用户名: 密码: 验证码:
软木传热机理与保温性能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软木是自然界中存在的天然隔热材料,本文以国产栓皮栎软木为对象,对比葡萄牙栓皮槠软木,研究了软木细胞的固相骨架的传热机理和热解特性,以及软木热处理后软木细胞固相骨架传热特性变化。最后对软木制品的保温隔热性能进行了优化研究。主要研究结果如下:
     (1)将软木单体细胞的结构进行归纳和简化,构建了软木单体细胞传热模型,运用串-并联运算规则,得到固-气结构软木的等效导热系数公式,软木等效导热系数是孔隙率(φ)的函数,与固相导热系数(λs)、气相导热系数(λa)有关。软木等效导热系数的计算公式为:
     可以通过等效导热系数方程预测软木制品的导热系数,导热系数的计算值和实测值两者之间平均误差为5.16%,最大误差为9.79%,满足Russell法平均误差和最大误差分别不超过6%和15%的要求。
     (2)在软木的热解反应中,将热解过程划分为4个阶段,第一个阶段都出现一个明显的吸热峰,国产栓皮栎软木的吸热峰强度高于葡萄牙产栓皮槠软木。第三个阶段是软木热解的主要阶段,该阶段失重高达77.14~81.59%。整个热解过程是由软木中软木酯、木质素及纤维素等成分的热解过程的叠加组成;软木酯、木质素等成分的热稳定性好,延长了热解反应温度区间,延缓了软木的热解过程。
     (3)计算出软木活化能较大,三种产地软木的平均活化能分别达到了172KJ·mol1(甘肃)、169KJ·mol-1(陕西)和164KJ·mol-1(葡萄牙),说明软木的燃烧很难进行,需要在较高的温度下,提供大量的能量时,热解才能发生。根据热分解速率方程导出相应的热解动力学方程,软木的热解反应机理可以用一个一级反应过程米较好地描述。
     (4)通过对软木固相骨架的研究,发现栓皮栎和栓皮槠软木的等温吸附线属于Ⅲ型吸附等温线,吸附剂—吸附质之间的相互作用很弱,软木细胞壁没有吸附水的存在。栓皮栎软木细胞壁上有更多的孔隙和更大的比表面积,孔径分布主要位于20nm的范围内。陕西产栓皮栎软木的孔径在50nm以下的介孔高达90.77%,孔隙直径小于气体分子的自由程,消除了细胞壁孔径内气体本身的热传导,其等效导热系数很低。
     (5)软木热处理后,软木细胞壁的化学成分出现变化:主要是2852cm-1-2920cm-1的蜡质C-H不对称伸缩和对称伸缩振动减弱,1700cm-1-1800cm-1的区域内出现酯类的羰基((?)C=0)特征峰,在1506cm-1处出现木质素的芳环骨架振动,以及在1456cm-1处出现半纤维素CH2弯曲振动和895cm-1处的β-D-葡萄糖的特征吸收峰,峰强在热处理中都有减弱。
     (6)软木热处理后,甘肃产软木细胞壁比表面积呈增加趋势,从2.438m2/g增大到2.907m2/g,增加了16.13%。单点表面积、BJH吸附孔总容积呈减小趋势,细胞壁上孔隙直径分布向20nm以下的介孔集中,20nm以下的介孔分布强度更高,超过50nm的大孔数量明显减少。
     (7)软木热处理后视觉特性出现明显变化:主要是明度降低,色差增大,且随处理温度的升高和时间的延长呈明显递增的趋势;热处理后软木的红绿轴色品指数a*和黄蓝轴色品指数b*有不同程度的规律性降低。热处理温度对软木明度和色差的影响远大于热处理时间的影响。
     (8)软木制品的保温性能优化研究:同等容重条件下,粗粒颗粒所制备的软木制品的等效导热系数最小,保温性能最好。软木颗粒的粒度较小时,粒度的变化对软木制品保温性能的影响变小;软木粒度相同时,随着容重的增加,软木制品等效导热系数发生显著增加;热处理时间、软木制品容重对导热系数的影响显著。根据正交实验结果,找出优化的方案为:软木粒度为粗粒,软木制品容重为0.5g/cm3,热处理时间2小时。降低软木制品容重,增加热处理时间可以降低等效导热系数,有效提高软木制品保温隔热性能。
Cork is a natural thermal insulation material in the nature.The dissertation took the domestic cork (Quercus variabilis) as the research object, contrasted the Portuguese cork (Quercus suber), and studied the heat-transfer mechanism and the pyrolysis characteristics of the solid skeleton of the cork cells, and the heat-transfer characteristics changes of the solid skeleton of the cork cells after the heat treatment. Finally, the optimization research was implemented for the heat preservation and heat insulation performance of the cork products.The main research results are as follows:
     (1) Summarized and simplified the monomer structure of the cork cells, constructed the heat-transfer model of cork monomer cell, and achieved the equivalent coefficient formula of thermal conductivity for the solid-gas structural cork through using the series and parallel operational rule of the thermal resistance. The equivalent coefficient of thermal conductivity of the cork, which is relevant to the solid coefficient of thermal conductivity (λs) and the gas coefficient of the thermal conductivity (λa), is a function about the porosity (φ). The equivalent coefficient formula of thermal conductivity of the cork is:
