用户名: 密码: 验证码:
一类计算智能方法的停滞问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,复杂优化问题寻求高效的解决方法已成为优化领域的一个极具挑战性的研究课题。除了传统优化方法,计算智能方法正在得到越来越多的研究人员的关注和重视。以遗传算法,蚁群算法和粒子群算法为代表的一类计算智能方法,它们从生物进化或动物群体协作的搜索机制中得到启发,利用群体的优势,在没有集中控制并且不提供全局模型的前提下,快速有效地搜索复杂优化问题的解空间,寻求全局最优解。
     停滞问题一直是计算智能方法理论和应用饱受困扰的一大难题,这不仅关系到已有计算智能方法如何设置算法的结构和参数以确保快速求解待优化问题,同时也涉及到针对复杂的实际优化难题如何构造出快速有效的新计算智能方法的问题。本文针对以遗传算法、蚁群算法和粒子群优化算法为代表的一类计算智能方法在解决复杂优化难题时出现停滞的问题进行了深入研究,主要的创新点和研究成果有:
     (1)研究了集中化搜索和多样化搜索对解集更新序列出现停滞的影响。本文通过对一类计算智能算法的搜索机理进行分析,根据在搜索过程中解集内部结构变化的性质定义解集多样度,并基于此定义了两种基本的搜索策略:多样化搜索和集中化搜索。从理论上证明集中化搜索,缩小了解空间的搜索范围,是导致解集停滞收敛的主要原因。而多样化搜索能扩大解集的搜索范围,促使算法跳出局部最优。最后,通过标准遗传算法、蚁群算法和粒子群优化算法的实际算例分析,说明典型的计算智能方法其搜索策略的集中化搜索和多样化搜索性质,以及算法出现停滞收敛的表现,验证了理论分析结论的正确性。
     (2)得出了基于统一模型的一类计算智能方法几乎肯定弱收敛和几乎肯定强收敛的充分条件。本文首先分析了这类计算智能方法在方法论上的共同特点,建立起统一模型,从更一般化的角度来分析此类算法出现停滞现象的原因。接着,基于此模型,分别定义了表征解集变化强弱和解集优化程度的集组元变化率和解集改善率。同时,给出了计算智能方法搜索生成的解集更新状态转移序列的各种盖然论收敛的概念并分析了他们之间的关系。然后借助于随机过程理论,证明基于统一模型的计算智能方法在一定条件下几乎肯定弱收敛。最后,在传统的Markov链分析中运用鞅理论,证明这类计算智能方法在一定条件下几乎肯定强收敛。
     (3)提出了一种用于复杂问题自适应优化且能有效克服停滞的云滴算法。本文基于云模型的特征,结合计算智能方法的基本原理,提出一种用于复杂问题自适应优化的云滴算法。该算法采用多维逆向云模型建立解集的特征参数,并根据是否出现当代精英和跨代精英自适应调整参数,再通过多维正向云模型产生新一代解集。云滴算法具有表示、再现和挖掘待优化问题的不确定知识的特点,无需预先设置其搜索策略和参数,且不论解集处于何种初始状态,整个系统能自适应地进行演化。然后借助于随机过程理论,在传统的Markov链分析中运用鞅理论,证明了云滴算法在一定条件下几乎肯定强收敛。最后通过两个标准测试问题的求解试验表明,与现有的四种算法相比,该算法不但收敛速度快,而且具有更好的自适应能力,能更有效地克服停滞现象的产生。
     (4)提出了一类混沌系统未知参数辨识问题的解决方法。本文通过构造一个合适的评价函数,将混沌系统的未知参数辨识问题转换为一个多维的函数优化问题,然后利用滴算法对初始解集不敏感的优点和无需预先设置搜索策略和参数的特点,充分发挥其自适应搜索能力对混沌系统的未知参数进行辨识。以典型的Lorenz混沌系统和Chen混沌系统为例进行数值模拟,仿真结果表明,云滴优化算法能够有效克服停滞,快速对不同混沌系统的多个未知参数进行有效辨识,是一种简便易行的混沌系统参数辨识方法。
How to seek solutions of complicated optimization problems is a challenging research subject in recent years. In addition to traditional optimization methods, the computational intelligence approaches have been attractive in fundamental research and real applications. A class of computational intelligence approaches which is represented by the canonical forms of generic algorithms, ant colony optimization and particle swarm optimization is derived from the emulation of natural evolution or collective behavior of animals to seek solutions of complicated optimization problems by exploring and exploiting search spaces efficiently and effectively.
