用户名: 密码: 验证码:
紫花苜蓿和燕麦抗盐碱机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤的盐化和碱化是人类面临的生态环境危机之一,严重制约了农牧业生产的发展,不同种类盐胁迫对植物的影响不同,前人实验证明碱性盐胁迫对植物的伤害明显大于中性盐胁迫。研究植物对盐碱胁迫的生理响应特点,提高作物和牧草的耐盐碱性和种子产量对改良和利用退化盐碱草地具有重要意义。针对东北盐碱土壤的研究现状,本论文以多年生紫花苜蓿和一年生燕麦为材料,系统地比较了六种单盐胁迫对紫花苜蓿(Medicago sativa)种子萌发的影响;复合盐碱对紫花苜蓿种子萌发以及对幼苗的影响;燕麦(Avena sative)苗对三种单盐NaCl、NaHCO_3和Na_2CO_3胁迫的适应机制的研究;同时比较了盐胁迫和碱胁迫对燕麦苗的生长、生理生化的影响。其研究主要结果和结论如下:
     (1)在六种单盐胁迫下,其中CaCl_2在低浓度25-75mmolL-1之间时,紫花苜蓿种子的萌发率、发芽势、发芽指数、活力指数均高于对照组,说明低浓度的CaCl_2能促进种子萌发;当浓度高于100mmolL-1时,对种子萌发有抑制作用,其他五种盐各浓度对种子的萌发均有抑制作用。其中Na_2CO_3对种子萌发的影响非常明显,低浓度时就对种子萌发有明显的抑制作用,当浓度为50mmolL-1时,种子便不能萌发。当土壤的盐分超过植物的适应阈值,植物种子的萌发受抑制最终导致不能萌发。苜蓿种子萌发对六种盐分的耐受能力不同,其顺序是:MgCl_2>CaCl_2>NaCl>Na_2SO_4>NaHCO_3>Na_2CO_3;随着浓度的增加紫花苜蓿胚芽、胚根的生长在整体上都始终起着抑制作用;随盐浓度增加,六种盐胁迫下紫花苜蓿幼苗中脯氨酸积累量上升,并且差异明显。各种盐之间的异不明显。
     (2)用NaCl、Na_2SO_4两种中性盐和NaHCO_3、Na_2CO_3两种碱性盐以不同的摩尔比例混合,按照碱性盐比例逐渐增大的顺序共设置六个组,每个组又设置6个总盐浓度梯度,共模拟出36种盐度和碱度(pH值)各不相同的盐碱条件,对紫花苜蓿种子胁迫处理,测定种子萌发期的生物学指标和生理学指标的变化。结果表明,随着盐浓度的增大,发芽率、发芽势、幼苗长度下降且差异显著;膜透性增大、脯氨酸含量逐渐升高,可溶性糖含量降低;Na~+含量增加、K~+含量减少,Cl~-、SO_4~(2-)含量先增后减的变化趋势。盐和碱的交互作用明显,两者存在明显协同作用。并且紫花苜蓿对pH值的反应更敏感。
     (3)在实验室内模拟松嫩草地土壤的盐碱条件,以紫花苜蓿的幼苗为对象,研究复合盐碱胁迫下紫花苜蓿的适应性响应。根据东北地区盐碱土组成特点及盐分组成复杂多变的特点,本研究将NaCl、Na_2SO_4两种中性盐和NaHCO_3、Na_2CO_3两种碱性盐按照不同比例混合,按两种碱性盐比例的不同使pH递增共设A-F6个组;每组内又设置5个盐浓度梯度,复合盐碱胁迫处理液共覆盖了总盐度分别为24-120mmolL~(-1),pH值7.03-10.32范围的盐碱胁迫环境,共模拟出30种盐度和碱度(pH值)各不相同的盐碱条件。用相应浓度的复合盐碱分别胁迫处理苜蓿幼苗进行,之后测定胁迫后的紫花苜蓿幼苗的生态学指标和生理指标。研究表明:复合盐碱胁迫下紫花苜蓿幼苗的生态指标的响应存在一定规律性;紫花苜蓿幼苗的生理指标的响应存在规律性变化。在pH值小于8.30的情况下,幼苗能够全部存活;当pH值大于9.69时,幼苗全部死亡。盐浓度和pH值梯度以及二者间的交互作用对苜蓿幼苗地上、地下生物量和存活率均有极显著影响。
     (4)将三种盐NaCl、NaHCO_3和Na_2CO_3分为A、B、C三组,每个组内设置5个浓度梯度(24~(-1)44mmolL~(-1))。对燕麦幼苗进行胁迫处理,测定生长指标和生理学指标。探讨了NaCl、NaHCO_3和Na_2CO_3胁迫对其地上部分及地下部分生长和生理的影响。实验结果表明:三种盐胁迫下,生物量、分蘖数、体内含水量、叶绿素含量、K~+、Ca~(2+)均下降,下降幅度为Na_2CO_3>NaHCO_3>NaCl;Na~+、Na~+/K~+、SO_4~(2-)、脯氨酸含量、细胞膜透性均增大,增大幅度为Na_2CO_3>NaHCO_3>NaCl。NaCl胁迫下,茎叶中和根中组织液pH、有机酸无显著影响,Cl-增加;在NaHCO_3和Na_2CO_3胁迫下,有机酸增加显著;而地下部分根干重、含水量、K~+、Ca~(2+)、Cl~-、SO_4~(2-)下降幅度大于地上部分,Na~+、Na~+/K~+、脯氨酸含量、有机酸增加但幅度小于地上部分。同时高浓度NaHCO_3和Na_2CO_3胁迫下,而使根中pH、有机酸含量显著增加,可造成幼苗大量的死亡。从燕麦存活率看,燕麦对Na_2CO_3耐受极限为96mmolL~(-1);对NaHCO_3的耐受极限144mmolL~(-1);以上结果说明,NaHCO_3和Na_2CO_3胁迫对燕麦幼苗生长和生理产生了更大的影响,尤其是还破坏了根中组织液pH的稳定。燕麦幼苗为了抵御碱胁迫的危害,主要采取在体内大量积累有机酸、脯氨酸含量,改变地上地下离子的分布来适应盐碱环境。而NaCl胁迫在燕麦体内积累脯氨酸、Cl~-和SO_4~(2-)离子,燕麦对这三种盐生理响应机制和策略不同。
     (5)将两种中性盐(NaCl和Na_2SO_4)和两种碱性盐(NaHCO_3和Na_2CO_3)分别按摩尔质量比例2:1混合,以中性盐混合代表盐胁迫,以碱性盐混合代表碱胁迫,并分为A、B两组,每个组内设置6个总盐浓度梯度(48~(-1)68mmolL~(-1)),共模拟出12种盐度和碱度(pH值)各不相同的混合盐碱条件,对燕麦幼苗进行胁迫处理,探讨了盐胁迫和碱胁迫对燕麦生长和生理的影响。结果表明,碱胁迫下的生物量、体内含水量和叶绿素含量下降和细胞膜透性增加更大。盐胁迫对茎叶中和根中组织液pH无显著影响,但碱胁迫使根中组织液pH显著升高,高浓度碱胁迫可造成幼苗大量的死亡。碱胁迫下的Na~+、Na~+/K~+、SO_4~(2-)的含量增加和K~+、NO_3~-和H_2PO_4~-含量下降更大,而Ca~(2+)增加量是盐胁迫大于碱胁迫,盐胁迫下Cl-显著增加,碱胁迫下变化不大。碱胁迫下脯氨酸含量增加更大,而有机酸含量在碱胁迫下显著增加,盐胁迫下保持不变。以上结果说明,高pH的碱胁迫对燕麦幼苗生长和生理产生了更大的影响,尤其是还破坏了根中组织液pH的稳定。燕麦幼苗为了抵御碱胁迫的危害,主要采取了在体内大量积累有机酸、脯氨酸和SO_4~(2-)离子,而盐胁迫在体内积累的是脯氨酸、Cl~-和SO_4~(2-)离子,两者的生理响应机制和适应对策不同。
Salinization and alkalization of soil is one of the widespread and increasing environmental crisises. It also seriously restricts the development of agriculture and stockbreeding. It is widespread recognized that alkalization of the soil may be a more severe problem than salinization. Researching on the plant response to salt and alkali stresses is very important for improving crop and pasture production under such conditions. According to the present condition of salt-alkali soil, we used oat and alfalfa as the experimental materials and explored the effects of six type of separate salts on seed germination of alfalfa, effects of mix salt-alkaline stresses on biochemistry in seed germination of alfalfa and, effects of mixed salt-alkali stresses on seedlings of alfalfa, effects of salt stress or alkali stress on biochemistry in seedlings of oat, and response mechanism of oat under three types of salt, e.g. NaCl、NaHCO_3 and Na_2CO_3. The results listed as follows:
     (1) Effects of six types of salt stresses on germination of alfalfa: with the increasing salinity stress, when CaCl_2 concentration was between 25-75 mmolL~(-1), germination rate, germination vigor, germination index and vitality index, were all higher than that of the control, indicating that CaCl_2 can promote seed germination; but when CaCl_2 concentration was higher than 100 mmolL~(-1), it had a inhibiting role in germination, which was similar to all kinds of the concentration of the other five types of salt. It was obvious that Na_2CO_3 significantly inhibited germination vigor. Low concentration of Na_2CO_3 strongly restrained germination, especially at 50mmolL~(-1) salinity in which seed can not germinate. When salinity concentration in the soil was very high, and reached the impatience threshold of the seeds, they can not germinate again. The salt-tolerance of alfalfa seeds was different, i.e. MgCl_2>CaCl_2>NaCl >Na_2SO_4>NaHCO_3>Na_2CO_3. With the increasing concentration, alfalfa plumule,radicle growth were all restricted. At the same salinity stress, total biomass in alfalfa was influenced according to CaCl_2> NaCl> Na_2SO_4> Na_2CO_3. With the increasing salinity concentration, the proline contents in alfalfa seedling significantly increased in six types of salts but insignificantly under different salt type.
