用户名: 密码: 验证码:
微电网多参数特性分析及其测控方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是以煤电为主要电力供应的国家,面对煤炭日益枯竭与国计民生对电力需求日益增长的矛盾,风能、太阳能等可再生能源的研究必然成为当前业内学者特别关注的领域。微电网作为大电网的有益补充,不仅可以解决分布式发电系统(DG)中大规模微电源的接入对电网的冲击问题,而且能促进供电的可靠性与安全性,显著改善用户电能质量,因而具有广泛的应用空间。本文在借鉴国内外学者研究的基础上,以微电网为研究背景,围绕微电网电压测控问题、太阳能光伏系统输出功率短期预测和孤岛检测等问题,做了以下研究工作。
     在对可再生能源的发展与社会需求分析的基础上,论述了我国微电网优化利用的可行性和必然性。针对微电网的安全性和可靠性问题,采用了隔离型电压源逆变器并网桥架方案,既能使主干电网和微电网之间相互隔离,又解决了提升电压问题。当主干电网发生故障或者其它原因,微电网能够脱离主干电网,转为计划孤岛运行或非计划孤岛运行模式。针对孤岛发生瞬间能量供需失衡和公共连接点(PCC)电压波动问题,在逆变器并网桥架结构基础上,提出了电压控制器和其它可控微电源相结合的两级测控方案,即:初级控制中电压控制器能以毫秒级快速响应,确保刚出现孤岛时迅速输出功率,维持微电网频率和电压稳定,孤岛运行期间二级控制中,使电压控制器输出功率为零,以保存电压控制器最大量可用能量,其它DGs承担稳定微电网频率和电压的作用。给出的二级控制中DG逆变器的无互联线下垂控制以及DGs之间分配负载功率的方法与推导的整体微电网系统状态空间模型相融合,使得DG优化利用具有较高的可实现性。
     以光伏发电系统为特例,研究微电网关键技术的特殊性和普遍性问题。针对光伏阵列系统输出功率的不连续性和不确定性,提出运用递归神经网络建立光伏阵列短期发电预测模型。针对神经网络梯度学习算法求解精度低,搜索速度慢,易于陷入局部最小等缺点,首先分别用动态蚁群算法和自适应蚁群算法训练神经网络以初步确定权值,然后利用梯度学习算法进一步调整权值,以得到真正的全局最优权值解。这些算法在光伏系统以外的其它DG系统关键参数预测中具有普遍应用意义。
     提出了主动电流干扰法和电压正反馈相结合的孤岛检测方法,该检测方法大大减少了孤岛检测盲区,最大限度避免了非计划孤岛运行和电力系统的安全隐患,通过仿真验证该方法实现了较快的孤岛检测。
     针对不同电压等级的微电网结构,设计了利用电压控制器输出的有功功率和无功功率稳定PCC点电压的系统。给出了基于滞环模式的单独有功功率控制和有功、无功综合控制双模式控制脉冲突变实验模型,并在低压和中压微电网进行实验,实验结果表明,双模式控制方式具有很好的工程应用价值。
Referring to our country coal is main power supplies, renewable energy such assolar energy and wind energy are given special attention by researchers aiming toresolve conflicting between dry up of coal and increasing requirement of power supply.Microgrid is a helpful complementarity to the utility grid, it can not only solveimpacting to the utility grid by the distributed generation, but also can improve thepower supply quality greatly, promote reliability and security of power supply. So itpossesses extensive application field and prospect. Based on researches of home andabroad scholar, this thesis focuses on the microgrid, voltage stability, photovoltaicsystem short-term power forecasting and islanding detection have been researched.