     Stagnation is a crucial problem which is suffered by computational intelligence approaches when dealing with complicated optimization problems in the theory and application. On the one hand, it is related to how to set the structure and parameters of the existing computational intelligence methods to efficiently produce high-quality solutions. On the other hand, it involves how to design an effective and efficient computational intelligence method for solving complicated optimization problems.
     This paper makes an investigation on the stagnation of a class of computational intelligence approaches, and the main contributions given in this dissertation are as follows.
     (1) The influences of the diversification and the intensification of search strategies on the stagnation of solution set evolution are investigated. Through the analysis on the search characteristics of a class of computational intelligence approaches represented by the canonical forms of generic algorithms, ant colony optimization and particle swarm optimization, the concept of solution set diversity is introduced in this paper. And then two categories of fundamental search strategies, i.e. the diversification search and the intensification search, are defined in this paper on the basis of solution set diversity. Based on which the influences of the diversification and the intensification of search strategies on the stagnation of solution set evolution are investigated. Three popular swarm intelligent algorithms, i.e. the Canonical Generic Algorithm, the Ant Colony System and the Discrete Particle Swarm Optimization, are tested with a benchmark problem, and the results support the theoretical conclusions.
     (2) The sufficient conditions are derived for the almost sure convergence of a universal model for a class of computational intelligence approaches. A universal model is built up in this paper for a class of computational intelligence approaches represented by the canonical forms of generic algorithms, ant colony optimization and particle swarm optimization in order to describe the common features of these algorithms. Two quantification indices, i.e., the variation rate and the progress rate, are defined respectively to estimate the variety and the optimality of the solution sets generated in the search process of the model. Four types of probabilistic convergence are given for the solution set updating sequences, and their relations are discussed. By introducing a martingale approach into the Markov chain analysis, the sufficient conditions are derived for the almost sure weak convergence and the almost sure strong convergence of the model.
     (3) An adaptive cloud drops optimization algorithm is proposed for stagnation elimination. The feature parameters of solution sets are created by a multidimensional backward cloud model, and then adaptively adjusted based on the change of the elite solution candidates. The result is then used by a forward cloud model to produce the solution set of next generation. No any search parameters are predefined in the proposed algorithm, and, no matter what the initial solution set is, the whole system can adaptively approach to the global optimal solution. Based on the theory of stochastic processes, the almost sure convergence of the proposed algorithm is proved under certain conditions by introducing a martingale approach into traditional Markov Chain analysis. Two benchmark problems are tested with the proposed algorithm and the other four existing algorithms as a comparison. The results show that the proposed algorithm has faster convergence speed, better self-adaptability, and stronger ability to deal with stagnation phenomena effectively.
     (4) The problem of unknown parameters identification for chaotic systems is addressed by the cloud drops optimization in this paper. Through establishing an appropriate evaluation function, the problem of unknown parameters identification in chaotic systems is formulated as a multi-dimensional optimization problem. And then, the cloud drops optimization algorithm, which is not sensitive to initial solution set and parameters less, is applied to obtain the original parameters of various chaotic systems. Numerical simulations on the typical Lorenz chaotic system and Chen chaotic system are conducted. Numerical simulation and comparisons with the other two existing algorithms demonstrate the effectiveness and feasibility of the proposed algorithm.
引文
[1]汪定伟,王俊伟,王洪峰等.智能优化方法[M].高等教育出版社2007.
    [2]Talbi, E.-G. Metaheuristics:from design to implementation [M]. John Wiley & Sons, Inc.,2009.
    [3]王凌.智能优化算法及其应用[M].清华大学出版社,2004.
    [4]段海滨,张祥银,徐春芳.仿生智能计算[M].科学出版社,2011.
    [5]De Jong, K.A. Evolutionary computation:a unified approach [M]. MIT Press,2006.
    [6]吴启迪,康琦,汪镭.自然计算导论[M].上海科学技术出版社,2011.
    [7]Blum, C., Roli, A. Metaheuristics in combinatorial optimization:overview and conceptual comparison [J]. ACM Computing Surveys 2003,35(3):268-308.
    [8]Robbins, H., Monro, S. A stochastic approximation method [J]. Annals of Mathematical Statistics,1951,22(3):400-407.