     (2) Effects of mixed salt-alkaline stresses on seed germination of alfalfa: 6 treatments were designed by two neutral salts (NaCl and Na_2SO_4) and two alkaline salts (NaHCO_3 and Na_2CO_3) in different molar ratio, and also based on the increasing alkalinity. Within each group, six concentrations were used. Total 36 mixed stress treatments (various salinity, alkalinity and pH) were set. Germination index were measured under the pH values of treatment solutions ranged from 7.03 to 10.68. The results showed that with the increasing salinity, germination rate, germination vigor and seedling length all decreased significantly. Membrane permeability and proline content increased, solute sugar content decreased; Na+ content increased, K+ content decreased, Cl-、SO_42- content firstly increased and then decreased. The interactions of salinity and alkalinity was obvious, had a seriously synergism role. In addition, Alfalfa was more sensitive to alkalinity.
     (3) Effects of mixed salt-alkaline stresses on seedlings of Alfalfa: According to the complicated salt composition of local soil in Northeast China, 6 treatments were designed by two neutral salts (NaCl and Na_2SO_4) and two alkaline salts (NaHCO_3 and Na_2CO_3) in different molar ratio, and also based on the increasing alkalinity. Within each group, 5 concentrations were used. Total 30 mixed stress treatments (various salinity, alkalinity and pH) were set. The pH values of treatment solutions ranged from 7.03 to 10.32 and salinity of treatment solutions ranged from 24 to120 mmolL~(-1). We used these treatment solutions to stress seedlings of alfalfa, and then measured the physiological and ecological indexes. The results showed that physiological index of alfalfa seedlings had regular changed in response to the mixed salt-alkaline stresses, all of the seedlings could survive when pH < 8.30, however, when pH>9.69, the seedlings were all died. Survival rate, belowground biomass and aboveground biomass of the seedlings were affected by salinity, pH and their interactions.
     (4) Responses to salt stress and alkali stresses of oat: two neutral salts (NaCl and Na_2SO_4) and two alkaline salts (NaHCO_3 and Na_2CO_3) were both mixed in a 2:1 molar ratio and used as A and B groups, respectively. Six total salt concentration gradients (48~(-1)68 mmolL~(-1)) were set in each group, which simulated 12 mixed salt conditions with different salinities and alkalinities (pH value). Stress treatments were carried out on oat seedlings and the effects of saline and alkaline stresses on the growth and physiology of oat seedlings were discussed. The results showed that biomass, moisture content and chlorophyll content decreased and cell membrane permeability significantly increased under alkaline stress. Saline stress did not have obvious effect on pH value in the tissue fluids from stem, leaves and root, but alkaline stress increased pH value in the tissue fluid of root, and high concentration alkaline stress caused mass mortality of seedlings. The contents of Na+, Na+/K+, SO_42- increased more and the contents of K+, NO3- and H2PO4- decreased more under alkaline stress than under salt stress; the increment of Ca2+ was greater under saline stress than that under alkaline stress; the Cl- content was increased obviously under saline stress but had little change under alkaline stress. The increment of proline was largely increased under alkaline stress, and the content of organic acid was remarkably increased under alkaline stress but kept the same under saline stress. The results indicate that high pH caused by alkaline stress created more harmful effects on growth and physiological changes of oat seedlings especially broke the pH stability in root tissue fluid. Physiological response mechanisms and adaptive strategy of oat seedlings under saline stress and alkaline stress were different, which mainly took the way of accumulating organic acid, proline and SO_42- under alkali stress but accumulating Cl-, proline and SO_42- under saline stress.
