用户名: 密码: 验证码:
土工三轴实验仪控制系统的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土工三轴实验仪是一种模拟土体在土层中承受荷载环境的仪器,使用此仪器进行的土工三轴压缩试验是测定土体抗剪强度的一种方法。土体抗剪强度直接反映了土体承受荷载的能力,因此抗剪强度测定得是否准确,密切关系到建筑物地基是否稳定。由于国内试验机产业起步较晚,自动化程度不高,操作繁杂,试验精度已无法满足日益提高的需求。
     论文阐述了土体强度参数的求取原理,引出了土工三轴实验仪的结构设计以及试验方法。基于试验需求,设计了一个土工三轴实验仪控制系统。由控制系统自动控制土工三轴实验仪试验,提高了试验的自动化程度及试验控制精度,获取更为准确的试验数据以计算土体强度参数。控制系统采用了基于粒子群优化(PSO)算法的参数自整定变参数PID控制,克服了传统PID算法在土体大跨度加载这样一个复杂的非线性控制过程中,由于控制参数固定,导致自适应能力较差的问题,使控制系统能够对PID参数白调节,提高控制系统的自适应能力。
     控制系统的硬件以DSP为核心,以交流伺服系统为控制执行机构,用测量放大器及16位A/D转换器构成反馈通道。软件设计以参数自整定PID控制为核心,利用此控制系统完成了现场应力路径试验,验证了土工三轴实验仪控制系统的可行性和有效性,并对控制系统的使用做了介绍,对其设计做了总结分析。
Soil triaxial apparatus is used to simulate bearing load of soil in the ground. Triaxial compression test is a method of determining shear strength of soil using soil triaxial apparatus. Because shear strength directly reflects the capacity of soil bearing load, the shear strength in the accuracy closely relates to the stability of the building foundation. The test precision has been unable to meet the increasing demand due to the late start of domestic industry of testing machine, the low degree of automation and the complex operation.
     According to the principle of determining shear strength of soil, the structure design of apparatus and test methods are introduced in the paper. Because of the experiment needs, a control system is designed to control soil triaxial apparatus finishing test. The automation and accuracy of test is improved, and more accurate data is accessed to calculate the shear strength. Because the large span of soil loading is a complex nonlinear control process, in which parameters of traditional PID control are fixed, the adaptive capacity of control system is poor. The varying parameters PID algorithm is employed in the control system. Based on Particle Swarm Optimizer (PSO) algorithm, its parameters are self-tuned to improve the adaptive ability of control system.
     DSP is the core of hardware design of control system. The implementing agency of control is an AC servo system. The feedback channel is composed of the measurement amplifier and 16-bit A / D converter. The self-tuning PID control is the core of software design of control system. Feasibility and validity of the control system are proved in the stress path test. Finally, the use of the control system is introduced, and the design of it is analysed.
引文
[1]丁洲祥,朱合华,龚晓南,等.压缩试验本构关系的大变形表述法.岩石力学与工程学报,2007,26(7):1356-1364
    [2]Ali H M,Liu H L,Chiu C F,et al.Laboratory study for effects of vacuum preloading on physical and mechanical properties of soft clayey soils.Journal of Southeast University,2005,21(1):82-87
    [3]杨熙章.土工试验与原理.上海:同济大学出版社,1993
    [4]中华人民共和国水利部.土工试验方法标准.北京:中国计划出版社,1999
    [5]孙红,袁聚云,赵锡宏.软土的真三轴试验研究.水利学报,2002,(12):74-78
    [6]Alshibli K A,Williams H S.A Tree Triaxial Apparatus for Soil Testing with Mixed Boundary Conditions.Geotechnical Testing Journal,2005,28(6):534-543
    [7]Wang Q,Lade P V.Shear banding in true triaxial tests and its effect on failure in sand.Journal of Engineering Mechanics,2001,127(8):754-761