    [9]Rastrigin, L.A. The convergence of the random search method in the extremal control of a many parameter system [J]. Automation and Remote Control, 1963,24(10):1337-1342.
    [10]Matyas, J. Random optimization [J]. Automation and Remote Control, 1965,26(2):246-253.
    [11]Rechenberg, I. Cybernetic solution path of an experimental problem [M]. Royal Aircraft Establishment Library Translation,1965.
    [12]Fogel, L., Owens, A.J., Walsh, M.J. Artificial intelligence through simulated evolution [M]. John Wiley & Sons, Inc.,1966.
    [13]Hastings, W.K. Monte carlo sampling methods using markov chains and their applications [J]. Biometrika,1970,57(1):97-109.
    [14]Holland, J.H. Adaptation in natural and artificial systems [M]. University of Michigan Press,1975.
    [15]Glover, F. Heuristics for integer programming using surrogate constraints [J]. Decision Sciences,1977,8(1):156-166.
    [16]Smith, S.F. A learning system based on genetic adaptive algorithms [Doctoral dissertation]. University of Pittsburgh,1980.
    [17]Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P. Optimization by simulated annealing [J]. Science,1983,220(4598):671-680.
    [18]Glover, F. Future paths for integer programming and links to artificial intelligence [J]. Computers and Operations Research,1986,13(5):533-549.
    [19]Farmer, J.D., Packard, N., Perelson, A. The immune system, adaptation and machine learning [J]. Physica D,1986,22(1-3):187-204.
    [20]Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts:towards memetic algorithms [T]. Technical Report(C3P826),1989.
    [21]Dorigo, M. Optimization, learning and natural algorithms [Doctoral dissertation]. Politecnico di Milano, Italie,1992.
    [22]Fonseca, C.M., Fleming, P.J. Genetic algorithms for multiobjective optimization:formulation, discussion and generalization [C]. in Proceedings of the 5th International Conference on Genetic Algorithms Urbana-Champaign, IL, USA, 1993:416-423.
    [23]Battiti, R., Tecchiolli, G. The reactive tabu search [J]. ORSA Journal on Computing,1994,6(2):126-140.
    [24]Kennedy, J., Eberhart, R. Particle swarm optimization [C]. in Proceedings of the 4th IEEE International Conference on Neural Networks, Piscataway,1995: 1942-1948.
    [25]Mulhenbein, H., Paaβ, G. From recombination of genes to the estimation of distribution I. Binary parameters [J]. Lectures Notes in Computer Science:Parallel Problem Solving from Nature (PPSN Ⅳ) 1996,1411:178-187.
    [26]Storn, R., Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997,11(4):341-359.
    [27]Rubinstein, R.Y. Optimization of computer simulation models with rare events [J]. European Journal of Operations Research,1997,99(1):89-112.
    [28]Sun, C.Y., Sun, Y. Mind-evolution-based machine learning:framework and the implementation of optimization [C]. in Proceedings of the IEEE International Conference on Intelligent Engineering Systems, Vienna, Austria,1998:355-359.
    [29]Taillard, E., Voss, S. POPMUSIC:Partial optimization mctaheuristic under special intensification conditions [T]. Institute for Computer Sciences.1999.
    [30]Geem, Z.W., Kim, J.H., Loganathan, G.V. A new heuristic optimization algorithm:harmony search [J]. Simulation,2001,76(2):60-68.
    [31]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38.
    [32]周永华,毛宗源.一种新的全局优化搜索算法一人口迁移算法(Ⅰ)[J].华南理工大学学报:自然科学版,2003,31(3):1-5:
    [33]周永华,毛宗源.一种新的全局优化搜索算法——人口迁移算法(Ⅱ)[J].华南理工大学学报:自然科学版,2003,31(4):41-43,55.
    [34]Birbil, S.I., Fang, S.C. An electromagnetism-like mechanism for global optimization [J]. Journal of Global Optimization,2003,25(3):263-282.
    [35]Birbil, S.I., Fang, S.C., Sheu, R.L. On the convergence of a populationbased global optimization algorithm [J]. Journal of Global Optimization, 2004,30(3):301-318.
    [36]Nakrani, S., Tovey, S. On honey bees and dynamic server allocation in internet hosting centers [J]. Adaptive Behavior,2004,12(3-4):223-240.
    [37]Krishnanand, K., Ghose, D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics [C]. in Proceedings of IEEE Swarm Intelligence Symposium,2005:84-91.