     (5) Responses of oat to three types of salt stress: NaCl、NaHCO_3 and Na_2CO_3 were applied as three groups (A, B and C), respectively. Every group included 5 salinity gradients (24~(-1)44 mmol L~(-1)). Oat seedling was treated and growth and physiological indexes were measured. We explored the effects of NaCl、NaHCO_3 and Na_2CO_3 stress on growth and physiological indexes in belowground and aboveground parts of the seedlings. The results suggested that under three types of saline stress, biomass , number of tiller, water content, chlorophyl content, K+ and Ca2+ all decreased, and the extent of the decrease was that Na_2CO_3>NaHCO_3>NaCl. Na+, Na+/K, SO_42-, proline content and membrane permeability all increased, their extent was Na_2CO_3>NaHCO_3>NaCl. Under NaCl stress, no changes were found in tissue fluid pH and organic acid in both shoot and root, Cl- content increased. Under NaHCO_3 and Na_2CO_3 stresses, organic acid increased significantly, and the extent of decrease in belowground biomass, water content, K+, Ca2+, Cl-, SO_42- were higher than aboveground parts. Na+, Na+/K+, proline and organic acid all increased, but the increasing extent was lower than aboveground parts. Meanwhile, high concentration of NaHCO_3 and Na_2CO_3 caused root pH and organic acid content increased significantly, resulting in lots of seedlings death. The survival rate of oat indicated that tolerance limit of oat was 96mmolL~(-1) under Na_2CO_3, 144mmolL~(-1) under NaHCO_3. We can summarize that NaHCO_3 and Na_2CO_3 stresses had a greater effect on growth and physiology of oat seedlings, especially interrupted the pH stability of root. In order to resist the harm effects of alkaline stress, oat accumulated lots of organic acids, proline, and changed the distribution proportion between aboveground and belowground parts to adapt to salt-alkali environment. Oat accumulated proline, Cl- and SO_42- under NaCl Response mechanism and adaptive strategy was different among the three salts for oat.
引文
[1] Munns R,Cramer G R,Ball M C.Interaetion.beween rising CO2,soilinity and Plant.Growth.In:Luo YMooney HA,eds.Carbon dioxide and environ mental stress[M].London:Aeademie Press,1999:139-167.
    [2]赵可夫,范海,宋杰,等.盐生植物利用与区域农业可持续发展[M].北京:气象出版社,2002.1-19.
    [3]李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):152-158.
    [4]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002.12,189-190.
    [5]石德成,殷立娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    [6]俞仁培.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):l58-159.
    [7] L?uchli A,Lüttge U.Salinity: Environment-Plants-Molecules[M]. Boston: Boston Kluwer Academic Publishers, 2002, 21-23.
    [8] Tanji K K.Agricultural salinity assessment and management[M].New York:American Society of Civil Engineers,1990,11-12.
    [9] Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicol Environ Saf,2005,60:324-349.
    [10]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005.121-124.
    [11]阎秀峰,孙国荣.星星草生理生态学研究[M].北京:科学出版社,2000.156-158.
    [12]卢静军,李强,多立安.盐胁迫对金牌美达丽和猎狗种子萌发的研究[J].植物研究,2002,22(3):328-332.
    [13]王征宏,杨起,张亚冰.盐胁迫下紫花苜蓿种子的萌发特性[J].河南科技大学学报(自然科学版),2006,27(1):67-69.
    [14]李昀,沈禹颖,阎顺国.NaCl胁迫下5种牧草种子萌发的比较研究[J].草业科学,1997,14(2):50-53.
    [15]陈国雄.盐胁迫对西葫芦和黄瓜种子萌发影响的对比研究[J].中国沙漠,1996,16(3):307-310.
    [16] Kazuo Tobe,Li X M,Kenji Omasa.Seed Germination and Radicle Growth of a Halophyte,Kalidium caspicum(Chenopodiaceae)[J].Annals of Botany,2000,85:391-396.
    [17] A′lvarez-Rogel J,Alcaraz F,Ortiz R. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of southeast Spain[J].Wetlands,2000,20:357-372.
    [18] A lvarez-Rogel J,Mart?′nez-Sa′nchez J J, Carrasco L,et al. Vegetal bioindicators for monitoring hydrological and saline gradients in a coastal dune salt marsh of southeast Spain:a conceptual model[J].Wetlands,2006,26:703-717.
    [19] Ungar I A.Ecophysiology of Vascular Halophytes[M].Boca Raton F L:CRC Press,1991.
    [20] Stumpf D K,Prisco J T,Weeks J R,et al.Salinity and Salicornia bigelovii Torr.Seedling establishment.Water relations[J].Journal of Experimental Botany,1986,37:160-169.
    [21] Lombardi T, Fochetti T,Onnis A.Germination of Briza maxima L.seeds:effects of temperature,light,salinity and seed harvesting time[J].Seed Science and Technology,1998,26:463-470.
    [22] William J K,Irwin A,Ungar,et al.Effect of Salinity on Germination and Seedling Growth of two Atriplex species(Chenopodiaceae)[J].Annals of Botany,1998,82:167-175.
    [23] Tobe K,Zhang L,Omasa K.Effects of NaCl on seed germination of five nonhalophytic species from a Chinese desert environment [J].Seed Science and Technology(in press),1999,235-241.
    [24] Mar?′a Jose′Vicente,Encarnacio′n Conesa,Jose′A′lvarez-Rogel,et al.Effects of various salts on the germination of three perennial salt marsh species[J].Aquatic Botany,2007,87:167-170.
    [25]石德成,殷立娟.NaCl、Na2CO3胁迫下星星草根际K+、Na +、Ca2+的生理行为[J].应用环境生物学报,1997,3(2):112-118.
    [26]谈健康,安树青,王铮锋,等.NaCl、Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,1998,15:82-86.
