用户名: 密码: 验证码:
基于旋转电磁效应的循环水系统抑垢缓蚀机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从电机损耗与温升的反问题出发,利用电磁理论将输入的能量充分、有效地转换为热能,即将“损耗”转化为有效热能输出的动态电磁感应加热方法,构成高热效率的环保型旋转电磁热机,通过调节励磁绕组的电磁参数可以对旋转电磁场进行控制。利用可控电磁场对水媒质产生磁化效应,可以实现抑垢缓蚀。
     在充分分析电机运行过程损耗的基础上,介绍了旋转电磁效应的技术实施以及数学模型。通过有限元模拟,分析了转速和铁心长度等因素对致热效率以及磁场分布等的影响。利用旋转电磁热机进行了致热实验,结果表明,该新型热机致热效果明显,并且使水媒质产生了一系列物理化学性质变化。水质变化机理主要是旋转电磁效应导致水中氢键断裂。当水的温升速度较快时,水质变化主要是温度引起;而在升温缓慢或无温度变化时,则以交变电场和交变磁场的协同作用为主。
     热循环系统的工程应用表明,旋转电磁效应的抑垢效果良好,并且长时间运行后具有明显的降浊降硬作用。采用激光共聚焦显微镜、扫描电镜以及XRD等方法研究了水垢样的形貌及成分,分析了旋转电磁效应的抑垢机理,主要是旋转电磁效应一方面改变了水媒质的物理化学性质,另一方面影响了碳酸钙结晶过程,水垢样主要为霰石碳酸钙晶型,而蒸汽锅炉水垢样表面则主要为方解石碳酸钙晶型。
     采用失重法对热循环系统用45钢和紫铜进行热流动腐蚀实验,结果表明,随着腐蚀过程的持续进行,45钢的腐蚀速度先下降后上升,紫铜的腐蚀速度下降,随后趋于平缓。成分分析表明,45钢和紫铜试样主要为基体及其氧化物。开始阶段试样表面氧化膜的形成减缓了腐蚀,随着氧化膜的脱落与溶解,腐蚀继续进行。通过试样表面腐蚀二维和三维形貌可以看出,45钢流过腐蚀过程为剥层腐蚀,紫铜流动腐蚀过程为孔蚀。
     采用电化学腐蚀实验研究了45钢和紫铜在旋转电磁处理海水中的腐蚀电化学机理。极化曲线测试表明,旋转电磁效应对45钢和紫铜的缓蚀效率分别为16.66%和89.14%。通过扫描电镜照片可以看出,在旋转电磁处理海水中电化学腐蚀后试样表面比在3.5%NaCl溶液和人工海水中的试样要致密。成分分析表明,45钢试样表面腐蚀产物主要有Fe_2O_3、Fe_3O_4和FeCl_2·6H_2O,紫铜试样表面腐蚀产物主要有Cu_2O和CuCl_2。旋转电磁处理使溶液的溶解氧能力增强,使金属更容易地发生氧腐蚀,形成表面氧化膜,阻止了内部金属的继续腐蚀。
     基于电化学腐蚀实验结果,分析了腐蚀电极/电解质溶液界面液相传质过程。对电极/电解质溶液界面双电层电容量进行了理论计算以及实验分析。根据腐蚀过程表面状态变化,基于高斯滤波建立了电极表面双电层基准面模型。通过所建立的模型,计算出流动腐蚀过程中金属表面真实的双电层吸附面积变化。
From the view of temperature rise of electric machine, the thermal dissipation can be transformed to the effective thermal energy based on the principle of rotating electric machine through electromagnetic theories. So, the environmental protective thermal equipment can be manufactured. The fluid in pipe can be magnetized by the magnetization of electromagnetic fields, which can implement the antiscale and anticorrosion of the system.
     Technical implement and mathematic model of rotating electromagnetic effect was introduced based on analysis to the dissipation of electric machine during its operational process. Effect of rotational speed and iron length on thermal power and magnetic field distribution were analyzed using finite element simulation. Experiment using electromagnetic equipment was carried out. The experimens indicate that the novel rotating electromagnetic heat engine not only has the merits of high efficiency, high temperature ascending grads, but also has effects of magnetization on the water medium.