    [38]Krishnanand, K., Ghose, D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions [J]. Swarm Intelligence,2009,3(2):87-124.
    [39]Karaboga, D. An idea based on honey bee swarm for numerical optimization [T]. Computer Engineering Department, Engineering Faculty, Erciyes University. Technical Report-TR06,2005.
    [40]Haddad, O.B., Afshar, A., Marino, M.A. Honey-Bees Mating Optimization (HBMO) algorithm:a new heuristic approach for water resources optimization [J]. Water Resources Management,2006,20(5):661-680.
    [41]Shah-Hosseini, H. Problem solving by intelligent water drops [C]. in Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007), Singapore 2007:3226-3231.
    [42]Yang, X.S. Nature-inspired metaheuristic algorithms [M]. Luniver Press, 2008.
    [43]Yang, X.S., Deb, S. Cuckoo search via levy flights [C]. in Proceedings of the World Congress on Nature & Biologically Inspired Computing, USA,2009: 210-214.
    [44]Bagley, J.D. The behavior of adaptive systems which employ genetic and correlation algorithms [Doctoral dissertation]. University of Michigan,1967.
    [45]De Jong, K.A. An analysis of the behavior of a class of genetic adaptive systems [Doctoral dissertation]. University of Michigan,1975.
    [46]Goldberg, D.E. Genetic algorithms in search, optimization and machine learning [M]. Cambridge, MA:Addison Wesley,1989.
    [47]徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,34(4):364-375.
    [48]Potts, J.C., Giddens, T.D., Yadav, S.B. The development and evaluation of an improved genetic algorithm based on migration and artificial selection [J]. IEEE Transaction on Systems, Man and Cybernetics,1994,24(1):73-86.
    [49]Pan, Z.J., Nie, L.S. Evolving both the topology and weights of neural networks [J]. International Journal of Parallel, Emergent and Distributed Systems, 1996,9(3-4):299-307.
    [50]杨启文,蒋静坪,张国宏.遗传算法优化速度的改进[J].软件学报,2001,12(2):270-275.
    [51]陈小平,于盛林.实数遗传算法交叉策略的改进[J].电子学报,2003,31(1):71-74.
    [52]巩敦卫,郝国生,严玉若.交互式遗传算法基于用户认知不确定性的定向变异[J].控制与决策,2010,25(1):74-78.
    [53]Srinivas, M., Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(4):656-667.
    [54]Smith, J.E., Fogarty, T.C. Operator and parameter adaptation in genetic algorithms [J]. Soft Computing,1997,1(2):81-87.
    [55]Eiben, A.E., Michalewicz, Z., Schoenauer, M., et al. Parameter control in evolutionary algorithms [J]. IEEE Transactions on Evolutionary Computation,1999, 3(2):124-141
    [56]巩敦卫,孙晓燕.基于模式定理的遗传算法交叉和变异概率上限[J].控制与决策,2004,19(5):554-556.
    [57]金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69.
    [58]Hagemana, J.A., Wehrensa, R., Van Sprangb, H.A., et al. Hybrid genetic algorithm-tabu search approach for optimising multilayer optical coatings [J]. Analytica Chimica Acta,2003,490(1-2):211-222.
    [59]范瑜,金荣洪,耿军平等.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报,2004,32(12):1997-2000.
    [60]Chen, Y.W., Narieda, S., Yamashita, K. Blind nonlinear system identification based on a constrained hybrid genetic algorithm [J]. IEEE Transactions on Instrumentation and Measurement,2003,52(3):898-902.
    [61]Tsai, J.-T., Liu, T.-K., Chou, J.-H. Hybrid taguchi-genetic algorithm for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation, 2004,8(4):365-377
    [62]魏明,蔡延光.一种基于混沌领域搜索的自适应遗传算法[J].计算机应用研究,2009,26(2):464-465.
    [63]杨建军,战红.基于图论的改进遗传算法在配网重构中的应用[J].电力系统保护与控制,2010,38(21):122-125.
    [64]徐宗本,陈志平.遗传算法基础理论研究的新近发展[J].数学进展,2000,29(2):97-114.
    [65]Vose, M.D., Liepins, G.E. Punctuated equilibria in genetic search [J]. Complex Systems,1991,5(1):31-44.