     Discussing the feasibility and necessity of optimizing our national microgridbased on analyzing development of renewable energy and requirement of society.Aiming at security and reliability of microgrid, isolating voltage source converterstructure was adopted, for required isolation and voltage boosting. The microgrid candisconnect from the utility grid and transfers into intentional islanding operation modeor unintentional islanding operation mode when a fault occurs in the main grid. Whenislanding occurs, the power balance between supply and demand does not match, sothat voltage will fluctuate on point of common coupling at the moment. thecooperative control strategy of the voltage controller and other controllable microsources is studied based on voltage source converter structure. The voltage controllerresponds in milliseconds by the primary control, it should play an important role inmaintaining the frequency and the voltage of the microgrid during islanded operation.In islanded operation, by proper power-balancing action of the voltage controller, thefrequency and the voltage of the microgrid can be regulated at the normal values.However, the control capability of the voltage controller for balancing betweengeneration and consumption may be limited by its available system capacity. Therefore,the power output of the voltage controller should be brought back to zero as soon aspossible by the secondary control in order to secure the maximum energy reserve. Study on the droop control without connection line of grid-connected inverter andsharing load power between DGs in secondary control fused with the deducedstate-space models of the microgrid including all the converters, improving reliabilityof optimization DG.
     Take photovoltaic array system for example, study on particularity anduniversality of microgrid key technology. Based on discontinuousness, uncertainty ofoutput power, recurrent neural networks output power forecasting model waspresented. Because gradient algorithm has some shortcomings such as low precisionsolutions,slow search speed and easy convergence to the local minimum points.Dynamic Ant Colony algorithm and Self-Adaptive Ant Colony algorithm are first usedto determine the weight of recurrent neutral networks, then gradient algorithm is usedto regulate the weight to find the best weight. These algorithms can be applied to keyparameter forecasting in addition to photovoltaic array system.
     Integrated active current disturbing and voltage positive feedback islandingdetection method was proposed and designed. None detection zone was reduced by themethod, furthest avoiding unintentional islanding operation and damage to powersystem security. According to the simulation, faster detection speed was realized.
     The system of regulating voltage of PCC use the active power and reactive powersupplied from the voltage controller corresponding to different voltage level microgridwere researched. Two mode regulation including active power hysteresis moderegulation and integrated active and reactive power mode regulation of voltagecontroller were conducted. Experimental studies were conducted on low-voltage andmedium-voltage system which indicating well engineering application value of twomode regulation
引文
[1] Kjaer S B, Pedersen J K.. A Review of Single-Phase Grid-Connected Inverters for PhotovoltaicModules[J]. IEEE Trans. on Industry Application,2005,41(5):1292-1306.
    [2]李晶,许洪华,赵海翔,等.并网光伏电站动态建模及仿真分析[J].电力系统自动化,2008,32(24):83-87.
    [3] Azevedo G M, Vazquez G, Luna A, et al. Photovoltaic inverters with fault ride-throughCapability[C]. IEEE International Symposium on Industrial Electronics, July,2009:549-553.
    [4]汪海宁,苏建徽,丁明,等.光伏并网功率调节系统[J].中国电机工程学报,2007,27(2):75-79.
    [5]王飞,余世杰,苏建徽,等.太阳能光伏并网发电系统的研究[J].电工技术学报,2005,20(5):72-74.
    [6] Hatziadoniu G J, Lobo A A, Pourboghrat E. A Simplified Dynamic Model of Grid-connectedFuel-cell Generators [J]. IEEE Trans. on Power Delivery,2002,17(2):467-473.
    [7] Xu H, Li K, Wen X. Fuel Cell Power System and High Power DC-DC Converter[J]. IEEE Trans.on Power Electronics,2004,19(5):1250-1255.
    [8]唐西胜,武鑫,齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J].太阳能学报,2007,28(2):178-183.
    [9] Vovos P N, Kiprakis A E, Wallace A R, et al. Centralized and distributed voltage control: impacton distributed generation penetration [J]. IEEE Trans. on Power Systems,2007,22(1):476-483.
    [10] Dugan R C, Mcdermott T E, Ball G J. Planning for distributed generation [J]. IEEE Tran. onIndustry Applications,2001,7(2):80-88.
    [11] Dugan R C, Mcdermott T E. Distributed generation [J]. IEEE Tran. on Industry Applications,2002,8(2):19-25.
    [12]丁明,张颖媛,茆美琴.微网研究中的关键技术[J].电网技术,2009,33(11):6-11.
    [13] Tsikalakis A G, Hatziargyriou N D. Centralized Control for Optimizing Microgrids Operation.[J]. IEEE Trans. on Energy Conversion.2008,23(1):241-248.
    [14]王成山,李鹏.分布式发电:微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2):10-14.
    [15]何国庆,许晓艳,黄越辉,等.大规模光伏电站控制策略对孤立电网稳定性的影响(英文).电网技术[J],2009,33(15):20-25.