    [27]寇贺,曹敏建,那桂秋.Na2CO3和NaCl对大豆种子萌发胁迫效应的比较研究[J].种子,2007,26(12):27-31.
    [28]崔玮,张芬琴,李玉兰,等.中性盐和碱性盐胁迫对黄瓜种子萌发的影响[J].种子,2006,25(4):66-69.
    [29]沈禹颖,王锁民,陈亚,等.盐胁迫对牧草种子萌发及其恢复的影响[J].草业学报,1999,8:54-60.
    [30] Ashraf M.Salinity and Water Stress-Improving Crop Efficiency[M].Springer Science+Business Media,2006,19-23.
    [31] Rehman S.The effect of sodium chloride on germination and the potassium and calcium contents of Acacia seeds[J].Seed Sci Technol,1996,25:45–57.
    [32] Ungar I A.Effect of salinity on seed germination,growth and ion accumulation of Atriplex patula (Chenopodiaceae)[J].Am J Bot,1996,83:604–607.
    [33] Lovato M B,et al.Germinationin Stylosanthes humilis population in the presence of NaCl[J].Aust J Bot, 1994,42:717–723.
    [34] Bewley J D,Black M.Physiology and Biochemistry of seeds in relation to Germination.Vol.2: viability,Dormancy and Environmental Control.Springer-Verlag,1982,New York.
    [35] Boorman L A.Some aspects of reproduction biology of Limonium vulgare Mill.and LImontiumHumile Mill.Ann.Bot,1968,32:803-824.
    [36] William J.Katembe,Irwina Ungar,John P. Mitchell.Effect of salinity on Germination and seedling growth of two Atriplex species(Chenopodiaceae).Ammals of Botany.1988,82:167-175.
    [37] Ungar I A.Halophyte seed germination[M].Botanical Re iew,1978,44:233-263.
    [38] Bernstein N,Silk W K,Lauchli A. Growth and development of sorghum leaves under condition of NaC1 stress[J].Plant,1993,19(1):433-439.
    [39]殷立娟,祝玲.野大麦苗期抗盐碱性的研究[J].草地学报,1991,1(1):142-148.
    [40]盛彦敏,石德成,肖洪兴,等.不同程度中碱性复合盐对向日葵生长的影响[J].东北师大学报(自然科学版),1999,(4):65-69.
    [41]李玉明,石德成,李毅丹,等.混合盐碱胁迫对高粱幼苗的影响[J].杂粮作物,2002,22(1):41-45.
    [42] Lovato M B,J P de Lemos Filho,P S Martins·Growth·Responses of stylosanthes humilis (Fabaceae) populations to saline stress[J].Environmental and Experimental Botany,1999,(41):145-153.
    [43] Katerji N,J WVan Hoorn·Salinity effect on crop development and yield,analysis of salt toleranceaccording to several classification methods[J].Agricultural water management,2003,(62):37-66.
    [44] Munns RD,PSchachtman,AGCondon·The significance of a two -phase growth response to salinity inwheat and barley[J].Aus-tralian Journal of Plant Physiolog,1995,(22):561-569.
    [45]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D].[硕士学位论文]东北师范大学生命科学学院,2006,4-10.
    [46]潘瑞炽主编.植物生理学[M].第五版,北京:高等教育出版社,2004.284-300.
    [47] Allakhverdiev S I,Nishiyama Y,Miyairi S,et al.Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis[J].Plant Physiol,2002,130,1443-1453.
    [48] Hayashi H A,Mustardy L,Deshnium P,et al. Transformation of Arabidopsis thaliana with the cod A gene for choline oxidase;accumulation of glycine betaine and enhanced tolerance to salt and cold stress[J].Plant J,1997,133-142.
    [49] Chen W,Zou D,Guo W et al.Yang, C.Effects of salt stress on growth, photosynthesis and solute accumulation in three poplar cultivars [J].Photosynthetica,2009,47(3):415-421.
    [50] Rmunns.Comparative Physiology of Salt and Water Stress[J].Plant Cell Environ,2002,25:239–250.
    [51] AliDinar H M,Ebert G,Ludders P.Growth,chlorophyll content,photosynthesis and water relations inguava(Psidium guajava L.) under salinity and different nitrogen supply[J].Garten-bauwissenschaft,1999,64:54–59.
    [52] Alamgir A N M,Ali M Y.Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPAase activity of rice (Oryza sativa L.)[J]. Bangladesh J Bot,1999,28:145–149.
    [53] Allakhverdiev S I,Sakamoto A, Nishiyama Y,et al.Inactivation of photosystems I and II in response to osmotic stress in Synechococcus,contribution of water channels.Plant Physiol,2000,122:1201–1208.
    [54]赵可夫.植物对盐渍逆境的适应[J].生物学通报,2002,37(6):7-10.
    [55] Cushman J C,Meyer G,Michalowski C B,et al.Salt stress leads to differential expression of two isogenes of PEP Case during CAM induction in the common Ice plant[J].Plant Cell,1989,1:715-725.
    [56] Vance C P.The molecular biology of N metabolism[J].In:Dennis DT,Turpin DH,Lefebrre DD,Layzell DB,editors.Plant Metabolism.Ed 2.London:Longman Scientific,1997,449-477.
    [57]王洪春.植物抗盐生理[J].植物生理学通讯,1981,10(8):46-49.
    [58]倪秀珍.抗盐植物研究进展[J].中国科技核心期刊,2004,23(4):58-62.
    [59]许祥明.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [60] Munns R.Comparative physiology of salt and water stress.Plant cell Environ,2002,25:239-250.
    [61]陈万超.三个杨树品种耐盐性和耐盐机制的比较研究[D].东北师范大学,2007,1-10.
    [62]方孝东,林栖凤,屈良鹄.植物耐盐机制及植物耐盐基因工程[J].植物科学进展,2000,3:155-165.
    [63] Sreenivasulu N,Ramanjulu S,Ramachandra-Kini K,et al.Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance[J].Plant Sci,1999,141:1-9.
    [64]陈一舞,邵桂花,常汝镇.盐胁迫对大豆幼苗子叶各细胞器超氧化物歧化酶(SOD)的影响[J].作物学报,1997,23(2):214-219.
    [65] Drolet G.Radical scavenging properties of polyamine in tomato ovaries[J].Plant Physiol,1986,25:367-371.
    [66] Wei Tang,Ronald J.Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine[J].Plant Grow Regul,2005,46(1):31-43.