     According to engineering practice of rotating electromagnetic effect, its antiscaling effect is better. The mechanism was investigated usingconfocal laser scanning microscope, scanning electron microscopy/energy dispersive analysis system of X-ray (SEM/EDAX) and X-ray diffraction (XRD). Antiscaling mechanism of rotating electromagnetic effect is that it changes water quality; at the same time, it influences the crystal of calcium carbonate. The scale incrustation through rotating electromagnetic effect treatment is mainly aragonite, while the scale of steam boiler is calcite chiefly.
     Flow experiment of 45 steel and copper used in thermal recyling system was investigated using weight loss method. The result shows that the flow corrosion rate of 45 steel decreases at the initial segment, then increases at the final segment. However, the flow corrosion rate of copper decreases, then drives to gentleduring the corrosion process. Component analysis shows that corrosion products of 45 steel and copper are their oxidates. According to two dimensional and three dimensional topographies, it can be observed that flow corrosion process of 45 steel is runaway corrosion, but flow corrosion process of copper is pitting.
     The corrosion characters of 45 steel and copper in rotating electromagnetic feld treated sea water were investigated using electrochemical test. From polarization curve, it can seen that anticorrosion efficient of rotating electromagnetic effect on 45 steel and copper is 16.66% and 89.14%, respectively. From SEM images, the specimen in magnetized sea water is compact compared with the specimen in 3.5% NaCl and sea water, only a few pores exist. Component analysis shows that the corrosion products of 45 steel are Fe_2O_3, Fe_3O_4 and FeCl_2·6H_2O, while the corrosion products of copper are Cu_2O和CuCl_2 chiefly.
     Mass transport process of corroding electrode/solution interface was analyzed based on experiment results of electrochemical corrosion. The capacitance of electric double layer was calculated using theoretical calculation and experiment. According to topography variation of electrode surface during corrosion process, the surface model of samples during the corrosion process was built based on Gaussian filter. The topography characterizations of metal corrosion process can be described using the proposed surface model. The true superficial area of electric double layer during the corrosion process can be calculated through this model.
引文
1 S. L. Postel. Water and world population growth. Journal of AWWA, 2000, 92(2): 131-138
    2王世昌主编.海水淡化工程[M].北京:化学工业出版社, 2003: 1-7
    3杨尚宝.我国海水淡化产业发展的现状与对策.水处理技术. 2006, 32(12): 1-3
    4艾钢,吴建平,朱忠信.海水淡化技术的现状和发展.净水技术. 2004, (3): 24-28
    5王燕江.浅谈苦咸水淡化技术——电渗析法.河北水利. 2002, (1): 42
    6高从堦.反渗透膜分离技术的创新性进展.膜科学与技术. 2006, 26(6): 1-4