    [16] Collins E R, Jiang J. Voltage Sags and the Response of a Synchronous Distributed Generator: ACase Study. IEEE Trans. on Power Delivery [J],2008,23(1):442-448.
    [17] Doyle M T. Reviewing the impacts of distributed generation on distribution system protection[C].IEEE Power Engineering Society Summer Meeting Conf., July,2002(1):103-105.
    [18]丁明,郭学风.含多种分布式电源的弱环配电网三相潮流计算[J].中国电机工程学报,2009,29(13):35-40.
    [19]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [20]王志群,朱守真,周双喜,等.分布式发电对配电网电压分布的影响[J].电力系统自动化,2004,28(16):56-60.
    [21] Ackermann T, Knyazkin V. Interaction between distributed generation and the distribution net-work: operation aspects[C]. Proc of IEEE Power Engineering Society Transmission andDistribution Conference, Piscataway,2002:1357-1362.
    [22] Hatziargyriou N, Asano H, Iranvani R, et al. Microgrids[J]. IEEE Tran. on Power and Energy,2007,5(4):58-82.
    [23]鲁宗相,王彩霞,闵勇,等.微电网研究综述.电力系统自动化[J],2007,31(19):100-107.
    [24]李鹏,张玲,王伟,等.微网技术应用与分析.电力系统自动化[J],2009,33(20):109-115.
    [25] Jeraputra C, Enjeti P N. Development of a robust anti-islanding algorithm for grid interconnec-tion of distributed fuel cell powered generation[J]. IEEE trans. on power electronics,2004,19(5):1163-1170.
    [26] Nikos H,Hiroshi A,Reza I,et a1.An overview of ongoing research,development and demon-stration projects[J]. IEEE Power and Energy Magazine,2007,5(4):79-94.
    [27] Benjamin K, Robert L, Toshifumi I, et a1.A look at microgrid technologies and testing projectsfrom around the world[J].IEEE Power and Energy Magazine,2008,6(3):41-53.
    [28]伍磊,袁越,季侃,等.微型电网及其在防震减灾中的应用[J].电网技术,2008,32(16):32-36.
    [29] Nigm K, Hegazy Y. Intentional islanding of Distributed Generation for reliability enhancement
    [C]. IEEE Power Engineering Society General Meeting, October,2003:208-213.
    [30]丁磊,潘贞存,苏永智,等.并网分散电源的解列与孤岛运行[J].电力自动化设备,2007,27(7):25-29.
    [31]郭小强,赵清林,邬伟扬.光伏并网发电系统孤岛检测技术[J].电工技术学报,2007,22(4):157-162.
    [32] Kinoshita T, Kim H M. A multiagent system for microgrid operation in the grid-interconnectedmode[J]. J. Electr. Eng. Technol.,2010,5(2):246-254.
    [33] Guerrero J M, Vasquez J C, Matas J, et al. Control strategy for flexible microgrid based onparallel line-interactive UPS systems[J]. IEEE Trans. on Ind. Electron.,2009,56(3):726-736.
    [34] Majumder R, Ghosh A, Ledwich G, et al. Power management and power flow control withback-to-back converters in a utility connected microgrid[J]. IEEE Trans. on Power Syst.,2010,25(2):821-834.
    [35] Chen C L, Wang Y W, Lai J S, et al. Design of parallel inverters for smooth mode transfermicrogrid applications [J]. IEEE Trans. on Power Electron.,2010,25(1):6-15.
    [36] Diaz G, Moran C G, Aleixandre J G, et al. Scheduling of droop coefficients for frequency andvoltage regulation in isolated microgrids[J]. IEEE Trans. on Power Syst.,2010,25(1):489-496.
    [37] Jou H L, Chiang W J, Wu J C. A simplified control method for the grid-connected inverter withthe function of islanding detection[J]. IEEE Trans. on Power Electron.,2008,23(6):2775-2783.
    [38] Vilathgamuwa D M, Loh P C, Li Y. Protection of microgrids during utility voltage sags[J]. IEEETrans. on Ind. Electron.,2006,53(5):427-436.
    [39] Kroposki B, Lasseter R, Ise T, et al. Making microgrids work[J]. IEEE Trans. on Power Energy,2008,6(3):40-53.