    [67] Kohler J,Hernandez J A,Caravaca F,et al.Induction of antioxidant enzymes is involved in the greater effectiveness of a PGRR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J/OL].http://www.elsevier.com/locate/envexpbot,2008.
    [68] Gossett D R,Millhollon E P,Lucas M C. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton[J].Crop Sci,1994,34:706-714.
    [69] Hermandez J A,Olmos E,Corpas F J,et al.Salt-induced oxidative stress in chloroplasts of pea plants[J].Plant Sci,1995,105:151-167.
    [70] Hermandez J A, Jimenez A,Mullineaux P,et al.Tolerance of pea plants(Pisum sativum) to long-term salt stress is associated with induction of antioxidant defense[J].Plant Cell Environ,2000,23:853-862.
    [71] Sehmer L,Alaoui-Sosse B,Dizengremet P.Effect of salt stress on growth and on the detoxyfying pathway of pedunculate oak seedlings (Quercus robur L.)[J].J Plant Physiol,1995,147:144-154.
    [72] Kennedy B F,De Fillippis L F.Physiological and oxidative response to NaCl of the salt tolerant Grevillea ilicifolia and the salt sensitive Grevilles arenaria[J].J Plant Phy siol,1999,155:746-754.
    [73] Sreenivasulu N,Grimm B,Wobus U,et al. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setaria itallica)[J].Physiol Plant, 2000,109:435-442.
    [74] Benavides M P,Marconi P L,Gallego S M,et al.Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum[J].Aust J Plant Physiol,2000,27:273-278.
    [75] Lee D H,Kim Y S,Lee C B.The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.)[J].J Plant Physiol,2001,158:737-745.
    [76] Mittova V,Tal M,Volokita M,et al.Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species[J].Physiol Plant,2002,115:393-400.
    [77] Mittova V,Tal M,Volokita M,et al.Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii[J].Plant Cell Environ,2003,26:845-856.
    [78] Bowler C,Slooten L,Vandenbranden S,et al.Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J].EMBO J,1991,10:1723-1732.
    [79] Foyer C H,Descourvieres P,Kunert K T.Protection against oxygen radicals:an important defense mechanism studied in transgenic plants[J].Plant Cell Environ,1994,17:507-523.
    [80] Foyer C H,Souriau N,Perret S,et al.Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to phot oinhibition in poplar stress[J].Plant Physiol,1995,109:1047-1057.
    [81] Allen R D.Dissection of oxidative stress tolerance using transgenic plants[J].Plant Physiol,1995,107:1049-1054.
    [82] Boston RS,Viitanen PV,Vierling E.Molecular chaperoners and protein folding in plants[J]. Plant Mol Biol,1996,32(1-2):191-222.
    [83] Parida A K,Das A B.Salt tolerance and salinity effects on plants:a review[J].Ecotoxicol Environ Saf,2005,60:324-349.
    [84]卡恩.种子萌发的生理生化[M].北京:农业出版社,1990,345-347.
    [85] Rehman S,Harris P J C,Bourne W F,et al.The effect of sodium chloride on germination and the potassium and calcium contents of Acacia seeds[J].Seed Science Technology,1996,25:45-57.
    [86] Katembe W J,Ungar I A,Mitchell J P.Effect of salinity on germination and seedling growth of two Atriplex species (Chenopodiaceae)[J].Annals of Botany,1998,82:167-175.
    [87] Pujol J A,Calvo J F,Ram?′rez-D?′az L.Recovery of germination in different osmotic conditions by four halophytes in Southeastern Spain[J].Annals of Botany,2000,85:279-286.
    [88] Tobe K,Li X M,Omasa K.Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae)[J].Seed Science Research,2004,14:345-353.
    [89] Uhvits R . Effect of osmotic pressure on water absorption and germination of alfalfa seeds[J].American Journal of Botany,1946,33:278-284.
    [90]晋丽娟,张文辉,王涛.NaC1胁迫对花棒种子萌发的影响[J].干旱地区农业研究,2007,3(25):150-153.
    [91] Vandna Raia,Naveen Kumar Sharmab,Ashwani K.Ion accumulation and tissue hydration Growth and cellular ion content of a salt-sensitive symbiotic system Azolla pinnata Anabaena azollae under NaCl stress[J].Journal of Plant Physiology,2006,163:937-944.
    [92] Hulusi Koca,Melike Bor,Filiz O’zdemir,et al.The effect of salt stress on lipid peroxidation,antioxidative enzymes and proline content of sesame cultivars[J].Environmental and Experimental Botany,2007,60:344-351.
    [93]闫先喜,马小杰,刑树平,等.盐胁迫对大麦种子细胞膜透性的影响[J].植物学报,1995,12(增刊):53-54.
    [94]阎顺国,沈禹颖,任继周,等.盐分对碱茅种子发芽影响的机制[J].草地学报,1994,2(2):13-39.
    [95]王果平,康喜亮,陶锦,等.不同盐浓度对芨芨草种子萌发过程中几种生理指标的影响[J].干旱地区农业研究,2006,2(24):139-142.
    [96] Waisel Y,Ovadia S.Biological ora of Israel[J].Suaeda monica Forsk. Israel Journal of Botany,1972,21:42-52.
    [97]曾洪学,王俊.盐害生理与植物抗盐性[J].生物学通报,2005,9(40):1-3.
    [98]石德成,盛艳敏,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,1998,44:537-540.
    [99]石德成,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002,28(4):461-467.
    [100]石德成,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,1998,40(12):1136-1142.
    [101]李清芳,辛天蓉,马成仓,等.pH值对小麦种子萌发和幼苗生长代谢的影响[J].安徽农业科学,2003,31(2):185-187.
    [102]孙菲菲,赵彦坤,张文胜,等.高pH对拟南芥萌发和主根伸长的影响[J].中国农学通报,2007,7(23):285-289.
    [103]颜宏,赵伟,秦峰梅,等.盐碱胁迫对碱地肤、地肤种子萌发以及幼苗生长的影响[J].东北师大学报(自然科学版),2006,38(4):117-123.
    [104]齐永青,肖凯,李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展[J].2003,26:25-28.
    [105] Delauney A J ,Verma P S.Proline biosynthesis and osmoregulation in plants[J].Plant J,1993,4 (2):215-223.
    [106] Gao Z w, Zhu H,Mu C S,et al.Germination responses of Alfalfa (Medicago sativa L.)seeds to various salt–alkaline mixed stress[J].African Journal of Agricultural Research, 2011,6(16):3793-3803.
