熹.聚乙烯醇的模板作用[J].西安:第三届中国(西安)纳米科技研讨会论文集,2004,3:174-182.
    [145]杨华明,张花,欧阳静.介孔材料分形表征的研究进展[J].2005,36(4):495-499.
    [146] Sean P. Rigby, Robin S. Fletcher. Experimental Evidence for Pore Blocking as the Mechanismfor Nitrogen Sorption Hysteresis in a Mesoporous Material[J]. J. Phys. Chem. B,2004,108(15):4690-4695.
    [147] Caio M. Paranhos, Bluma G. Soares, Renata N. Oliveira. Poly(vinyl alcohol)/Clay-BasedNanocomposite Hydrogels: Swelling Behavior and Characterization[J].MacromolecularMaterials and Engineering,2007,292:620–626.
    [148] A. Bakandritsos, Th. Steriotis, D. Petridis. High Surface Area Montmorillonite CarbonComposites and Derived Carbons[J]. Chem. Mater.,2004,16(8),1551-1559.
    [149] Lei Qian, Adham Ahmed, Alison Foster. Systematic tuning of pore morphologies and porevolumes in macroporous materials by freezing[J]. J. Mater. Chem.,2009,19:5212–5219.
    [150]姚明春.药品冷冻干燥技术的研究[J].中国医药导,2007,4(36):245-246.
    [151]王旷,罗经源.物理化学[M].北京:冶金工业出版社,1982.
    [152]崔清亮,郭玉明,郑德聪.基于干燥动力学特性的冷冻干燥过程判别[J].农业机械学报,2010,41(4):124-128.
    [153]贾力,方肇洪,钱兴华.高等传热学[M].北京:高等教育出版社,2003.
    [154]张丽蓉,解国珍.论述相变传热问题的一种数值解法[J].全国暖通空调制冷2010年学术年会论文集,2010.
    [155]彭润玲.几种生物材料冻干过程传热传质特性的研究[D].沈阳:东北大学博士学位论文,2007.
    [156]刘永忠,郭有仪,郁永章.升华干燥过程的动力学机理研究[J].真空,2000(1):18-22.
    [157]程江,杨卓,焕钦.食品冻干中的热质传递特性与最佳升华压力[J].制冷学报,1994(1):33-36.
    [158]王琳.食品真空冷冻干燥设备的优化设计[M].天津:天津大学硕士学位论文,2003
    [159]冯梅.冻干过程的传热传质及其耦合效应研究[M].南京:东南大学硕士学位论文,1993.
    [160] Haiqing Chen, Bradley P. Marks, Rong Y. Murphy. Modeling coupled heat and mass transferfor convection cooking of chicken patties[J].Journal of Food Engineering,1999,42:139-146.
    [161] HU Qin, TU Xinxing, MA Jinghong. The influence of heat transfer on pore architecture ofstarch sponges during freeze-drying process[J]. Proceedings of2009International Conferenceon Advanced Fibers and Polymer Materials, Shanghai, China Oct.21–24.
    [162]朱代根,陈君若,刘显茜.食品对流干燥热质耦合传递的数值模拟[J].农机化研究,2011,33(1):49-54.
    [163] P. Sheehan, A. I. Liapis. Modeling of the Primary and Secondary Drying Stages of the FreezeDrying of Pharmaceutical Products in Vials: Numerical Results Obtained from the Solution ofa Dynamic and Spatially Multi-Dimensional Lyophilization Model for Different OperationalPolicies[J]. BIOTECHNOLOGY AND BIOENGINEERING,1998,60(6):712-728.
    [164]蔡娜.超轻泡沫混凝土保温材料的试验研究[M].重庆:重庆大学硕士学位论文,2009.
    [165]苏树强,肖洪海,华泽钊.冻干过程中水蒸汽扩散系数的分析[J].青岛:中国工程热物理学会第十届年会,2001:309-313.
    [166] Maria Aversa, Stefano Curcio, Vincenza Calabrò. An analysis of the transport phenomenaoccurring during food drying process[J].Journal of Food Engineering,2007,78:922-932.
    [167]许淑惠,周明连,赵月罗.液状制品冻干中升华问题的VTS有限差分解[J].真空科学与技术,1998,18(4):276-281.
    [168]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [169]邱成悌,赵惇殳,蒋全兴.电子设备结构设计原理[M].长沙:东南大学出版社,2005.
    [170]沈军,周斌,吴广明.纳米孔超级绝热材料气凝胶的制备与热学特性[J].过程工程学报,2002,2(4):341-345.
    [171]宁桂玲,吕美玲.纳米颗粒的干燥及其研究进展[J].化工进展,1996(5):22-25.
    [172] B.Watzke, H.Deyber,H-J.Limbach. Heat and Mass Transfer in Partially Frozen Food[J].Excerpt from the Proceedings of the COMSOL Conference2010Paris:1-3.
    [173]邓玉芳.汽油车尾气排放污染物数据分析[J].科技与生活,2011(16):163-165.
    [174]陈耀强,王健礼,史忠.机动车尾气净化催化剂的研究进展[J].中国科学基金,2008,22(1)8-13.
    [175]孟文阁,杨毅伟.汽车尾气的危害及其治理措施[J].黑龙江交通科技,2006,29(11):121-124.
    [176]金建忠.膨润土冰箱除臭剂的研制[J].江西化工,2002(2):35-36.
    [177]肖永清.欧洲汽车尾气排放标准[J].世界汽车,2003(4):52-53.
    [178]康新婷,汤慧萍,张健.汽车尾气净化用贵金属催化剂研究进展[J].稀有金属材料与工程,2006,35(2):442-449.
    [179]吴平霄,张惠芬,郭九皋.蒙脱石酸处理产物的表面结构变化[J].矿物学报,1999,19(4):399-405.
    [180]戴劲草,黄继泰,萧子敬.粘土结构及其活化、改性交联和应用[J].矿产综合利用,1995(4):42-46.
    [181] Fethi Kooli, Yaroslav Z. Khimyak. Effect of the Acid Activation Levels of MontmorilloniteClay on the Cetyltrimethylammonium Cations Adsorption[J]. Langmuir,2005,21(19):8717-8723.
    [182]刘刚伟.蒙脱石复合颗粒吸附剂的制备及处理含重金属废水的研究[M].武汉:武汉理工大学硕士学位论文,2009.
    [183]曾令可,王慧,罗民华等.多孔功能陶瓷制备与应用[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700