    [66]Nix, A.E., Vose, M.D. Modeling genetic algorithms with Markov chains [J]. Annals of Mathematics and Artificial Intelligence,1992,5(1):79-88.
    [67]Goldberg, D.E., Segrest, P. Finite markov chain analysis of genetic algorithms [C]. in Proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, Hillsdale, NJ,1987:1-8.
    [68]Eiben, A.E., Aarts, E.H., Van Hee, K.M. Global convergence of genetic algorithm:an infinite markov chain analysis [M]. Heidelberg Berlin:Springer-Verlag, 1991.
    [69]Rudolph, G. Convergence analysis of canonical genetic algorithms [J]. IEEE Transactions on Neural Networks,1994,5(1):96-101.
    [70]Cerf, R. Asymptotic convergence of genetic algorithms [Doctorial dissertation].1993.
    [71]Qi, X.F., Palmieri, F. Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. Part Ⅰ:Basic properties of selection and mutation [J]. IEEE Transactions on Neural Networks,1994,5(1):102-119.
    [72]郭东伟,刘大有,周春光等.遗传算法收敛性的动力学分析及其应用[J].计算机研究与发展,2002,39(02):225-230.
    [73]郑金华,吕卉,伍军等.基于空间交配遗传算法的收敛性分析[J].模式识别与人工智能,2010,23(5):639-645.
    [74]李书全,寇纪淞,李敏强.遗传算法的随机泛函分析[J].系统工程学报1998,13(1):97-101.
    [75]徐宗本,聂赞坎,张文修.关于遗传算法公理化模型的进一步结果[J].工程数学学报,2001,18(1):1-11.
    [76]张纪会,徐心和.一种新的进化算法——蚁群算法[J].系统工程理论与实践,1999,19(3):84-87,109.
    [77]段海滨.蚁群算法原理及其应用[M].科学出版社,2005.
    [78]Gambardella, L.M., Dorigo, M. Ant-Q:A Reinforcement Learning approach to the traveling salesman problem [C]. in Proceedings of the Twelfth International Conference on Machine Learning, Palo Alto, USA,1995:252-260.
    [79]Dorigo, M., Gambardella, L.M. Ant colony system:a cooperative learning approach to the traveling salesman problem [J]. IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
    [80]Gambardella, L.M., Dorigo, M. An ant colony system hybridized with a new local search for the sequential ordering problem [J]. INFORMS Journal on Computing,2000,12(3):237-255.
    [81]Stutzle, T., Hoos, H.H. MAX-MIN ant system [J]. Future Generation Computer Systems,2000,16(9):889-914.
    [82]Cordon, O., Herrera, F., de Viana, I.F., et al. A new ACO model integrating evolutionary computation concepts:the best-worst ant system [C]. in Proceedings of the Second International Workshop on Ant Algorithms:From Ant Colonies to Artificial Ants, Brussels, Belgium,2000:22-29.
    [83]Bilchev, G., Parmee, I.C. The ant colony metaphor for searching continuous design spaces [J]. Lecture Notes in Computer Science,1995,993:25-39.
    [84]Wang, L., Wu, Q.D. Ant system algorithm for optimization in continuous space [C]. in Proceedings of the IEEE International Conference on Control Applications, Mexico City, Mexico,2001:395-400.
    [85]杜呈欣,陈小强,熊伟清.用于求解函数优化的蚁群算法设计[J].计算机工程与应用,2007,43(25):57-59,158.
    [86]李丽香,彭海朋,王向东等.基于混沌蚂蚁群算法的PID控制器的参数整定[J].仪器仪表学报,2006,27(9):1104-1106.
    [87]李玉英,温巧燕,李丽香等.改进的混沌蚂蚁群算法[J].仪器仪表学报,2009,30(4):733-737.
    [88]吴建辉,章兢,刘朝华.基于蚁群算法和免疫算法融合的TSP问题求解[J].湖南大学学报(自然科学版),2009,36(10):81-87.
    [89]张兆军,冯祖仁,任志刚.采用序优化的改进蚁群算法[J].西安交通大学学报,2010,44(2):15-30.
    [90]洪炳熔,金飞虎,高庆吉.基于蚁群算法的多层前馈神经网络[J].哈尔滨工业大学学报,2003,35(7):823-825.
    [91]徐延炜,贾嵘.基于人工免疫思想的蚁群算法(AIACS)在配电网重构中的应用[J].电力系统保护与控制,2010,38(18):89-93.