    7 A.J. Morton, I. K. Callister, N. M. Wade. Environmantal impacts of seawater distillation and reverse osmosis process. Desalination. 1996, 108: 1-10
    8陈益棠,胡昕.反渗透-纳滤海水淡化最佳化.水处理技术. 2006, 9(9): 79-81, 87
    9 A.A. Mesa, C. M. Gomez, R. U. Azpitarte. Energy saving and desalination of water. Desalination, 1996, 108: 43-50
    10 http://www.most.gov.cn/tztg/200610/P020061031626562001491.doc
    11解鲁生.锅炉水处理原理与实践.北京:中国建筑工业出版社, 1992, 9-13
    12李云龙,吴浩,黄南贵,等.燃油锅炉结垢物分析及其成因的探讨.化工进展. 2002, 21(5): 303-305
    13 D.Hasson, M. Avriel, W. Resnick, et al. Mechanism of calcium carbonate scale deposition on heat transfer surfaces. Ind. Eng. Chem. Fund. 1968, 7: 59-65
    14 A.P. Watkinson, L. Louis, R. Brent. Scaling of enhanced heat exchanger tube. Can. J. Chem. Eng. 1974, 52: 558-562
    15 S.H. Najibi, H. Müller-Steinhagen, M. Jamialahmadi. Calcium sulphate scale formation during sub-cooled flow boiling. Chem. Eng. Sci. 1997, 52: 1265-1284
    16 M.Jamialahmadi, R. Bl?chl, H. Müller-Steinhagen. Bubble dynamics and scale formation during boiling of aqueous calcium sulphate solutions. Chem.Eng. Process. 1989, 26(1): 15-26
    17 S. J. Dyer, G. M. Graham The effect of temperature and pressure on oilfield scale formation. Journal of Petroleum Science and Engineering. 2002, 35: 95-107
    18高昭福,郭丽群.锅炉水垢的种类、危害及预防.一重技术. 2005, (1): 57, 58
    19王世昌.海水淡化工程.北京:化学工业出版社, 2003, 66-69
    20陶冶.锅炉水质与结垢控制.有色金属. 2004, 56(2): 115, 116
    21 J.Taborek, J. G. Knudsen, T. Aoki, R.B. Ritter, J.W. Palen. Fouling: the major unresolved problem in heat transfer, part I: Fouling mechanisms, their characteristics and factors influencing them. Chem. Eng. Prog. 1972, 68: 59-67
    22 J.W. Suitor, W. J. Marner, R. B. Ritter. The history and status of research in fouling of heat exchangers in cooling water services. Can. J. Chem. Eng. 1977, 55: 374-380
    23 K.Li, Terence Tan, Vivek Sinha, et al. Simulation of a Novel Glass Reactor for Dissolved Oxygen from Water .Wat. Res. 2000, 34(7): 2011-2024
    24 R.K. Cheng, D. T. Yegian, M. M. Miyasato, et al. Scaling and development of low-swirl burners for low-emission furnaces and boilers. Symposium (International) on Combustion. 2000, 28(1): 1305-1313
    25 J.Partanen, P. Backman, M. Hupa. The effect of HCl on the formation of calcium silicates in sand beds in fluidized bed boilers. Combustion and Flame. 2002, 130(4): 376-380
    26 H.P. Michelsen, F. Frandsen, D. J. Kim, et al. Deposition and high temperature corrosion in a 10 MW straw fired boiler. Fuel Processing Technology. 1998, 54(1-3): 95-108
    27 M.A. Uusitalo, P. M. J. Vuoristo, T. A. M?ntyl?. High temperature corrosion of coatings and boiler steels in reducing chlorine-containing atmosphere. Surface and Coatings Technology. 2002,161(2-3): 275-285
    28 K.Yamada, Y. Tomono, J. Morimoto, Y. Sasaki, A. Ohmori. Hot corrosion behavior of boiler tube materials in refuse incineration environment. Vacuum. 2002, 65(3-4): 533-540