    [107] Abhishek C M,Zeeshan G,Abrahama S M.Proline accumulation in Cylindrospermum[J].Environmental and Experimental Botany,2006,57:154-159.
    [108] Su J,Wu R.Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis[J].Plant Science,2004,166: 941-948.
    [109]陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报(自然科学版),2003,21(2):177-182.
    [110] Knight H.Calciumsignaling during abiotic stress in plants[J].Int Rev Cytol,2000,192:269–324.
    [111] Knight H,Trewavas A J,Knight M R,et al.Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J].Plant J,1997,12:1067–1078.
    [112] Petrusa L M,Winicol L.Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl[J].Plant Physiological Biochemistry,1997,35:303-310.
    [113]於丙军,章文华.NaCl对大麦幼苗根系蛋白质和游离氨基酸含量的影响[J].西北植物学报,1997,17(4):439-442.
    [114]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报,2001,18(5):587-596.
    [115] Munns R.Physiological process limiting plant growth in saline soils :some dogmas and hypotheses[J].Plant Cell Environment,1993,16:15-24.
    [116] Ott J C,Birks K,Johnson C.Regulation of the photosynthetic electron transport chain[J].Planta,1999,209:250-258.
    [117]梁新华,刘凤敏.NaCl和Na2CO3胁迫对甘草幼苗渗透调节物质含量的影响[J].农业科学研究,2006,27(2):96-98.
    [118]毛桂莲,许兴,杨涓.NaCl和Na2CO3对枸杞的胁迫效应[J].干旱地区农业研究,2004,22(2):100-104.
    [119]刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,2(14):18-20.
    [120]王艳树,李凤山,张玉霞,等.盐碱胁迫对蓖麻种子萌发的影响[J].安徽农业科学,2007,35(1):41-43.
    [121]冯立田,赵可夫.叶绿体对盐胁迫的某些生理适应机制[J].植物学通报,1998.15(增刊):62-67.
    [122]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    [123] Zhu J K.Regulation of ion homeostasis under salt stress[J].Current Opinion in Plant Biology,2003,6:441-445.
    [124]张福锁.植物营养生态生理学和遗传学[M].北京:中国科技出版社,1993.345-347.
    [125] Glenn E P,Watson M C,O’learyjwet,et al.Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte[J],Atriplex canescens.Plant Cell Environment,1992,5:711–718.
    [126] Michelet B,Boutry M.The plasma membrane H+-ATPase.A.highly regulated enzyme with multiplephysiological functions[J].Plant Physiology,1995,108:1-6.
    [127]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,14(增刊):25-30.
    [128]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998.752-769.
    [129] Pitman M G.Transpore across the root and shoot/root interaction[A] In:Salinity tolerance in plant-strategies for crop improvement [C].NewYork:John,Wiley and Sons,1984.
    [130] Pitman M G.Salinity Tolerance in Plant-strtegies for Crop Improvement[J].New York,1984:93-123.
    [131]陈少裕.膜脂过氧化与植物逆境胁迫[J].植物学通报,1989,6(4):211-217.
    [132] Munns R,Tester M.Mechanisms of salinity tolerance[J].Annu Rev Plant Biol,2008,59,651–681.
    [133]李长有.盐碱地四种主要致害盐分对虎尾草胁迫作用的混合效应与机[D].东北师范大学,2009,1-10.
    [134] Pardo J M,Cubero B,Leidi E O,et al.Alkali cation exchangers:roles in cellular homeostasis and stress tolerance[J].J Exp Bot,2006,57:1181–1199.
    [135] Tester M,Davenport R J.Na+ transport and Na+ tolerance in higher plants[J].Ann Bot.2003,91:503–527.
    [136] Kordan H A.Seed viability and germination: a multi-purpose experimental system[J].Biology Education,1992,26:247-251.
    [137] Hardegeree S P,Emmerich W E.Partitioning water potential and specific salt effect on seed germination of four grasses[J].Annals of Botamy,1990,66:587-595.
    [138] Leigh R A,Storey R.Intercellular compartmentation of ions in barley leaves in relation to potassium nutrition and salinity[J].J Exp Bot,1993,44:755–762.
    [139] Xiong L M, Schumaker K S,Zhu J K.Cell signaling during cold,drought,and salt stress[J]. Plant Cell,2002,14:165–183.
    [140] Ashraf M O,Leary J W.Does pattern of ion accumulation vary in alfalfa at different growth stages[J].J Plant Nutr,1994,17:1443-1461.
    [141] Knight H,Trewavas A J,Knight M R,et al.Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J].Plant J,1997,12:1067–1078.
    [142] Uozumi N,Kim E J,Rubio F,et al.The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae[J].Plant Physiol,2000,122:1249–1259.
    [143] Adams P,Thomas J C,Vernon D M,et al.Distinct cellular and organismic responses to salt stress[J].Plant Cell Physiol,1992,33:1215-1223.
    [144] Vance C P.The molecular biology of N metabolism[J].In:Dennis DT,Turpin DH,Lefebrre DD,Layzell DB,editors.Plant Metabolism.Ed 2.London:Longman Scientific,1997,449-477.
    [145] Reddy M P,Sanish S,Iyengar E R R.Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb.under saline conditions[J].Photosynthetica,1992,26:173-179.
    [146] Iyengar E R R,Reddy M P.Photosynthesis in highly salt-tolerant plants[M].In:Pesserkali,M.(Ed.),Handbook of photosynthesis.Marshal Dekar,Baten Rose,USA,1996,897-909.
    [147] Ashraf M,Athar H R,Harris P J C,et al.Some prospective strategies for improving crop salt tolerance[J].Adv Agron,2008,(97):45-110.
    [148]中华人民共和国农业部畜牧兽医司全国畜牧兽医总站主编.中国草地资源[M].北京:中国科学技术出版社,1996.335-341.
    [149]李建东.东北草地的退化及其治理[J].国土与自然资源研究.1995(3):34-38.
    [150] Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes[J].Annual Review of Plant Physiology,1980,31:149-190.
    [151] Dodd G L,Donovan L A.Water potential and effects on germination and seeding growth of two cold desert shrubs[J].American Journal of Botany,1999,86:1146-1153.
    [152] Chartzoulakis K S,Loupanak M H. Effects of NaCI salinity on germination, growth,gas exchanges and yield of greenhouse eggplant[J].Agriculture Water Management,1997,32:215-225.
    [153] Cuartero J,Fernandez-Munoz R.Tomato and salinity[J].Scientia Horticulturae,1999,78:83-125.
    [154] Ghoulam C,Fores K.Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.) [J].Seed Science Technology,2001,29:357-364.