    [92]Giitjahr, W.J. A graph-based ant system and its convergence [J]. Future Generation Computer Systems 2000,16(9):873-888.
    [93]Giitjahr, W.J. ACO algorithms with guaranteed convergence to the optimal solution [J]. Information Processing Letters,2002,82(3):145-153.
    [94]孙焘,王秀坤,刘业欣等.一种简单蚂蚁算法及其收敛性分析[J].小型微型计算机系统2003,24(8):1524-1527.
    [95]Stiitzle, T., Dorigo, M. A short convergence proof for a class of ant colony optimization algorithms [J]. IEEE Transactions on Evolutionary Computation,2002, 6(4):358-365.
    [96]Badr, A., Fahmy, A. A proof of convergence for ant algorithms [J]. Information Sciences,2004,160(1-4):267-279.
    [97]朱庆保.蚁群优化算法的收敛性分析[J].控制与决策,2006,21(7):763-770.
    [98]Duan, H.-B., Wang, D.-B., Yu, X.-F. Markov chains and martingale theory based convergence proof of ant colony algorithm and its simulation platform [C]. in Proceedings of the Sixth World Congress on Intelligent Control and Automation,2006: 3057-3061.
    [99]苏兆品,蒋建国,梁昌勇等.蚁群算法的几乎处处强收敛性分析[J].电子学报,2009,37(8):1646-1650.
    [100]Gamier, S., Gautrais, J., Theraulaz, G. The biological principles of swarm intelligence [J]. Swarm Intelligence,2007,1(1):3-31.
    [101]Jiang, M., Luo, Y.-P., Yang, S.-Y. Stagnation analysis in particle swarm optimization [C]. in Proceedings of the 2007 IEEE Swarm Intelligence Symposium, Honolulu, HI,2007:92-99.
    [102]Shi, Y., Eberhart, R. A modified particle swarm optimizer [C]. in Proceedings of the IEEE World Congress on Computational Intelligence, Anchorage, AK,USA 1998:69-73
    [103]Shi, Y., Eberhart, R.C. Empirical study of particle swarm optimization [C]. in Proceedings of the 1999 Congress on Evolutionary Computation (CEC 99), Washington, DC, USA 1999.
    [104]Chatterjee, A., Siarry, P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization [J]. Computers and Operations Research, 2006,33(3):859-871.
    [105]Clerc, M., Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [106]He, S., Wu, Q.H., Wen, J.Y., et al. A particle swarm optimizer with passive congregation [J]. Biosystems,2004,78(1-3):135-147.
    [107]赫然,王永吉,王青等.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044.
    [108]Van den Bergh, F., Engelbrecht, A.P. A cooperative approach to particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation,2004,8(3): 225-239.
    [109]Baskar, S., Suganthan, P.N. A novel concurrent particle swarm optimization [C]. in Proceedings of the 2004 Congress on Evolutionary Computation, Portland OR, USA,2004:792-796.
    [110]El-Abd, M., Kamel, M.S. A hierarchical cooperative particle swarm optimizer [C]. in Proceedings of the Swarm Intelligence Symposium,2006:43-47.
    [111]窦全胜,周春光,徐中宇等.动态优化环境下的群核进化粒子群优化 方法[J].计算机研究与发展,2006,43(1):89-95.
    [112]陈自郁,何中市,张程.一种邻居动态调整的粒子群优化算法[J].模式识别与人工智能,2010,23(4):586-592.
    [113]安静,康琦,汪镭等.一种生态粒子群竞争优化计算模式[J].模式识别与人工智能,2010,23(4):471-476.
    [114]Juang, C.F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2004,34(2):997-1006.
    [115]Zhang, W.J., Xie, X.F. DEPSO:hybrid particle swarm with differential evolution operator [C]. in Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, Washington D.C., USA,2003:3816-3821.
    [116]Moore, P.W., Venayagamoorthy, G.K. Evolving digital circuits using hybrid particle swarm optimization and differential evolution [J]. International Journal of Neural Systems,2006,16(3):163-177.
    [117]Fan, S.-k.S., Zahara, E. A hybrid simplex search and particle swarm optimization for unconstrained optimization [J]. European Journal of Operational Research,2007,181(2):527-548.
    [118]Wang, X.-H., Li, J.-J. Hybrid particle swarm optimization with simulated annealing [C]. in Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China,2004:2402-2405
    [119]徐青鹤,刘士荣,吕强.基于蚁群混沌行为的离散粒子群算法及其应用[J].计算机科学,2010,37(5):178-180,286.
