用户名: 密码: 验证码:
生长调节剂对油菜氮素再利用的影响及其与氮素利用效率的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的有着传统种植优势的油料作物,油菜已经越来越受到大家的关注。随着高产优质新品种的不断涌现,养分利用效率低已成为限制油菜生产进一步发展的新瓶颈,尤其是油菜对氮素的需求量大,而利用率较低,直接制约着油菜产业的发展。因此,如何提高油菜氮素利用率已经成为整个植物营养学研究领域的热点。在植物的整个生长发育期间,不论是生长代谢还是形态建成方面,植物激素都起着重要的调节作用。但是,植物激素对油菜生长后期氮素再利用、进而对油菜氮效率的调节作用方面的研究目前报道较少。
     本试验采用两个油菜品种(分别用A和B表示),在常氮和氮胁迫两个供氮水平下,研究角果发育期涂抹不同生长调节剂(生长素IAA、细胞分裂素6-BA及脱落酸ABA)溶液于角果,对油菜生长后期氮素再利用和氮效率的影响及其影响机理,为揭示油菜氮效率的生理机制,探索提高油菜氮效率的可行性途径提供科学依据。
     1.油菜产量、产量构成因素及氮素生理效率的测定结果表明,三种生长调节剂均能不同程度地提高籽粒产量、氮素生理效率、单株角果数和每角果粒数,但对于千粒重没有产生什么影响。不同生长调节剂对以上各指标的影响不同,ABA主要对每角果粒数增效作用大,IAA和6-BA则主要对籽粒产量和单株角果数贡献较大。各生长调节剂对同一指标的影响因氮水平高低和品种不同而有所差异,以籽粒产量为基础的氮素生理效率为例,A品种在常氮条件下以ABA效应好,氮胁迫条件下以6-BA的效应最好;而B品种则均以IAA的效果最好。另外,常氮水平下的生物产量氮素生理效率及籽粒产量氮素生理效率低于氮胁迫水平。比较两个供氮水平的籽粒产量、产量构成因素及氮素生理效率,籽粒产量和单株角果数,常氮条件高于氮胁迫条件;氮素生理效率则常氮条件低于氮胁迫条件;千粒重和每角果粒数在两个氮水平之间没有差异。
     2.油菜生长后期氮素转运比例和转运量的测定结果表明,三种生长调节剂处理后,氮素向籽粒的转运比例和转运量增加,损失量减少。但不同生长调节剂的影响程度因供氮水平和品种不同而有所不同。从氮素转运再分配的增加效果来看,常氮条件下IAA对A品种的贡献大,ABA对B品种贡献大,这种优势同时也表现在较低的氮素损失量方面;氮胁迫条件下,A、B两品种均是以IAA的贡献大。比较两个供氮水平的氮素转运比例及转运量,无论是向籽粒还是向角果的转运,两个品种均表现为常氮条件下高于氮胁迫条件。比较两个品种的氮素转运比例及转运量,无论是向籽粒还是向角果的转运,均表现为A品种的转运比例及转运量略高于B品种,但差异不显著。
     3.油菜生长后期氮素转运相关酶活性的测定结果表明,三种生长调节剂都可不同程度地提高氮素转运相关酶活性。其中,对蛋白水解酶提高效应最好的是ABA;而IAA对谷氨酰胺合成酶活性和谷氨酸合成酶活性有相对好的提高效果;6-BA对酶的活性提高幅度不如前两种生长调节剂大。氮水平和品种对三种酶的活性的影响来看,总体上表现为常氮条件低于氮胁迫条件、品种A高于品种B的趋势。
     4.韧皮部汁液成分的测定结果表明,三种生长调节剂都可不同程度地增加韧皮部汁液中的L-谷氨酰胺含量、可溶性糖含量和游离氨基酸含量。IAA和ABA对L-谷氨酰胺含量的提高作用相对较大,6-BA对可溶性糖含量的提高作用相对大,三种生长调节剂对游离氨基酸含量的影响,因品种而异。氮水平和品种对韧皮部汁液成分的影响来看,L-谷氨酰胺含量为常氮条件高于氮胁迫条件、可溶性糖含量和游离氨基酸含量在两氮素水平间几乎没有差异;L-谷氨酰胺含量和可溶性糖含量表现为A品种略低于B品种,游离氨基酸含量在两个品种之间差异性不大。
     5.对油菜籽粒蛋白质含量和油分含量的测定结果表明,生长调节剂能增加油菜籽粒蛋白质含量及蛋白质产量,但对油分含量的影响较小,但因为生长调节剂增加了籽粒产量,因而能显著提高油分产量。从各生长调节剂对提高油分产量方面的贡献来看,A品种在常氮水平下以6-BA的贡献较大,氮胁迫条件下以ABA的贡献较大;而B品种在两种供氮水平下均以IAA的贡献较大。从氮水平和品种对籽粒蛋白质含量和油分含量的影响来看,蛋白质含量、蛋白质产量和油分产量表现为常氮条件高于氮胁迫条件,油分含量则反之;蛋白质含量、蛋白质产量和油分产量A品种均高于B品种,油分含量则在两个品种之间没有差异。
Oilseed Rape, as a significant oil crop with planting advantage, has aroused widespread concern increasingly. With the new oilseed rape variety springing up possessing high yield and high quality, low nutrient utilization efficiency has become a new bottleneck, which constrain the further development of oilseed rape production. Especially because of high nitrogen (N) demand and low utilization rate, the development of rape career are restricted. As a result, how to raise the N fertilizer efficiency has become a central issue in plant nutrition research area. In the whole plant growth and development period, phytohormones play a critical regulatory role in the process of physiological metabolism and morphogenesis. However, effect of phytohormones on N reutilization and N efficiency regulation were few reported in recently.