    [155] Mishra A.Shitole R.Growth and yield of oat (Avena sativaL.) cv Kent under Na2SO4doninated saline soil[J].Geobios.1986,1:253-257.
    [156] Peng Y L,Gao Z W,Wang D L,et al.Eco-physiological Characteristics of Alfalfa Seedlings in Response to Variou Mixed Salt-alkaline Stresses Journal of Integrative Plant Biology [J].2008,50 (1):29–39.
    [157] Munns R.Comparative physiology of salt and water stress[J].Plant Cell and Environment,2002,25:239-250.
    [158]程建强,张和军,田翊.试论农业环境地质问题[J].农业环境与发展,2009,1,73-75.
    [159]张学雷,龚子同.人为诱导下中国的土壤退化问题[J].生态环境,2003,12(3):317-321.
    [160]李瑜.我国苜蓿产业发展状况及对策研究[J].科学信息,2007,32:635-636.
    [161]梁云媚,李燕..不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学,1998,15(6):21-25.
    [162] Paul M H,Ray A B.Plant cellular and molecular responses to highsalinity[J].Annual Review of Plant Physiology and Plant Molecular Biology,2000,51:463-499.
    [163] Serrano R,Mulet J M,Rios G,et al,A glimpse of the mechanis ms of ion homeostasis is during salt stress[J].Journal of Exper imental Botany,1999,50:1023-1036.
    [164] Carmina G,Ana M R,Carmen M B,etal.The yeast HAL1 gene improves salt to lerance of transgenic tomato[J].Plant Physiology,2000,123:393-402.
    [165]张志良,瞿伟.植物生理学实验指导[M].高等教育出版社.2004.3(3):258-259.
    [166] Bayuelo-Jiménez J S,Craig R,Lynch J P.Salinity tolerance ofPhaseolusspecies during germination and early seedlinggrowth[J].Crop Science,2002,42:1584-1594.
    [167] Alshammary S F,Qian Y L,Wallner S J.Growth response of four turfgrass species to salinity[J].Agricultural water management,2004,66:97-111.
    [168]杨春武.复杂盐碱条件对星星草种子萌发的影响[J].草业学报,2006,15(5):45-51.
    [169]王萍.碳酸钠胁迫下羊草幼苗的生理效应及外源脱落酸的缓解效应[J].草业学报,1998,7(1):24-28.
    [170]石德成,盛艳敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002,28(4):461-467.
    [171] TanjiK K.Agricultural salinity assessment and management[M].Society of Civil Engineers,New York.1990,3-5.
    [172] Shi D C,Wang D L.Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense(Trin.) Kitag[J].Plant Soil,2005,271:15-26.
    [173] Yang C W,Wang P,Li C Y,et al.Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetica,2008,46 (1):107-114.
    [174]孙国荣,阎秀峰.Na2CO3胁迫对星星草幼苗游离氨基酸含量的影响[J].植物研究,2000,20(1):71-72.
    [175]孙国荣,陈月艳,阎秀峰.盐碱胁迫下星星草种子萌发过程中有机物、呼吸作用及其几种酶活性的变化[J].植物研究,1999,19(4):447-451.
    [176] Yang C W,Chong J N,Li C Y,et al.Osomtic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions[J].Plant and Soil.2007,294:263-276.
    [177]孙宗玖,赵清,李培英.NaCl、Na2SO4胁迫对苜蓿种子发芽及幼苗生长的影响[J].中国草地,2003,6(3):69-72.
    [178]石德成,殷立娟.Na2CO3胁迫下羊草苗的胁变反应及其数学分析[J].植物学报,1992,34(5):386-393.
    [179]颜宏,赵伟,盛艳敏,等.碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501.
    [180]杨青川编著.苜蓿生产与管理指南[M].北京:中国林业出版社,2001.9,28-29.
    [181]耿华珠,李聪,李茂森.苜蓿耐盐性鉴定初报[J].中国草地,1995,6(3):69-72.
    [182] Shi D C,Zhao K F.Effects of sodium chloride and carbonate on growth of Puccinellia and on present state of mineral elements in nutrient solution[J].Acta Pratacult Sin,1997,6(2):51-61.
    [183]王波,宋凤斌.燕麦对盐碱胁迫的反应和适应性[J].生态环境,2006,15(3):625-629.
    [184] Michael R,Moynihan,et al.Chilling induced heat ev-dution in plants[J].PlantsPhysiol,1995,108:995-999.
    [185] Hansen E H,Munnes D N.Effect of CaSO4 and NaCl on mineral con-tent of leucaena leucocephala[J].plant and soil,1988,107:101-105.
    [186]孙大业.植物细胞信号转导研究进展[J].植物生理学通讯,1996,32(2):81-97.
    [187] Macke A J,Ungar I A,The effects of salinity on germination and growth of Puccine-Ilia nuttalliana[J].Canadian Journal of Botany,1991,49:515-519.
    [188] Levitt J.Responses of plants to environmental stress[M].New York:Academic Press,1980,365-434.
    [189] Salman Gulzar,Ajmal Khan M.Seed germination of a Halophy-tiegrass Aeluropus lagopoides[J].Annul of Botany,2001,87:319-324.
    [190]李潮流,周湖平,张国芳,等.盐胁迫对多叶型苜蓿种子萌发的影响[J].中国草地,2004,26(2):21-25.
    [191]梁云媚,多立安,李燕,等.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学,1998,15(6):21-25.
    [192]李海燕,丁雪梅,杨允菲,等.盐胁迫对三种盐生禾草种子萌发及其胚生长的影响[J].2004,12(1):45-50.
    [193]杨恒山,曹敏建,李春龙,等.苜蓿施用磷、钾肥效应的研究[J].草业科学,2003,20(11):19-22.
    [194]林栖凤.耐盐植物研究[M].北京:科学出版社,2004,8,337-338.
    [200]周婵,杨允菲.松嫩平原两个生态型羊草实验种群对盐碱胁迫的生理响应[J].应用生态学报,2003,14(11):1842-1846.
    [201]王玉祥,张博,王涛.盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响.草业科学[J].2009,26(3):53-56.
    [202]田福平,王锁民,郭正刚,等.紫花苜蓿脯氨酸含量的含水量、蛋株质量与抗旱性的相关性研究[J].草业科学,2004,21(1):3-6.
    [203] Zhao K F.Plant Physiology of salt Resistance[M].Beijing:China ScientechPress,1993,222-223.