    29 L.A. Hansen, H. P. Nielsen, F. J. Frandsen, et al. Influence of depositformation on corrosion at a straw-fired boiler. Fuel Processing Technology. 2000,64(1-3): 189-209
    30徐洪.高压锅炉水冷壁管碱腐蚀诊断与机理研究.中国电机工程学报. 2003, 23(2): 183-187
    31 M.C. MAYORAL, J. M. ANDRéS, E. J. BELZUNC, et al. Study of sulphidation and chlorination on oxidized SS310 and plasma sprayed Ni-Cr coatings as simulation of hot corrosion in fouling and slagging in combustion. Corrosion Science. 2006, 48(6): 1319-1336
    32 R.W. BRYERS. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam raising fuels. Prog Energy Combust Sci. 1996, 22: 29-120
    33赵虹,魏勇.燃煤锅炉水冷壁烟侧高温腐蚀的机理及影响因素.动力工程. 2002, 22(2): 1700-1704
    34 Z.Ahmad. Boiler corrosion. Principles of Corrosion Engineering and Corrosion Control. 2006, 576-608
    35 B.S. Sidhu, S. Prakash. Erosion-corrosion of plasma as sprayed and laser remelted Stellite-6 coatings in a coal fired boiler. Wear. 2006, 260(9-10): 1035-1044
    36 J.Barroso, F. Barreras, J. Ballester. Behavior of a high-capacity steam boiler using heavy fuel oil: Part I. High-temperature corrosion. Fuel Processing Technology. 2004, 86(2): 89-105
    37 F.Barreras, J. Barroso. Behavior of a high-capacity steam boiler using heavy fuel oil Part II: Cold-end corrosion. Fuel Processing Technology. 2004, 86(2): 107-121
    38 M.A. Uusitalo, P. M. J. Vuoristo, T. A. M?ntyl?. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits. Corrosion Science. 2004, 46(6): 1311-1331
    39 M.A. Uusitalo, P. M. J. Vuoristo, T. A. M?ntyl?. High temperature corrosion of coatings and boiler steels in oxidizing chlorine-containing atmosphere. Materials Science and Engineering A. 2003, 346(1-2): 168-177
    40 S.Srikanth, B. Ravikumar, Swapan K. Das, K. Gopalakrishna, K. Nandakumar, P. Vijayan. Analysis of failures in boiler tubes due to fireside corrosion in a waste heat recovery boiler. Engineering FailureAnalysis. 2003,10(1): 59-66
    41解鲁生.锅炉水处理原理与实践.北京:中国建筑工业出版社, 1992, 254-256
    42王莹,秦裕琨,吴少华.水平浓淡风煤粉燃烧技术在预防水冷壁高温腐蚀中的应用.热能动力工程. 2000, 15(2): 173-174
    43杨厚君,李正刚,李朝志,等. DG1025锅炉高温再热器高温腐蚀原因分析与防止措施.中国电机工程学报. 2003, 23(11): 211- 214
    44克拉辛.磁化水.毛钜凡等译.北京:计量出版社, 1982, 49-50
    45林家齐,孙晶华,傅荔韬.磁场对水结构的影响.哈尔滨电工学院学报, 1996, 19(4): 470-472
    46李冠成,康永林.水在电场、水在电场、磁场作用下物理性质变化及其影响.现代物理知识. 2001, 13(2): 30-31
    47胡晖,高红,贾绍义.磁场对物质理化性质的影响.磁性材料及器件. 1996, 31(3): 36-41
    48 E.Viswat, L. K. F. Hermans, J. J. M. Beenakker. Experiments on the influence of magnetic fields on the viscosity of water and a water-NaCl solution. Physical Fluids. 1982, 25: 1794-1796
    49张宝铭,刘有昌.水的磁化处理研究.工业水处理. 1994, 14(4): 10-11, 22
    50 J.M. D. Coey, S. Cass. Magnetic water treatment. Journal of Magnetism and Magnetic Materials. 2000, 209(1-3): 71-74
    51黄征青,徐洪涛,黄光斗.磁处理对水溶液pH值和电导率的影响.水处理技术. 2003, 29(1): 22-24
    52曹昌年.进入水处理的物理方法.物理. 1993, 22(6): 22-25