     The experiment was conducted by daubing solutions of different growth regulators such as auxin(IAA), cytokinin(6-BA) and abscisic acid(ABA) to rape pod with two rapeseed varieties(A and B) under normal and deficient N conditions. The effect of N reutilization and efficiency during later stages of rape and corresponding mechanisms were studied, aiming at revealing physiological mechanisms of N utilization efficiency in rape, and providing a scientific basis for improving N utilization efficiency in rape.
     The results of the yield, yield components and nitrogen physiological efficiency indicated that the growth regulators significantly increased the rapeseed yield, N physiological efficiency, single pod number and grain number per pod, but had little effect on weight of thousand seeds. Different growth regulators had different influences on above indexes. ABA mainly impacted on grain number per pod, while IAA and6-BA on the grain yield and plant pod number. The effect of each growth regulator on single index differed in rape variety difference and different N treatments. IAA exhibited optimized effect on nitrogen physiological efficiency in rape variety A under normal N condition, while6-BA had a good effect under N deficient condition. As to rape variety B, IAA exhibited best impact under normal and deficient N conditions. In addition, nitrogen physiological efficiency of biomass and grain yield in normal N condition was lower than that in N deficient condition. Comparing with the grain yield, yield components and N physiological efficiency of two N levels, we found that grain yield and plant pod number in normal N condition were higher than those in N deficiency, nitrogen physiological efficiency in normal N condition was lower than that in deficient N condition, and there were little difference in weight of1000-grain weight and grain number per pod at two N levels.
     The results of nitrogen transport ratio and transport volume showed that three kinds of growth regulators could increase the nitrogen transport ratio and transport volume to grain, and reduce the losses. But the effect of different growth regulators on them differed in applied N levels and different varieties. IAA could pose greater contribution to nitrogen translocation and redistribution in variety A, and ABA in variety B. This advantage, meanwhile, also exhibited in the aspect of low N loss. IAA had a greater contribution to two rape varieties under N stress. On the normal N application condition, the amount of nitrogen redistribution and its proportion toward seeds and siliques was larger than the results of N stress condition. And the breed A are higher than breed B in two N levels, but the difference was not significant.