    [204] Mishra,Shitole.Growth and yield of oat (Avena sativa L.) cv Kentunder Na2SO4 doninated saline soil[J].Geobios,1986,13:253-257.
    [205]王萍,殷立娟,李建东.NaCl胁迫下羊草幼苗的生理反应及外ABA的缓解效应[J].应用生态学报,1996,7(2):155-158.
    [206]王波,张金才,宋凤斌,等.燕麦对盐碱胁迫的生理相应[J].水土保持学报.2007,21(3):87-89.
    [207]王波,宋凤斌.盐碱胁迫对燕麦水势、干物质积累率以及K+、Na+选择性吸收的影响[J].农业系统科学与综合研究,2006,22(2):105-108.
    [208]王波,宋凤斌,任长忠,等.盐碱胁迫对燕麦叶绿体超微结构及一些生理指标的影响[J].吉林农业大学学报,2005,27(5):473-477.
    [209] Hansen E H,Munnes D N.Effect of CaSO4 and NaCl on mineral con-tent of leucaena leucocephala[J].plant soil,1988,107:101-105.
    [210] Mishra,Shitole.Growth and yield of oat (Avena sativa L.) cv Kentunder Na2SO4doninated saline soil[J].Geobios,1986,13:253-257.
    [211] Gabriel R,Kesselmeier J.Apoplastic solute concentrations of organic acids and mineral nutrients in the leaves of several Fagaceae[J].Plant Cell Physiol,1999,40:604-612.
    [212] Lopez-Bucio J,Nieto-Jacobo M F,Ramirez-Rodriguez V,et al.Organic acid metabolism in plants:from adaptive physiology to transgenic varieties for cultivation in extreme soils[J].Plant Sci.2000,160:1-13.
    [213] Yang C W,Shi DC,Wang D L,et al.Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetica,2008,46(1):107-114.
    [214] Khan M A,Ungar I A,Showalter A M.Effects of salinity on growth,ion content, and osmotic relations in Halopyrum mocoronatum (L.) Stapf[J].Plant Nutr,1999,2:191–204.
    [215] Yang C W,Shi D C,Wang D L.Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J].Plant GrowthRegu,2008,56(2):179-190.
    [216] Ge Y,Li J D.A preliminary study on the effects of halophytes on Salt accumulation and desalina-tion in the soil of Songnen Plain[J].Northeast China.Acta Prataculturae Sinica(in Chinese),1990,1(1):70-76.
    [217] Kawanabe S,Zhu T C.Degeneration and conservation of Aneurolepidium chinense grassland in Northern China[J].Jpn Grassland Sci,1991,37:91–99.
    [218] Tang C,Turner N C.The in?uence of alkalinity and water stress on the stomatal conductance,photosynthetic rate and growth of Lupinus angustifolius L.and Lupinus pilosus Murr[J].Aust J Exp Agric 1999,39:457–464.
    [219] Kerepesi I,Galiba G.Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J].Crop Sci,2000,40:482-487.
    [220] Li X,Liu J,Zhang Y,et al. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses[J]. Soil Sci Plant Nutr,2009,55:680-684.
    [221] Zhang J,Mu C.Effects of saline and alkaline stresses on the germination,growth,photosynthesis,ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius[J].Soil Sci Plant Nutr,2009,55(5):685-697.
    [222] Elsh M A,Shaddad M A K.Comparative ffect of sodium carbonate,sodium sulphate,and sodium chloride on the growth and related metabolic activities of pea plants[J].Plant Nutrition,1996,19(5):717-728.
    [223] Hussain,M K. and O U.Rehman, Breeding sunflower for salt tolerance: Association of shoot growth and mature plant traits for salt tolerance in cultivated sunflower (Helianthus annuus L.)[J].Helia,1995,18:69-76.
    [224] Zhao K F,Fan H.Adaptive physiology of Halophyte in salt habitit[M].Chinese Scinece Press,2005.71-72.
    [225] Mishra,Shitole.Growth and yield of oat (Avena sativa L.) cv Kentunder Na2SO4doninated saline soil[J].Geobios.1986,13:253-257.
    [226]李树华,许兴,惠红霞,等.土壤盐碱胁迫对春小麦K+、Na+选择性吸收的影响[J].西北植物学报,2002,22(3):587-594.
    [227] Ghoulam C,Foursy A,Fares K.Effects of salt stress on growth,inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J].Environ Exp Bot,2002,47:39-50.
    [228]谢得意,王惠萍,王付欣,等.盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花,2000,27(9):12-13.
    [229]夏丽华,郭继勋.磁处理种子对羊草生长及抗盐碱性的影响[J].草业科学,2001,10(1):58-63.
    [230] Cheeseman,J M.Mechanisims of salinity tolerance in plants[J].Plant Physiol,1998,87:547-550.
    [231] Munns R.Genes and salt tolerance: bringing them together[J].New Phytol,2005,167:645-663.
    [232] Da-Silva E C,Custodio-Nogueira R J M,De-Araujo F P,et al.Physiological response to salt stress in young umbu plants[J].Environ Exp Bot,2008,63:147-157.
    [233] Hajlaoui H,Elayeb N,Garrec J P,et al.Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties[J].Industr Crops Products,2010,31:122-130.
    [234] Li X Y,Liu J J, Zhang Y T,et al.Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses[J].Soil Sci Plant Nutri,2009,55(5):680-684.
    [235]张骁,宋纯鹏,王天仕.胞外钙信使[J].生物学杂志,1997(4):59-63.
    [236]卢静君,多立安,刘祥君.盐胁迫下两草种SOD和POD及脯氨酸动态研究[J].植物研究,2004,24(1):115-119.
    [237] Almansouri M,Kinet J M,Lutts S.Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum desf.)[J].Plant Soil,2001,231:243-254.
    [238] Dash M,Panda S K.Salt stress induced changes in growth and enzyme activities in germinating Phaseolus mungo seeds[J].Biology Plant,2001,44:587-589.
    [239] Chartzoulakis K S,Loupanak M H.Effects of NaCI salinity on germination, growth,gas exchanges and yield of greenhouse eggplant[J].Agriculture Water Management,1997,32:215-225.
    [240] Fortmeier R,Schubert S.Cell and Environment[J].Plant,1995,18:1041-1047.
    [241]许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387.
    [242]张美云,钱吉,钟扬,等.野生大豆若干耐盐生理指标的研究[J].复旦学报,2002,41(6):669-673.
    [243]王春裕.中国东北盐碱土[M].北京:科学出版社.2004,18-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700