    [8]庄心善,赵鑫,何世秀,等.排水条件下卸荷土体变形特性的真三轴试验研究.岩土力学,2007,28(7):1387-1390
    [9]南京水利科学研究院土工研究所.土工试验技术手册.北京:人民交通出版社,2002
    [10]张福波,王贵桥,杜林秀,等.电液伺服疲劳试验机负载刚度自适应模型研究.振动、测试与诊断,2007,27(1):16-19
    [11]姜伟,罗剑波.Altera FPGA在高频疲劳试验机控制器中的应用研究.仪器仪表学报,2002,23(3):439-441
    [12]王静,张群,刘振东,等.三轴一扭转剪切仪中的现代智能控制技术.仪器仪表学报,2006,27(6):581-583
    [13]陈智军,蔡增伸,施文康.基于模糊自适应PID的材料试验机控制系统.计算机测量与控制,2005,13(11):1226-1229
    [14]陈建国,金宏平.模糊PID控制器在液压万能试验机上的应用.机床与液压,2006.5:163-165
    [15]陈星,李东海.基于遗传算法的分布参数对象PID控制器设计.清华大学学报(自然科学版),2007,47(8):1356-1360
    [16]郭大庆,李晓,赵永进.基于改进PSO算法的PID参数自整定.计算机工程,2007,33(18):202-204
    [17]方红庆,沈祖诒.基于改进粒子群算法的水轮发电机组PID调速器参数优化. 中国电机工程学报,2005,25(22):120-124
    [18]Kim D H,Park J I.Intelligent PID controller tuning of AVR system using GA and PSO.International Conference on Advances in Intelligent Computing(ICIC 2005),Hefei(CN),2005:366-375
    [19]Chao O,Lin W X.Comparison between PSO and GA for Parameters Optimization of PID Controller.2006 International Confenrence on Mechatronics and Automation(ICMA 2006),Luoyang,China,2006:2471-2475
    [20]赵建玉,王旭东,何芳,等.电液伺服疲劳试验机的计算机控制研究.仪器仪表学报,2002,23(3):320-323
    [21]韩莹,张安年,丁喆,等.基于DSP的无刷直流电机位置伺服系统设计研究.微电机,2006,39(9):64-66
    [22]任子武,伞冶,陈俊风.改进PSO算法及在PID参数整定中应用研究.系统仿真学报,2006,18(10):2870-2873
    [23]Kao C C,Chuang C W,Fung R F.The self-tuning PID control in a slider-crank mechanism system by applying particle swarm optimization approach.Mechatronics,2006,16(8):513-522
    [24]王秀丽,史敬灼.永磁同步电动机数字化交流伺服系统设计与实现.微电机,2007,40(7):57-60
    [25]李叶松,宋军,吴钦木,等.数字化永磁同步电动机伺服系统分析与设计.微电机,2007,40(9):49-53
    [26]Estabragh A R,Javadi A A,Boot J C.Effect of compaction pressure on consolidation behaviour of unsaturated silty soil.Canadian Geotechnical Journal,2004,41(3):540-550
    [27]Cunningham M R,Ridley A M,Dineen K,et al.The mechanical behaviour of a reconstituted unsaturated silty clay.Geotechnique,2003,2:183-194
    [28]夏长亮,刘丹,王迎发,等.基于模糊规则的无刷直流电机免疫PID控制.电工技术学报,2007,22(9):68-73
    [29]庄凯,廖勇.基于DSP的永磁无刷直流电机控制系统设计.微电机,2007,40(2):55-57
    [30]范金鑫,张承宁.基于TMS320F2812永磁同步电动机系统设计.微电机,2007,40(5):91-93
    [31]许贤泽,章爱清,徐余波,等.高精度直流伺服电机的数字控制系统研究.武汉大学学报(工学版),2006,39(2):59-62
    [32]马秀坤,马学军.基于DSP的无刷直流电机智能控制系统研究.DSP开发与 应用,2007,23(2-2):174-176
    [33]陈湘令,张莹.基于DSP的永磁无刷直流电机数字控制系统.控制系统,2007,23(5-1):5,38,39
    [34]李大,杨庆东,刘泉.基于DSP交流永磁同步直线电机矢量控制系统.DSP开发与应用,2007,23(9-2):195-196
    [35]林砺宗,刘磊.基于TMS320F2812的多轴运动控制器研究.微电机,2007,40(9):44-48
    [36]Li G M,Tsang K M.Concurrent Relay-PID Control for Motor Position Servo Systems.International Journal of Control,Automation,and Systems,2007,5(3):234-242
    [37]王幸之,王雷,钟爱琴,等.单片机应用系统电磁干扰与抗干扰技术.北京:北京航空航天大学出版社,2006
    [38]陈智军,蔡增伸,王海勇,等.比例积分适时调整PID控制及其在液压试验机中的应用.机床与液压,2004,1:50-52
    [39]李勇,段正澄,胡伦骥.基于粒子群优化算法的液压伺服控制系统PID参数优化.机床与液压,2007,35(5):127-129
    [40]徐静波.基于PSO算法的PID控制参数优化.东华大学学报(自然科学版),2007,33(1):135-138
    [41]Gaing Z L.A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System.IEEE Transactions on Energy Conversion,2004,19(2):384-391
    [42]Corbet J,Rubini A,Greg K H.Linux设备驱动程序.北京:中国电力出版社,2005