     The activity of proteoltic enzyme (PE) and the glutamine synthetase (GS) in blades and the activity of glutamate z-oxoghitarate aminotransferase (GOGAT) in seeds were determined during the later growing period. The results suggested that three kinds of plant growth regulators, to some extent, could improve the activity of enzyme related to N transport. ABA could improve the activity of PE, and IAA is effective on the active of GS and GOGAT. Compared with IAA and ABA, the percentage of increasing activity by6-BA was lower. In general, the enzyme activity in normal N condition is lower than that under N stress condition, and the enzyme activity in breed A is higher than that in breed B.
     The contents of L-glutamine, free amino acid and soluble sugar in phloem juice were measured. The results showed that phytohormones could increase the contents of L-glutamine, soluble sugar and free amino acid to varying degrees. IAA and ABA are more beneficial in L-glutamine content, while6-BA is useful to soluble sugar. To the free amino acid content, the influence is different from varieties. Different levels of N and varieties had different effects on the content of phloem juice. The content of L-glutamine showed that the normal N application condition was better for its improvement than that under N stress condition, and the content in breed A was lower than that in breed B. The content of soluble sugar in breed A is slightly lower than that in breed B, but few differences between the two N levels. The free amino acid content in two N levels and two varieties are barely different.
     The determination of rapeseed oil and protein indicated that growth regulators could increase the grain protein content and protein content of rapeseed, but little effect in the oil content. However, because growth regulators increased the grain yield, the oil yield got significantly improved. The growing contribution of regulators in oil production improvement are varied. For breed A, on the normal N application condition,6-BA is better. However, ABA was more useful under N stress condition. For breed B, IAA is more effective in two N levels. The influences of N levels and rape varieties on grain protein and oil content were analysed. The protein content, protein yield and oil yield showed that normal N condition is better for its improvement than N stress, but oil contein is the opposite results. Breed A is higher than breed B in protein content, protein yield and oil yield, but the oil content is no difference between two varieties.
引文
[1]王汉中,我国油菜产量形势分析及产业发展对策[J].中国油料作物学报,2007,29(1):101-105.
    [2]官春云.改变冬油菜栽培方式,提高和发展油菜生产[J].中国油料作物学报,2006,28(1):83-85.
    [3]孙克刚,王亚莉,鹿智江,等.油菜氮、磷、钾元素的需肥规律和施肥研究[J].土壤肥料,2002(4):35-37.
    [4]Rosolem C A, Kato S M, Machado J R. Nitrogen redistribution to sorghur grins as afected by plant competition.Plant and Soil,1993,155-156; 199-202.
    [5]Barbottin A, Lecomte C, Bouchard C..Nitrogen remobilization during grain filling in wheat genotypic and environmental effets.Crop Science,2005,45:1141-1150.
    [6]刁操铨.作物栽培学各论[M].北京:中国农业出版社,1994:73,116,328.
    [7]刘后利.实用油菜栽培学[M].上海:上海科学技术出版社,1987:235-251.
    [8]阮宏华,姜志林.城郊公路两傩主要森林类型铅古量及分布规律[J].应用生态学报,1999,10(9):362--364.
    [9]薛鲼亮,刘红霞,谢映平.城市空气中的铅在国槐树体内的积累[J],中国环境科学,2000.20(6);536-539.
    [10]Schjoerring J K, Bock J G H, Gammelwind L H, et al.Nitrogen incorporation and remobilization in differentshoot components of field grown winter oilseed rape(Brassica napus L.)as affected by rate of nitrogen application and irrigation[J]. Plant Soil,1995,177:255-264.
    [11]Wiesler F, Behrens T, Horst W J. The role of nitrogen efficient cuhivars in sustainable agriculture[J]. The Scientific World Journal,2001,1(2):61-69.
    [12]Vose P B. Effects of genetic factors on nutritional requirements of plants[M]. Vose P B, Blixt S G, eds. Crop Breeding. A Comtemporary Basis.Oxford, Pergamon Press,1984:67-114.