    53赵述哲,刁元东.锅炉水除垢防垢的磁技术处理.沈阳化工学院学报。1994, 6(8): 100-104
    54黄征青,黄光斗,徐洪涛.水的磁处理防垢与除垢的研究.工业水处理. 2001, 1(21): 5-8
    55贾克欣.几种电磁水处理器的作用机理及其应用.给水排水. 1999, 25(8): 65-67
    56 R.F. Benson, R. K. Carpenter, B. B. Martin, et al. Using magnetic fields to prevent scale. Chem Tech. 1997, 27(4): 34-38
    57 S.Srebrenik, R. F. Nadiv, I. J. Lin, Magnetic treatment of water-A theoretical quantum model. Magn Electric Sep. 1993, (5): 71-91
    58刘芳玲,蒋佩琳.磁场处理条件与水的表面张力关系的研究.四川师范大学学报. 1997, 20(5): 127-131
    59 G.A. Jeffrey, W. Saenger. Hydrogen bondingin biological structures. New York: Springer-verlag, 1991, 1-5, 8-9
    60 Y.I. Cho, Byung-Gap ChoI. Electronic Anti-fouling Technology to Mitigate Precipitation Fouling in Plate-and-frame Heat Exchangers. Int. J. Heat Mass Transfer. 1998,41(17): 2265-2571
    61 Y.I. Cho, Byung-Gap ChoI. Validation of an Electronic Anti-fouling Technology in a Single tube. International Journal of Heat and MassTransfer. 1999, 42: 1491-1499
    62 Y.I. Cho, Rong Liu. Control of Fouling in a Spirally ribbed Water Chilled Tube with Electronic Anti-fouling Technology. International Journal of Heat and Mass Transfer. 1999, 42: 3037-3046
    63 R.Liu, Young I.Cho. Combined Use of an Electronic Anti-fouling Technology and Brush Punching for Scale Removal in a Water-cooled Plain Tube. Experimental Heat Transfer. 1999, 12: 203-213
    64 R.H. Lee, A Study of Physical Water Treatment Technology to Mitigate the Mineral Fouling in a Heat Exchanger. Michigan USA: Drexel University, 2002
    65武理中.磁处理循环冷却水防垢机理的显微观察及探讨.化肥工业. 2000, (3): 33-36
    66 K.Higashitani, A. Kage, S. Katamura, et al. Effect of a magnetic field on the formation of CaCO3 particles. Journal of Colloid and Interface Science. 1993, 156(1): 90-95
    67杨筠等.磁场对碳酸氢钠结晶动力学的影响.北京化工大学学报. 1997, 24(2): 1-7
    68 J.S. Donaldson, S. Grimes. Lifting the scale from our pipes. New Scientist. 1988, 18(2): 43-46
    69 D.Hasson, D. Bramson. Effectiveness of magnetic water treatment in suppressing CaCO3 scale deposition. Ind Eng Chem Pro Des Dev. 1985, 24(4): 588-592
    70 R. Gehr, Z. A. Zhai. Reduction of soluble mineral concentrations in CaSO4 saturated water using a magnetic field. Wat Res. 1995, 29(3): 933-940
    71 J.S. Baker, S. T. Judd. Magnetic amelioration of scale formation. Wat. Res. 1996, 30(2): 247-260
    72 R.F. Benson, et al. Using magnetic fields to prevent scale. Chem. Tech. 1997, 27(4): 34-38
    73 C.Gabrielli. Magnetic Water Treatment for Scale Prevention. Wat. Res. 2001, 35(13): 3249-3259
    74 J.M. D. Coey, S. Cass. Magnetic water treatment. Journal of Magnetism and Magnetic Materials. 2000, 209: 71-74
    75 S.Kobe, G. Dra?i?, P. J. McGuiness, et al. The influence of the magnetic field on the crystallization form of calcium carbonate and the testing of a magnetic water-treatment device. Journal of Magnetism and Magnetic Materials. 2001, 236(1-2): 71-76