     The the coefficient of thermal conductivity of the cork products can be predicted by the equivalent coefficient equationof thermal conductivity.
     (2) In the pyrolysis reaction process of the cork, the dissertation divided the pyrolysis processinto four phases. The first phase has an obvious endothermic peak, and the endothermic peak intensity of the domestic cork is higher than the Portuguese cork. The third phase is the main pyrolysisphase of the cork, and the weight loss rate of the phase reached up to77.14~81.59%. The entire pyrolysis process is the superposition of the pyrolysis process ofvarious composition such as the cork ester, the lignin and cellulose etc. The cork ester, the lignin, etc. have good thermal stability, so the temperature range of pyrolysis reaction is extended and the pyrolysis process of the cork is delayed.
     (3) Through calculating the activation energy, it is found that the corks from three production places have the larger activation energy, and the average activation energy of these corks respectively achieved172KJ·mol-1(Gansu),169KJ·mol-1(Shanxi) and164 KJ·mol-1(Portugal). Further, it indicated that the cork burning is hard to carry out, because it needed the higher temperatures and a lot of energy for the cork pyrolysis. According to the thermal decomposition rate equation, the corresponding pyrolysis kinetic equation of the cork was derived. The pyrolysis reaction mechanism of the cork can be better described by a first order reaction process.
     (4) Based on the research for the cork solid skeleton, it is found that theadsorption isotherm of the cork (Quercus variabilis) and the cork (Quercus suber) were the type III adsorption isotherm, the interaction between the adsorbent and the adsorbate is very weak, and there aren't the absorbed water on the cell wall. On the cork cell walls (Quercus variabilis), there are more porosity and larger specific surface area, and the pore size is distributed mainly in the range of20nm. In the pores of Shaanxi cork, the mesoporous, which the pore diameter is under50nm, reached up to90.77%. The pore diameter of the mesoporous is less than the free path of gas molecules, so there is not the heat conduction of the gas inside the aperture of the cell wall, and the equivalent coefficient of thermal conductivity for Shanxi cork is very low.
     (5) After heat treatment, the chemical composition of cork cell wall changed:the asymmetric and symmetric stretching vibration of the C-H bond in the waxiness between2852cm-1-2920cm-1is abate. Thecharacteristic peak of carbonyl [)C=0) in the esters appeared between1700cm-1-1800cm-1. The vibration of the aromatic ring skeleton in lignin appeared at1506cm-1. The bending vibration of the CH2bond in hemicellulose appeared at1456cm-1. The characteristic absorption peak of β-D-glucose appeared at895cm-1, and the peak strength has weakened in the heat treatment.