    [13]Clark R B, Duncan R R. Improvement of plant mineral nutrition through breeding[J]. Field Crop Res,1991,27:219-240.
    [14]宋海星,刘强,荣湘民,等.不同品种油菜氮效率差异及其成因分析[J].水土保持学报,2007,21(5):159-162.
    [15]刘强,宋海星,荣湘民,等.不同品种油菜氮效率差异及其生理基础研究[J].植物营养与肥料学报,2008,14(1):113-119.
    [16]彭建伟,刘强,荣湘民,等.不同配方植物生长调节剂对水稻氮代谢的影响[J].湖南农业大学学报(自然科学版),2005,31(4):353-356.
    [17]于方明,刘可慧,荣湘民.生长调节剂对春玉米氮素积累、转运及籽粒蛋白质含量的影响[J].生态环境,2007,16(4):1257-1260.
    [18]Zhang M C, He Z P, Tian X L, et al.Hormonal regulation of plant growth regulator BR and SHK-6 on soybean biomass and nitrogenase activity[J]. Soybean Science,2004,23 (2):96-100.
    [19]Papadopoulos L. Nitrogen fertigation of trickle-irrigated potato. Fertilizer Research,1988,16: 157-167.
    [20]Zhou J B,Xi J G,Chen Z J,et al.Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation. A soil column method.Pedosphere,2006,16(2):245-252.
    [21]Singandhupe R B, Rao G N, Patil N G,et al.Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop(Lycopersicon esculentumL.). European Journal of Agronomy, 2003,19:327-340.
    [22]Silber A, Xu G, Levkovitch L,et al.High fertigation frequency:The effects on uptake of nutrients,water and plant growth.Plant and Soil,2003,253:467-477.
    [23]叶利庭,宋文静,吕华军.不同氮效率水稻生育后期氮素积累转运特征[J].土壤学报,2010,47(2):303-306.
    [24]王巧兰,吴礼树,赵竹青,等.氮水平对水稻植株氮素损失的影响[J],植物营养与肥料学报2010,16(1):14-19.
    [25]苗文芳,陈素英,邵立威.不同灌溉处理对夏玉米氮素吸收及转移的影响[J].中国生态农业学报,2011,19,(2):293-296.
    [26]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报,2008,34(9):1598-1607.
    [27]米国华,刘建安,张福锁.玉米杂交种氮效率的构成因素分析[J].中国农业大学学报,1998,3(增刊):97-104.
    [28]Mohammad M J, Zuraiqi S, Quasmeh W,et al.Yield response and nitrogen utilization efficiency by drip-irrigated potato.Nutrient Cycling in Agroecosystems,1999,54:243-249.
    [29]Haynes R J. Principles of fertilizer use for trickle irrigated crops. Fertilizer Research,1985,6: 235-255.
    [30]Papadopoulos L. Nitrogen fertigation of trickle-irrigated potato. Fertilizer Research,1988,16: 157-167.
    [31]Zhou J B,Xi J G,Chen Z J,et al.Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation:A soil column method.Pedosphere,2006,16(2):245-252.
    [32]Singandhupe R B, Rao G N, Patil N G, et al.Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop(Lycopersicon esculentumL.). European Journal of Agronomy, 2003,19:327-340.
    [33]Silber A, Xu G, Levkovitch I,et al.High fertigation frequency:The effects on uptake of nutrients,water and plant growth.Plant and Soil,2003,253:467-477.
    [34]Thorburn P J,Dart I K,Biggs IM,et al.The fate of nitrogen appliedto sugarcane by trickle irrigation. Irrigation Science,2003,22:201-209.
    [35]Zhao L,Hou Z A,Wei C Z,et al.Effect of nitrogen and phosphate fertilizer on cotton under mulch drip irrigation system(In Chinese).Chinese Journal of Soil Science,2004,35(3):307-310.