    [40] Marnay C, Venkataramanan G, Stadler M, et al. Optimal technology selection and operation ofcommercial-building microgrids[J]. IEEE Trans. on Power Syst.,2008,23(3):975-982.
    [41] Saha A K, Chowdhury S, Chowdhury S P, et al. Modeling and performance analysis of amicroturbine as a distributed energy resource[J]. IEEE Trans. on Energy Convers.,2009,24(2):529-538.
    [42] Zbiniew L, Janusz W B. Supervisory control of a wind farm[J]. IEEE Trans. on Power Syst.,2007,22(3):985-994.
    [43] Teleke S, Baran M E, Huang A Q, et al. Control strategies for battery energy storage for windfarm dispatching [J]. IEEE Trans. on Energy Convers.,2009,24(3):725-732.
    [44] C Abbey, Joos G. Supercapacitor energy storage for wind energy applications[J]. IEEE Trans.on Ind. Appl.,2007,43(3):769-776.
    [45] Pascal M, Rachid C, Alexandre O. Optimizing a battery energy storage system for frequencycontrol application in an isolated power system[J]. IEEE Trans. on Power Syst.,2009,24(3):1469-1477.
    [46] Kim A R, Seo H R, Kim G H, et al. Operating characteristic analysis of HTS SMES forfrequency stabilization of dispersed power generation system[J]. IEEE Trans. on Appl.Supercond.,2010,20(3):1334-1338.
    [47] Thounthong P, Rael S, Dava B. Analysis of super capacitor as second source based on fuel cellpower generation[J]. IEEE Trans. on Energy Convers.,2009,24(1):247-255.
    [48] Li Y W, Kao C N. An accurate power control strategy for power electronics-interfaceddistributed generation units operating in a low voltage multibus microgrid [J]. IEEE Trans. onPower Electron.,2009,24(12):2977-2988.
    [49] Tanabe T, Suzuki S, Ueda Y, et al. Control performance verification of power system stabilizerwith an EDLC in islanded microgrid[J]. IEEE Trans. Power and Energy,2009,129(1):139-147.
    [50]鲁鸿毅,何奔腾.超级电容器在微型电网中的应用[J].电力系统自动化,2009,33(2):87-91.
    [51] Lopes J A P, Moreira C L, Madureira A G. Defining control strategies for microgrids islandedoperation[J]. IEEE Trans. on Power Syst.,2006,21(2):916-924.
    [52] Kim J Y, Jeon J H, Kim S K, et al. Cooperative Control Strategy of Energy Storage System andMicrosources for Stabilizing the Microgrid during Islanded Operation[J]. IEEE Trans. on powerelectronics,2010,25(12):3037-3048.
    [53] Majumder R, Ghosh A, Ledwich G, et al. Power Management and Power Flow Control WithBack-to-Back Converters in a Utility Connected Microgrid[J]. IEEE Trans. on power systems,2010,25(2):821-834.
    [54] Marwali M N, Dai M, Keyhani A. Robust stability analysis of voltage and current control fordistributed generation systems[J]. IEEE Trans. on Energy Convers.,2006,21(2):516-526.
    [55] Marwali M N, Dai M, Keyhani A. Stability analysis of load sharing control for distributedgeneration systems[J]. IEEE Trans. on Energy Convers.,2007,22(3):737-745.
    [56] Pogaku N, Prodanovic M, Green T C, et al. Modeling, analysis and testing of autonomousoperation of an inverter-based microgrid[J]. IEEE Trans. on Power Electron,2007,22(2):613-625.
    [57]丁磊.多微网配电系统的分层孤岛运行及保护控制[D].山东:山东大学工学博士论文,2007:38-47.
    [58]郭力,王成山.含多种分布式电源的微网动态仿真[J].电力系统自动化,2009,33(2):82-86.
    [59] Majumder R, Ghosh A, Ledwich G, et al. Load sharing and power quality enhanced operation ofa distributed microgrid[J]. IET Renewab. Power Gen,2009,2(3):109-119.
    [60] Majumder R, Chaudhuri B, Ghosh A, et al. Improvement of Stability and Load Sharing in anAutonomous Microgrid Using Supplementary Droop Control Loop[J]. IEEE Trans. on powersystems,2010,25(2):796-808.