    [120]Trelea, I.C. The particle swarm optimization algorithm:convergence analysis and parameter selection [J]. Information Processing Letters,2003,85(6): 317-325.
    [121]Gazi, V., Passino, K.M. Stability analysis of swarms [J]. IEEE Transactions on Automatic Control,2003,48(4):692-697.
    [122]Gazi, V., Passino, K.M. Stability of a one-dimensional discrete-time asynchronous swarm [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2005,35(4):834-841.
    [123]Liu, Y., Passino, K.M., Polycarpou, M.M. Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology [J]. IEEE Transactions on Automatic Control,2003,48(1):76-95.
    [124]Emara, H.M., Fattah, H.A.A. Continuous swarm optimization technique with stability analysis [C]. in Proceeding of the 2004 American Control Conference, Boston, Massachusetts,2004:2811-2817.
    [125]Van den Bergh, F., Engelbrecht, A.P. A study of particle swarm optimization particle trajectories [J]. Information Sciences,2006,176(8):937-971.
    [126]曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338.
    [127]曾建潮,崔志华.微粒群算法的统一模型及分析[J].计算机研究与发展,2006,43(1):96-100.
    [128]金欣磊,马龙华,吴铁军等.基于随机过程的PSO收敛性分析[J].自动化学报,2007,33(12):1263-1268.
    [129]刘晓峰,陈通.PSO算法的收敛性及参数选择研究[J].计算机工程与应用,2007,43(9):14-17.
    [130]袁代林,陈虬.马氏模型PSO及其随机过程分析[J].计算机工程与应用,2009,45(31):49-52.
    [131]Liu, H., Abraham, A., Snasel, V. Convergence analysis of swarm algorithm [C]. in Proceedings of the World Congress on Nature & Biologically Inspired Computing,2009:1714-1719.
    [132]Chen, Y.-P., Jiang, P. Analysis of particle interaction in particle swarm optimization [J]. Theoretical Computer Science,2010,411 (21):2101-2115.
    [133]de Castro, L.N. Fundamentals of natural computing:an overview [J]. Physics of Life Reviews,2007,4(1):1-36.
    [134]Chang, P.-C., Huang, W.-H., Ting, C.-J. Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems [J]. Expert Systems with Applications,2010,37(3):1863-1878.
    [135]Nakamichi, Y., Arita, T. Diversity control in ant colony optimization [J]. Artif Life Robotics,2004,7(4):198-204.
    [136]Chen, J., Xin, B., Peng, Z., et al. Optimal contraction theorem for exploration-exploitation tradeoff in search and optimization [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2009,39(3):680-691.
    [137]Ursem, R.K., Diversity-guided evolutionary algorithms, in Parallel Problem Solving from Nature [M]. Springer Berlin/Heidelberg,2002:462-471.
    [138]Riget, J., Vesterstr(?)m, J.S. A diversity-guided particle swarm optimizer the ARPSO [T]. Department of Computer Science, University of Aarhus. Technical Report 2002-02,2002.
    [139]邓可,林杰,张鹏.基于信息熵的异类多种群蚁群算法[J].计算机工程与应用,2008,44(36):16-19.
    [140]Olorunda, O., Engelbrecht, A.P. Measuring exploration exploitation in particle swarms using swarm diversity [C]. in Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2008), Hong Kong,2008:1128-1134
    [141]Randall, M., Search space reduction as a tool for achieving intensification and diversification in ant colony optimisation, in Advances in Applied Artificial Intelligence [M]. M. Ali and R. Dapoigny, Springer Berlin/Heidelberg, 2006:254-261.
    [142]张文修,梁怡.遗传算法的数学基础[M].西安交通大学出版社,2003.
    [143]Kennedy, J., Eberhart, R.C. A discrete binary version of the particle swarm algorithm [C]. in Proceedings of the World Multi Conference on Systemic, Cybernetics and Informatics, Piscatawary, NJ,1997:4104-4109.
    [144]Bianchi, L., Dorigo, M., Gambardella, L., et al. A survey on metaheuristics for stochastic combinatorial optimization [J]. Natural Computing,2009, 8(2):239-287.
    [145]徐宗本,聂赞坎,张文修.父代种群参与竞争遗传算法几乎必然收敛[J].应用数学学报,2002,25(1):167-175.