    [36]苑博华,廖祥儒,郑晓洁.吲哚乙酸在植物细胞中的代谢及其作用[J].生物学通报,2005(4):256-261.
    [37]Brennerm L, Macdansld. Auxin perception and signal transduction physiol plant.1997,100: 423-430.
    [38]胡兵,刘炜,徐国华.生长素与乙烯信号途径及其相互关系研究进展[J].植物学报,2011,48(3):338-349.
    [39]Davies P. J. Plant Hormones:Physiology, Chemistry and Molecular Biology[M]. Dordrecht Netherlands:Academic Publishers, Kluwer,1995:1-11.
    [40]刘道宏.植物叶片衰老[J].植物生理学通讯,1983(2):14-19.
    [41]田晓莉,杨培珠.棉花根-冠关系的研究——根系伤流液及叶片中内源激素的变化[J].中国农业大学学报,1999,4(5):92-97.
    [42]Stitt M Miiller C, Matt P, et al.2002. Carbon and nitrogen relationships and signaling:Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany,53:959-970.
    [43]Lomax T L, Muday G K, Rubery P H. Auxin transport [M]. Dordrecht Kluwer AcademicPublishers 1995.
    [44]Mcsteen F, Leywer O. Shoot branching[J].Annu. Rev. Plant Biol,2005(56):353-374.
    [45]许自成,张婷,卢秀萍,等.打顶后施用生长素(IAA)和钾肥对烤烟碳氮代谢的影响,生态学杂志,2007,26(4):461-465.
    [46]王夏雯,王绍华,李刚华.氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系,作物学报2008,34(12):2184-2189.
    [47]吴娟娟.细胞分裂素对小麦幼苗生长相关酶活性的影响[J].湖北农业科学,2011,12(1)132-135.
    [48]王三根.细胞分裂素在植物抗逆和延衰中的作用.植物学通报,2000,17(2):121-126.
    [49]Rock c pathways to absicic acid-regulated gene expression[J]New phytol 2000,148:357-396.
    [50]Chen H H, Li P H,Brennerm L.Involvement of abscisic acid in protect cold acclimation [J] plant physiol,2010.71:362-365.
    [51]潘瑞炽,植物生理学[M],2004:183-193.
    [52]Burbridg E. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize VP14[J]. Plant,1999,17(4):427-431.
    [53]李玉珍,植物激素的研究进展,河南科技学院学报(自然科学版),2007,35(4):49-53.
    [54]王国英,刘东臣,赵紫娟,等.不同形态氮素及ABA和6-BA对烟草生长、养分吸收及其在体内分配的影响,河北农业大学学报,2002,25(2):21-25.
    [55]常二华,王朋,唐成,等.水稻根和籽粒细胞分裂素和脱落酸浓度与籽粒灌浆及蒸煮品质的关系作物学报,2006(4):540-547.
    [56]Mengel K, Kirkby E A. Principles of Plant nutrition, International Potash Institutes, Bern, Switzerland[M].1987, pp.247-252.
    [57]Hollday R. Effects of fertilizers upon potato yields and quality. In:J D. Ivins and F L Multhorpe (eds.) The Growth of the potato, Butterworths, London.1963, pp.248-264.
    [58]鲍士旦.土壤农化分析(第三版)[M],北京:中国农业出版社,2000:267.
    [59]中国科学院上海植物生理研究所,上海植物生理学会,现代植物生理学实验指南[M].北京:北京科学出版社,1999:21-24.
    [60]韩雅珊编著.食品化学实验指导[M].北京:中国农业大学出版社,1995:17-19.
    [61]汪世华,白文钊,康旭,等.发酵液中L-谷氨酰胺含量的测定[J].湖北工学院学报,2001(1):]6-21.
    [62]Mengel K,Kirkby E A. Principles of Plant nutrition, International Potash Institutes, Bern, Switzerland[M].1987, pp.254-256.
    [63]谭永强,胡立勇,赵翠荣,等.不同植物生长调节剂对油菜种子发芽的影响[J].湖北农业科学,2009,48(12):2973-2976.