    76 R.A. Barren, S. A. Parsons. The influence of magnetic fields on calcium carbonate precipitation. Water Res. 1998, 32(3): 609-612
    77吴智慧,陈永昌,刑小凯,等.电磁抗垢机理的实验研究.水处理技术. 2006, 32(4): 49-52
    78耿殿雨.原油与水的磁致胶体效应.磁能应用技术. 1990, (1): 12-16
    79黄征青,鲁国彬,徐洪涛,等.超滤对磁化水的影响及截留微粒成分分析.工业水处理. 2003, 23(9): 35-37
    80 A.Olivier, J. P. Chopart, J. Douglade, et al. Investigatio of magnetic effects on mass transport at the electrode/electrolyte interface by impedance techniques. Journal of Electroanalytical Chemistry. 1987, 217(2): 443-452
    81 O.Devos, A. Olivier, J. P. Chopart, et al. Magnetic field on Nickel Electrodoposition. Electrochem Soc. 1998, 145(2): 401-405
    82 A.Krause, M. Uhlemann, A. Gebert, et al. The effect of magnetic fields on the electrodeposition of cobalt. Electrochimica Acta. 2004, 49: 4127-4134
    83 A.Chiba, K. Kawazu, O. Nakano, et al. The effects of magnetic fields on the corrosion of aluminum foil in sodium chloride solutions. Corrosion Science. 1994, 36(3): 539-543
    84 K.W. Busch, M.A. Buxdh, D.H. Parker, et al. Studies of a water treatment device that uses magnetic fields. Corrosion. 1986, 42: 211-221
    85 E.J.Kelly. Magnetic field effets on electrochemical reactions occurring at metal/flowing - electrolyte interfaces. J. Electrochem. Soc. 1977, 124: 987-994
    86 G.Bikulcius. Change of mechanical properties of Fe-Cr-Ni steel after corrosion of steel in chlorine medium without and with magnetic field. Composite Interfaces. 2002, 9(4): 355-364
    87 A.Rucinskiene, G. Bikulcius, L. Gudaviciute, et al. Magnetic field effect on stainless steel corrosion in FeCl3 solution. Electrochemistry Communications. 2002, 4(1): 86-91
    88王晨,陈俊明.磁场对金属腐蚀与电沉积的影响.材料保护. 1992, 6: 165
    89 M.E. Ghabashy. Effect of a magnetic field on the rate of diffusion-controlled of metals. Br Corros J, 1982, 17(1): 36
    90 K.Srivastava, N. Nigam. Protection of mild steel in sulfuric acid by magnetic field. Br Corros J. 1988, 23(3): 172-175
    91 M.A. Ghabashy. Effect of magnetic field on rate of steel corrosion in aqueous solution. Anti-Corrosion. 1988, 35(1): 12
    92 K.W. Busch, M. A. Buxdh, D. H. Parker, et al. Studies of a water treatment device that uses magnetic fields. Corrosion. 1986, 42(4): 211
    93徐楠,谢发勤,吴向清.磁场在油田污水管道防腐蚀方面的应用探索.材料导报. 2005, 19(5): 61-64
    94张欣.磁场水处理装置对装置管道除锈防腐的机理研究.施工材料与设备. 1997, 23(4): 49
    95张欣,黑田正和.利用磁场处理水的研究.给水排水. 2001, 27(4): 18-21
    96刘卫国,刘建东,赵陈龙.水的磁处理防腐蚀机理研究.腐蚀与防护. 2006, 27(4): 196-198
    97吕战鹏,黄德伦,杨武.磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化.中国腐蚀与防护学报. 2002, 23(5): 185-189
    98吕战鹏,杨武,黄德伦,等.磁场对铜在含三价铁离子硫酸溶液中的腐蚀行为的影响.中国腐蚀与防护学报. 2001, 21(3): 129-136
    99吕战鹏,陈俊明.温度和酸浓度对铁在盐酸溶液中析氢磁致过电位的影响.中国腐蚀与防护学报. 1995, 15(4): 303-307
    100王晨,陈俊明.磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响.中国腐蚀与防护学报. 1994, 14(6): 123-128