    [61]姚玮,陈敏,牟善科,等.基于改进下垂法的微电网逆变器并联控制技术[J].电力系统自动化,2009,33(6):77-79.
    [62] Barklund E, Pogaku N, Prodanovic M. Energy management in autonomous microgrid usingstability-constrained droop control of inverters[J]. IEEE Trans. on Power Electronics IndustryApplications,2008,23(5):2346-2352.
    [63] Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributedgeneration units[J]. IEEE Trans. on Power Systems,2006,2l(4):1821-1831.
    [64] Dimeas A L, Hatziargyriou N D. Operation of a multiagent system for microgrid control[J].IEEETrans. on Power Systems,2005,20(3):1447-1455.
    [65]丁明,包敏,吴红斌.分布式供能系统的经济调度[J].电力科学与技术学报.2008,23(1):13-17.
    [66]张文亮,汤广福,查鲲鹏,等.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010,30(4): l-7.
    [67]张尧,马皓,雷彪,等.基于下垂特性控制的无互联线逆变器并联的均流分析[J].中国电机工程学报,2006,26(25):55-59.
    [68]张承慧,叶颖,陈阿莲,等.基于输出电流控制的光伏并网逆变器[J].电工技术学报,2007,8:112-120.
    [69]霍箭.微电网公共连接点电压稳定技术研究[D].河北:燕山大学硕士论文,2010:47-50.
    [70] Katiraei F, Iravani M R. Power Management Strategies for a Microgrid With MultipleDistributed Generation Units[J]. IEEE Trans. on Power Systems,2006,21(4):1821-1831.
    [71]陈宏,胡育文.逆变电源并联技术[J].电工技术学报,2002,17(5):55-59.
    [72]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [73] Timbus A, Liserre M, Teodorescu R, et al. Evaluation of current controllers for distributedsystems[J]. IEEE Trans. on Power Electron,2009,24(3):654-664.
    [74] Brabandere K D, Bolsens B, Woyte A. A Voltage and Frequency Droop Control Method forParallel Inverters[J]. IEEE Trans. on Energy Conversion,2007,22(4):1107-1115.
    [75] Ghosh A. Performance study of two different compensating devices in a custom power park[J].Proc. Inst. Elect. Eng., Gen., Trans. on Distrib.,2005,152(4):521-528.
    [76] Ghosh A, Ledwich G. Power Quality Enhancement Using Custom Power Devices[C]. ser.Kluwer's Power Electronics and Power System, Norwell, MA: Kluwers,2002:249-256.
    [77]林新春,段善旭,康勇.基于下垂特性控制的无互联线并联UPS建模与稳定性分析[J].中国电机工程学报,2004,24(2):33-38.
    [78] Kroutikova N, Hernandez-Aramburo C A, Green T C. Statespace model of grid-connectedinverters under current control mode [J]. IET Elect. Power Appl.,2007,1(3):329-333.
    [79] Pogaku N, Prodanovic M, Green T C, et al. Modeling, analysis and testing of autonomousoperation of an inverter-based microgrid[J]. IEEE Trans. on Power Electron,2007,22(2):961-965.
    [80]陈昌松,段善旭,殷进军.基于神经网络的光伏阵列发电预测模型的设计[J].电工技术学报,2009,24(9):153-158.
    [81] Rezaei N, Haghifam M R. Protection Scheme for A Distribution System with DistributedGeneration Using Neural Networks[J].International Journal of Electrical Power and EnergySystems,2008,30(4):235-241.
    [82] Cybenko G. Approximation by superposition of a sigmoidal function[J]. Math. Control SignalSystems,1989,2:303-314.
    [83] Chen T P, et al. Approximations of Continuous Functionals by NN with Application to DynamicSystems[J]. IEEE Trans. on Neural Networks,1993,4(6):910-918.
    [84] Scarselli F, Tsoi C A. Universal Approximation Using Feedforward Neural Networks: A Surveyof Some Existing Methods, and Some New Results[J]. IEEE Trans. on Neural Network,1998,9(11):15-37.
    [85] Atiya A F, Parlos A G. New results on recurrent network training: Unifying the algorithms andaccelerating convergence[J]. IEEE Trans. on Neural Networks,2000,11(6):697-709.