    [64]吴明泉,侯廷荣,张桂阁,等.“康丰利”植物生长调节剂对玉米生长发育及产量的影响[J].杂粮作物,2010,30(5):344-345.
    [65]罗定棋,谢强,张永辉,等.植物生长调节剂对烤烟上部叶开片降碱的影响[J].江西农业学报,2010,22(7):8-10.
    [66]谢桂先,荣湘民,刘强,等.不同浓度玉米生长调节剂对玉米氮代谢的影响[J],湖南农业大学 学报(自然科学版),2006,32(4):352-356.
    [67]张鑫,翟瑞常,郑殿峰,等.植物生长调节剂对大豆根系氮代谢相关指标的影响[J].大豆科学,2010,29(3):432-434.
    [68]彭建伟,刘强,荣湘民,等.植物生长调节剂对水稻氮素累积和转运及籽粒蛋白质含量的影响[J],湖南农业大学学报(自然科学版),2003,29(5):368-371.
    [68]王玲,黄世文,王全永,等.植物生长素对水稻叶片衰老及抗氧化酶活性的影响[J].浙江农业科学,2008,3:310-313.
    [70]白灯莎·买买提艾力,张士荣,彭华,等.打顶后涂抹生长素对长绒棉生长和蕾铃脱落的影响[J].核农学报,2007,21(2):177-180,185.
    [71]李宗霆,周燮,植物激素及其免疫检则技术[M].南京:江苏科学技术出版社,1996.
    [72]王三根.细胞分裂素在植物抗逆和延衰中的作用[J].植物学通报,2000,17(2):121-128.
    [73]Mok D W S, Mok M C. Cytokinin metabolism and action[J].Annu Rev Plant Physiol Plant Mol Biol,2001,52:89-118.
    [74]杨安中,牟筱玲,李孟良,等.喷施细胞分裂素类物质对地膜早作水稻防衰及增产效应[J]水土保持学报,2005,19(2):199-200.
    [75]刘灶长,黎开金,霍光华,等.油菜后期喷施细胞分裂素(BA)对产量及经济性状的影响初报[J].江西农业大学学报,1992,14(2):122-128.
    [76]刘红娟,刘洋,刘琳.脱落酸对植物抗逆性影响的研究进展[J].生物技术通报,2008,(6):8-10.
    [77]周玲,魏小春,郑群,等.脱落酸与赤霉素对瓜尔豆生长发育与产量的影响[J].湖北农业科学,2010,49,(8):1989-1901.
    [78]董明辉,刘晓斌,陆春泉,等.外源ABA和GA对水稻不同粒位籽粒主要米质性状的影响[J].作物学报,2009,35(5):899-906.
    [79]宋海星,彭建伟,刘强,等.不同氮素生理效率油菜生育后期氮素再分配特性研究[J].中国农业科学,2008,41(6):1858-1864.
    [80]Feller U, Soong T, Hagema R H. Leaf proteolytic activies and senescence during grain development of field grown corn(ZeamaysL.)[J]. Plant Physical.1977,59:290-294.
    [81]Thormas H. Enzymes of nitrogen mobilization indetached leaves of Lolium ternulentum during senescence[J]. Planta,1978,142:161-169.
    [82]Robinson D G, Hob B, Hinz G, et,al.1995. One vacuole or two vacuoles:Do protein storage vacuoles arise denovo during pea cotyledon development [J]. PlantPhysiol,145:654-664.
    [83]Mcneal F H, Boatwright G O, Berg A M, etal. Nitrogen in plant parts of seven spring wheat varieties at successive stages of plant development[J]. CropSci,1968,8:535-542.
    [84]Singh R P, Anderson R G. Nitrogen dry matter accumulation indwart wheat varieties as influenced by nitrogen fertilization[J]. Indian J Agic Sic,1973,43:570-582.
    [85]Dalling M J,Boland G,Wilson J H.Relation between acid proteinase activity and redistribution of nitrogen during grain development in wheat[J]. Aust J Plant Physiol,1976,3:721-730.