    101 R.Macyama. Electromagnetic induction heating device and image recording device. Patent number: US6195525.
    102程树康,崔淑梅,李芙.动态电磁感应加热方式初探-电机与电器温升反问题的研究.微电机. 2005, 38(1): 68, 33
    103 L.Ma, M. Sanada, S. Morimoto, et al. Prediction of Iron Loss in Rotating Machines With Rotational Loss Included. IEEE Transactions on Magnetic. 2003, 39: 2036-2041
    104 B. Mi, G. R. Slemon, R. Bonert. Modeling of Iron Losses of Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications. 2003, 39: 734-742
    105 H.Akcay, D. G. Ece. Modeling of Hysteresis and Power Losses in Transformer Laminations. IEEE Transactions on Power Delivery. 2003, 18:
    487-492
    106 E.Barbisio, F. Fiorillp, C. Ragusa. Predicting loss in magnetic steels under arbitrary induction waveform and with minor hyteresis loops. IEEE Transactions on Magnetic. 2004, 40: 1810-1819
    107 Y.Sun, T. Yu. Analytical Method for Eddy Current Loss in Laminated Rotors With Magnetic Bearings. IEEE TRANSACTIONS ON MAGNETICS. 2002, 38: 1341-1347
    108程树康等.电磁自热器.中国发明专利,专利号ZL02132793.9
    109 http://jpkc.yzu.edu.cn/course/zhwshl/ppebook/02z/ppe0201.htm
    110李光林,杨亚玲.脉冲电场对水结构影响的研究.激光生物学报, 199, 8(3): 40-42
    111朱元保,颜流水,曹祉祥,文陵飞,陈宗璋.磁化水的物理化学性能.湖南大学学报(自然科学版). 1999, 26(1): 21-24
    112 http://www.swpi.edu.cn/secsite/hxgcx/2yemian/huaxuetiandi/changyongshujubiao.htm
    113王晓琳,丁宁编著.反渗透和纳滤技术与应用.北京:化学工业出版社, 2005, 199-204
    114 http://www.gpwater.com/jishubolan/zi.asp?id=1852&db=pub_info&InfoClassID_root=817&InfoClassID=850&InfoClass=865
    115甄世祺,陈晓东,吴东梅,王彩生.复合电磁场降低浑浊度及除氟功能研究.中国公共卫生, 2006, 22(6): 707-708
    116刘卫国,刘建东,李国富.磁处理的防垢除垢机理研究.节能技术. 2005, 23(4): 312-314, 357
    117李俊.物质的溶解度与温度.信息技术教育, 2004, (7): 86-88
    118 http://co.163.com/forum/content/1559_684763_1.htm
    119朱相荣,黄桂桥.钢在海洋飞溅带腐蚀行为探讨.腐蚀科学与防护技术, 1995, 7(3): 246-248
    120 Y.Y CHEN, H. J. TZENGB, L. I. WEI,et al. CorrosionResistance and Mechanical Properties of Low-alloySteels under Atmospheric Conditions .Corrosion Science. 2005, 47: 1001-1021
    121 T.MISAWA, K. ASAMI, K. HASHIMOTO. The Mecha-nism of Atmospheric Rusting and the Protective Amor-phous Rust on Low Alloy Steel .Corrosion Science, 1974, 14: 279-289
    122 H.Tuthill. Guidelines for the use of copper alloys in sea water. Mater Performance. 1987, 26(9): 12
    123 G.Pini, J. Weber. Materials for pumping sea water and media with high chloride content. Pumps. 1979, 158(11): 530
    124周志辉,李正奉.低电导率体系中铜的腐蚀规律及缓蚀剂的应用.华东电力, 2004, 32(6): 59-62
    125 U.Bertocci, Huet F. Noise analysis applied to electrochemical systems. Corrosion. 1995, 51:131-144
    126 R.D. Armstrong, K. Edmonson. The impedance of metal in the passive and transpassive regions electrochim. Acta. 1973, 18(5): 937-943
    127曹楚南,张鉴清.电化学阻抗谱导论,北京:科学出版社, 2002, 84
    128孙跃,胡津.金属腐蚀与控制.哈尔滨:哈尔滨工业大学出版社. 2003, 9, 50, 70,158-161
    129曹楚南,王佳,林海潮.氯离子对钝态金属电极阻抗频谱的影响.中国腐蚀与防护学报. 1989, 9: 261
    130 J.H. Wang, F. I. Wei, Y. S. Chang, et al. The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres. Mater Chem Phys. 1997, 47(1): 1-8
    131 Q.C. Zhang, J. S. Wu, J. J. Wang, et al. Corrosion behavior of weathering steel in marine atmosphere. Mater Chem Phys. 2003, 77(2): 603-608
    132刘丽宏,齐惠滨,卢燕平,等.耐大气腐蚀钢的研究概况.腐蚀科学与防护技术. 2003, 15(2): 86
    133 Barcia, O. R. Mattos, N. Pebere. Mass-transport study for theelectrodissolution of copper in IM hydrochloric acid solution by impedance. J Electrochem Soc. 1993, 140(10): 2825-2833.