    [146]Rastegar, R. On the optimal convergence probability of univariate estimation of distribution algorithms [J]. Evolutionary Computation,2011,19(2): 225-248.
    [147]Poli, R. Dynamics and stability of the sampling distribution of particle swarm optimisers via moment analysis [J]. Journal of Artificial Evolution and Applications,2008:1-10.
    [148]林元烈.应用随机过程[M].清华大学出版社,2002.
    [149]李德毅,杜鹢.不确定性人工智能[M].国防工业出版社,2005.
    [150]段海滨,王道波,于秀芬等.基于云模型理论的蚁群算法改进研究[J].哈尔滨工业大学学报,2005,37(1):115-119.
    [151]戴朝华,朱云芳,陈维荣等.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424.
    [152]戴朝华,朱云芳,陈维荣.云自适应遗传算法[J].控制理论与应用,2007,24(4):646-650.
    [153]张光卫,何锐,刘禹等.基于云模型的进化算法[J].计算机学报,2008,31(7):1082-1091.
    [154]牟峰,王慈光,袁晓辉等.基于云模型的参数自适应蚁群遗传算法[J].系统工程与电子技术,2009,31(7):1763-1766.
    [155]郑春颖,王晓丹,郑全弟等.自逃逸云简化粒子群优化算法[J].小型微型计算机系统,2010,31(7):1457-1460.
    [156]韦杏琼,周永权,黄华娟等.云自适应粒子群算法[J].计算机工程与应用,2009,45(1):48-50,76.
    [157]Gao, Y., Hu, X., Liu, H., et al. Cloud estimation of distribution particle swarm optimizer [C]. in Proceedings of the Fourth International Conference on Genetic and Evolutionary Computing,2010:14-17.
    [158]Fu, Q., Cai, Z.-H., Wu, Y.-Q. A novel hybrid method:genetic algorithm based on asymmetrical cloud model [C]. in Proceedings of the 2010 International Conference on Artificial Intelligence and Computational Intelligence,2010:445-449.
    [159]李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34.
    [160]刘习春,喻寿益.局部快速微调遗传算法[J].计算机学报,2006,29(1):100-105.
    [161]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
    [162]戴栋,马西奎,李富才等.一种基于遗传算法的混沌系统参数估计方法[J].物理学报,2002,51(11):2459-2460.
    [163]Chang, W.-D. Parameter identification of Rossler's chaotic system by an evolutionary algorithm [J]. Chaos, Solitons & Fractals,2006,29(5):1047-1053.
    [164]Chang, W.-D. Parameter identification of Chen and Lu systems:A differential evolution approach [J]. Chaos, Solitons & Fractals,2007,32(4): 1469-1476.
    [165]王钧炎,黄德先.基于混合差分进化算法的混沌系统参数估计[J]. 物理学报,2008,57(5):2755-2760.
    [166]Peng, B., Liu, B., Zhang, F.-Y., et al. Differential evolution algorithm-based parameter estimation for chaotic systems [J]. Chaos, Soli tons & Fractals,2009,39(5):2110-2118.
    [167]Wang, L., Li, L.-P. An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems [J]. Expert Systems with Applications,2010,37(2):1279-1285.
    [168]Ho, W.-H., Chou, J.-H., Guo, C.-Y. Parameter identification of chaotic systems using improved differential evolution algorithm [J]. Nonlinear Dynamics, 2010,61(1):29-41.
    [169]李丽香,彭海朋,杨义先等.基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计[J].物理学报,2007,56(1):51-55.
    [170]Peng, H., Li, L., Yang, Y, et al. Parameter estimation of dynamical systems via a chaotic ant swarm [J]. Physical Review E,2010,81(1):016207.
    [171]高飞,童恒庆.基于改进粒子群优化算法的混沌系统参数估计方法[J].物理学报,2006,55(2):577-582.
    [172]Gao, F., Li, Z.-Q., Tong, H.-Q. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization [J]. Chinese Physics B,2008,17(4):1196-1201.
    [173]He, Q., Wang, L., Liu, B. Parameter estimation for chaotic systems by particle swarm optimization [J]. Chaos, Solitons and Fractals,2007, (34):654-661.
    [174]张健中,王庆超.基于混合遗传粒子群算法的混沌系统参数估计[J].系统工程与电子技术,2009,31(9):2212-2214,2248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700