    [86]Harper L A,Sharpe R R,Langdale G W, et, al. Nitrogen cyclingina wheatcrop soil, plant and aerial nitrogen transport[J]. AgroJ,1987,79:965-973.
    [87]Anderson J W, Rowan K S. Activity of peptidase in tobacco leaf tissue in relation to senescence. BiochemJ,1965,97:741-746.
    [88]Peterson L W, Huffaker R C. Loss of ribulose-1.5-diphosphate carboxylase and increase in proteolytic activity during senescence of detached primary barley leaves. Plant Physiol,1975,55: 1009-1015.
    [89]吴光南,刘宝仁,张金渝.水稻叶片蛋白水拟酶的某些理化特性及其与衰老的关系[J].江苏农业学报,1985,1(1):1-9.
    [90]杨亮,赵宏伟,刘锦红.氮素用量对春玉米功能叶片谷氨酞胺合成酶活性及产量的影响[J].东北农业大学学报,2007,38(3):320-324.
    [91]陈胜勇,李彩凤,马凤鸣,等.甜菜谷氨酰胺合成酶基因在不同氮素条件下的表达分析[J].作物杂志,2008(4):64-67.
    [92]张宏纪,马凤鸣,李文华,等.不同形态氮素对甜菜谷氨酰胺合成酶活性的影响[J].黑龙江农业科学,2001,(6):7-10.
    [93]王其海,林清华,张楚富,等.水稻种子萌发期间谷氨酰胺合成酶和NADH-谷氨酸合酶的变化[J].植物生理与分子生物学学报,2002,28(1):75-78.
    [94]陆景陵主编.植物营养学[M],25-33.
    [95]MokMC. Cytokinins and plant development:an overview. In:Mok DWS and Mok MC(Eds.) Cytokinins:Chemistry, Activity and Function, CRC Press, Boca Raton, FL,1994, PP.155-166.
    [96]SnhmueHing T, Silke S, George R. Cytokinins as regulators of gene expresion. Physiol Plant, 1997,100:505-519.
    [97]Gan S, Amasino R. Inhibition of leaf senescence by autoregulated production of cytokinin. Science,1995,270:1986-1988.
    [98]Wang S G. Roles of cytokinin on stress-resistance and delaying senescence in plants. Chinese Bulletin ofBotany,2000,17(2):121-126.
    [99]袁继超,牛应泽,范巧佳,等.杂交油菜蓉油3号经济性状的相关和通径分析[J].四川农业大学学报,1998,16(4):419-424.
    [100]高建芹,戚存扣,浦惠明.施氮量和栽培密度对宁油12号产量及品质的影响.江苏农业科学,2005(6):40-45.
    [101]官春云.油菜品质改良和分析方法.长沙,湖南科学技术出版社.
    [102]唐湘如,官春云.油菜栽培密度与几种酶活性及产量和品质的关系.湖南农业大学学报(自然科学版),2001,21(4):264-267.
    [103]Leng S H, Shan Y H, Zhou B M.Regulation of N nutrition to biomass of oilseed in ripening stage.Chin J Oil Crop Sci,2000,22(2):53-56.
    [104]Wang W G, Li J L, Han Q B,et,al.. Study on nitrogen application techniques on rapeseed cultivar with high quality. Soils Fert,1997, (4):34-36.
    [105]Yan Z L, Liu A Q. The study on mathematical model of nitrogen, phosphorus and potassium combination influence of rapeseed cultivar "Za Xuan No.1". Gengzuo Yu Zaipei,2003, (6): 33-34.
    [106]许才康,陈培峰,孙华,等.施氮量对‘苏油4号’油菜产量及品质的影响.上海农业学报,2011,27(3):47-50.
    [107]李宝珍,王正银,李加纳.氮磷钾硼对甘蓝型黄籽油菜产量和品质的影响.土壤学报,2005,42(3):479-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700