    [43]Li Y,Ang K H,Chong G C Y.Patents,Software,and Hardware for PID Control.IEEE Control Systems Magazine,2006,26(1):42-54
    [44]Precup R E,Preitl S.PI-Fuzzy controllers for integral plants to ensure robust stability.Information Sciences,2007,177(20):4410-4429
    [45]Carotenuto L,Pugliese P,Sergeyev Y D.Maximizing performance and robustness of PI and PID controllers by global optimization.Control and Intelligent Systems,2006,34(3):225-235
    [46]Precup R E,Preitl S F.PI and PID controllers tuning for integral-type servo systems to ensure robust stability and controller robustness.Electrical Engineering,2006,88(2):149-156
    [47]Yu D L,Chang T K,u D W.A stable self-learning PID control for multivariable time varying systems.Control Engineering Practice,2007,15(12):1577-1587
    [48]Huang H P,Lin C H.A stable on-line self-tuning optimal PID controller for a class of unknown systems.Asian Journal of Control,2007,9(2):151-162
    [49]刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社,2006
    [50]李颖宏,甘泉.基于限幅的最优PID控制器.仪器仪表学报,2006,27(8):973-976
    [51]Hemici B,Nezli L,Tadjine M,et al.Robust PID/backstepping control design for permanent magnet synchronous motor drive.Control and Intelligent Systems,2006,34(3):194-205
    [52]Ali W H,Zhang Y,Akujuobi C M,et al.DSP-based PID controller design for the PMDC motor.International Journal of Modelling & Simulation,2006,26(2):143-150
    [53]陈先锋,舒志兵,赵英凯.基于PMSM伺服系统的数学模型及其性能分析.机械与电子,2005,1:41-43
    [54]邱丽,曾贵娥,朱学峰,等.几种PID控制器参数整定方法的比较研究.工业控制与应用,2005,24(11):28-31
    [55]Tang K Z,Huang S N,Tan K K,et al.Combined PID and adaptive nonlinear control for servo mechanical systems.Mechatronics,2004,14(6):701-714
    [56]Peng K M,Chen B M,Cheng G Y,et al.Modeling and Compensation of Nonlinearities and Friction in a Micro Hard Disk Drive Servo System With Nonlinear Feedback Control.IEEE Transactions on Control Systems Technology,2005,13(5):708-721
    [57]袁松贵.基于改进PSO算法的电机控制系统PID参数优化.农机化研究,2007,6:176-178
    [58]胡海兵,胡庆波,吕征宇.基于粒子群优化的PID伺服控制器设计.浙江大学学报(工学版),2006,40(12):2144-2148
    [59]杨诚,杨传启.基于粒子群算法的PID参数优化.自动化仪表,2006,s1:95-96
    [60]王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定.控制与决策,2005,20(1):73-81
    [61]Ho S L,Yang S Y,Ni G Z,et al.A Particle Swarm Optimization Method With Enhanced Global Search Ability for Design Optimizations of Electromagnetic Devices.IEEE Transactions on Magnetics,2006,42(4):1107-1110
    [62]Xu S H,Yahya R S.Boundary Conditions in Particle Swarm Optimization Revisited.IEEE Transactions on Antennas and Propagation,2007,55(3): 760-765
    [63]Wilke D N,Kok S,Groenwold A A.Comparison of linear and classical velocity update rules in particle swarm optimization:Notes on diversity.International Journal for Numerical Methods in Engineering,2007,70(8):962-984
    [64]熊伟丽,徐保国,周其明.基于改进粒子群算法的PID参数优化方法研究.计算机工程,2005,31(24):41-43
    [65]王平,王兰民,董海峰,等.浅谈20kN动三轴试验机控制系统抗干扰.西北地震学报,2007,29(2):141-144
    [66]陈幼平,张代林,艾武,等.基于DSP的直线电机位置伺服控制策略研究.电机与控制学报,2006,10(1):61-65
    [67]高荣.电子齿轮在数控机床中的应用.机床与液压,2007,35(6):250-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700