    134 F.K. Crundwell. Anodic dissolution of copper in hydrochloric acid solutions. Electrocim Acta. 1992, 37(15): 2707-2710.
    135 L.M. Gassa, J. R. Vilche, M. Ebert. Electrochemical impedance spectroscopy on porous electrode. J Appl Electrochem. 1990, 20: 667
    136 T.Wang, R. F. Novak, R. E. Soltis. A study of factors that influence zirconia/platinum interfacial impedance using equivalent circuit analysis. Sens Actuators, B Chem, 2001, 77: 132
    137 R.Ravichandran, N. Rajendran. Electrochemical behaviour of brass in artificial seawater: effect of organic inhibitors. Applied Surface Science. 2005, 241: 449-458
    138 F.M. Alkharafi, B. G. Ateya. Selective dissolution of brass in salt water. Applied Electrochemistry. 2004, 24(1): 47-53
    139 M.J. Proyer, J. C. Fister. The mechanism of dealloying of copper solid solutions and intermetallic phases. Electrochem Soc. 1984, 131(6): 1230-1235
    140 M.Takeshi, H. Kazuya, S. Yasuhiro. Development and current status of electric double-layer capacitors. Mat Res Soc Symp Proc. 1995, 393: 397-411
    141 H.Shi. Activated carbons and double layer capacitance. Electrochemica Acta. 1996, 41: 1633-1639
    142 C.Lin, J. A. Ritter, B. N. Popov. Correlation of double layer capacitance with the pore structure of sol-gel derived carbon xerogels. J Electrochem Soc. 1999, 146(10): 3639-3643
    143 D.Qu, H. Shi. Studies of activated carbons used in doublelayer capacitors. J Power Sources. 1998, (74): 99-107
    144 T.Morimoto, K. Hiratsuka, Y. Sanada, et al. Electric double layer capacitor using organic electrolyte. J Power Sources. 1996, (60): 239-247
    145 B.E.康维(加).陈艾等译.电化学超级电容器——科学原理及技术应用.北京:化学工业出版社. 2005, 96
    146 K.L. Yang, T. Y. Ying, I. Y. Sotira, et al. Electrosorption of ions from aqueous solutions by nanostructrued carbon aerogel. Journal of Colloid and InterfaceScience. 2002, 250: 18-27
    147宋之平,王家璇.节能原理.北京:水利电力出版社, 1985, 186
    148 http://www.cngspw.com/DownLoad/ThesisPDF/%B5%DA1%D5%C2%20%C1%F7%CC%E5%C1%F7%B6%AF.pdf
    149曹楚南,张鉴清.电化学阻抗谱导论,北京:科学出版社, 2002, 153
    150 J.Koresh, A. Soffer. Double layer capacitance and charging rate of ultramicroporous carbon electrode. J. Electrochem Soc. 1977, 124: 1379-1385
    151 H.C. Lin, L. L. Wang, S. N. Yang. Automatic determination of the spread parameter in Gaussian smoothing. Pattern Recogition Letters. 1996, 17: 1247-1252
    152 S.Brinkmann, H. Bodschwinna, H. W. Lemke. Development of a robust Gaussian regression filter for three-dimensional surface analysis. Proceedings of the Xth International Colloquium on Surface, Chemnitz. Chemnitz University of Technology, 2000: 122-132
    153 ISOPCD 11562, Metrological characterization of phase correct filters and transmission bands for use in contact (stylus) in struments. Geneva: International Organization for Standardization, 1993
    154 ISO4287, Geometrical product specification (GPS)-Surface texture: Profile method-Terms, definitions and surface texture parameters. Geneva: International Organization for Standardization, 1997
    155 S.Brinkmann, H. Bodschwinna, H. W. Lemke. Accessing roughness in three-dimensions using Gaussian regression filtering. Machine Tools & Manufacture. 2001, 41: 2153-2161
    156许景波.高斯滤波器基本理论与应用研究.哈尔滨工业大学工学博士学位论文. 2006: 59-68
    157曾文涵,高咏生,谢铁邦,等.三维表面粗糙度高斯滤波快速算法.计量学报. 2003, 24(1): 10-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700