    [86] Abraham A, Ramos V. Web usage mining using artificial ant colony clustering and linear geneticprogramming[C]. Proceedings of the Congress on Evolutionary Computation, Canberra, Austra-lia, February,2003:1384-1391.
    [87] Shelokar P S, Jayaraman V K, Kulkarni B D. An ant colony approach for clustering[J]. AnalyticaChimica Acta,2004,509(2):187-195.
    [88] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperatingagents[J]. IEEE Trans. on SMC Part B,1996,26(1):29-41.
    [89] Dorigo M, Caro G D. Ant colony optimization: a new meta-heuristic[C]. Proceeding of the1999Congress on Evolutionary Computation, Washington, DC, USA,1999:1470-1477.
    [90]靳忠伟,陈康民,闫伟,等.一种短期电力负荷预测新方法的研究与应用[J].系统仿真学报,2007,19(20):4790-4793.
    [91]吴启迪,汪镭.智能蚁群算法及应用[M].上海:上海科技出版社,2004,76-81.
    [92]王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33.
    [93]付宇,肖健梅.动态自适应蚁群算法求解TSP问题[J].计算机辅助工程,2006,15(4):10-13.
    [94]刘彦鹏.蚁群优化算法的理论研究及其应用[D].浙江:浙江大学博士论文,2007:78-80.
    [95] Hung G K, Chang C C, Chen C L. Automatic phase-shift method for islanding detection ofgrid-connected photovoltaic inverters[J]. IEEE Trans. on energy conversion,2003,18(1):169-173.
    [96]陈卫民,陈国呈,吴春华,等.相关技术在并网发电孤岛检测中的应用研究[J].太阳能学报,2008,29(12):1484-1488.
    [97] Jang S, Kim K. An islanding detection method for distributed generations using voltageunbalance and total harmonic distortion of current[J]. IEEE Trans. on power delivery,2004,19(2):745-752.
    [98]任碧莹,钟彦儒,孙向东,等.基于周期交替电流扰动的孤岛检测方法[J].电力系统自动化,2008,32(19):81-84.
    [99]陈卫民,陈国呈,吴春华,等.基于分布式并网发电的新型孤岛检测研究[J].电工技术学报,2007,22(8):114-118.
    [100] Ye Z, Kolwalkar A, Zhang Y, et al. Evaluation of anti-islanding schemes based on nondetectionzone concept[J]. IEEE Trans. on power electronics,2004,19(5):1171-1176.
    [101] Menon V, Nehrir M H. A Hybrid Islanding Detection Technique Using Voltage Un-balance andFrequency Set Point [J]. IEEE Trans. on Power Systems,2007,22(1):442-447.
    [102] El-arroudi K, Joos G, Kamwa I, et al. Intelligent-Based Approach to Islanding Detection inDistributed Generation[J]. IEEE Trans. on Power Delivery,2007,22(2):828-835.
    [103] Lopes L A, Huili S. Performance assessment of active frequency drifting islanding detection met-hods[J]. IEEE Trans. on Energy Conversion,2006,21(1):171-180.
    [104] Emadi A, Khaligh A, Rivetta C H, et. al. Constant power loads and negative impedanceinstability in automotive systems: definition, modeling, stability, and control of power electronicconverters and motor drives[J]. IEEE Trans. on Vehicular Technology,2006,55(4):1112-1125.
    [105] Familiant Y L, Corzine K A, Huang J, et. al. AC Impedance Measurement Techniques[C]. IEEEProceedings of International Conference on Electric Machines and Drives, May,2005:1850-1857.
    [106]丁磊,潘贞存,丛伟.基于有根树的分布式发电孤岛搜索[J].中国电机工程学报,2008,28(25):62-67.
    [107]张纯江,郭忠南,孟慧英,等.主动电流扰动法在并网发电系统孤岛检测中的应用[J].电工技术学报,2007,22(7):176-180.
    [108]殷桂粱,孙美玲.基于逆变器的正反馈孤岛检测方法[J].电子测量技术,2007,30(8):59-62.
    [109]盛鹏,孔力,齐智平,等.新型电网—微电网(Microgrid)研究综述[J].继电器,2007,35(12):75-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700