     (6) After heat treatment, the specific surface area of Gansu cork cell walls showed an increase trend from2.438m2/g increases to2.907m2/g and decreased16.13%. The single point surface area and the total volume of BJH absorption pore showed a decrease trend. The pore diameter distribution at the cell walls concentrates to the mesoporous under20nm, and the distribution intensity of the mesoporous under20nm is higher, and the number of big pore more than50nm significantly reduced.
     (7) After heat treatment, the visual features appeared obvious changes:The brightness reduced, the chromatic aberration increased, and both showed an obvious increasing trend with the rise of temperature and the extension of time. After heat treatment, the chromaticity index a*of cork red-green axis and the chromaticity index b*of cork yellow-blue axis showed the regularity decrease trend at different degree. The influence of heat-treatment temperature on the brightness and chromatic aberration for the cork is greater than the influence of the heat treatment time.
     (8) The optimization research on thermal insulation properties of the cork products: Under the condition of the equal density, the cork products produced by the coarse particles have the minimum equivalent coefficient of thermal conductivity, and the best insulation performance. When cork particle size is smaller, the influence of the changes of the particle size on thermal insulation properties of the cork products is smaller. Under the condition of the same cork particle, the equivalent coefficient of thermal conductivity of cork products appeared an obvious increase trend with the increase of volume-weight. The heat treatment time and the volume-weight of cork products can obviously influence the coefficient of the thermal conductivity. According to the result of orthogonal experiment, and the dissertation found out the optimized solutions for:the cork particle size is the coarse particle, the volume-weight of the cork products is0.5g/cm3, and the heat treatment time is2hours. So, reducing the volume-weight of the cork products, and increasing the heat treatment time can decrease the equivalent coefficient of thermal conductivity, and efficiently improve the thermal insulating properties of cork products.
引文
[1]刘培生.多孔材料引论[M].北京:清华大学出版社.2004.
    [2]覃文清.新型节能保温材料现状及阻燃技术的研究[J].新型建筑材料.2011,(8):72-76.
    [3]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.
    [4]王玉瑛,吴荣煌.蜂窝材料及孔格结构技术的发展[J].航空材料学报,2000,20(3):172-177.
    [5]杨亚政,杨嘉陵,曾涛等.轻质多孔材料研究进展[J].2007,28(4):503-516.
    [6]俞昌铭.多孔材料传热传质及其数值分析[M].北京:清华大学出版社.2011.
    [7]黎青,陈玲燕,沈军.多孔材料的应用与发展[J].材料导报.1995,(6):10-13.
    [8]沈维道,童均耕.工程热力学[M](第4版).北京:高等教育出版社,2007.
    [9]Nied D. A., Bejan A. Convection in Porous Media [M](2nd ed). Springer,2006.
    [10]华毓坤.人造板工艺学[M].北京:中国林业出版社,2006.
    [11]王补宣.工程传热传质学[M](上册).北京:科学出版社,1982.
    [12]俞自涛,胡亚才,田甜,等.木材横纹有效导热系数的分形模型[J].浙江大学学报(工学版),2007,41(2):351-355.
    [13]施明恒,李小川,陈永平.利用分形方法确定聚氨酯泡沫塑料的有效导热系数[J].中国科学E辑(技术科学),2006,36(5):560-568.
    [14]夏德宏,陈勇,郭珊珊.隔热纤维体的热导率分形模型[J].热科学与技术,2008,7(2):97-103.
    [15]凤仪,朱振刚,陶宁.闭孔泡沫铝的导热性能.金属学报,2003,39(8):817-820.
    [16]闫刚,魏伯荣,杨海涛,等.聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006,(3):50-52.
    [17]Springer, Tsai. Thermal Conductivities of Unidirectional Materials [J]. Journal of Composite Materials,1967,1(1):166-173.
    [18]陈则昭,倪海涛,陈梅英.多孔介质等效导热系数的较高精度通用计算式[J].工程热物理学报,1999,12(3):305-308.
    [19]林金国,陈瑞英,杨庆贤.类比法研究木材径向导热系数[J].生物数学学报.2005,20(2):251-255.
    [20]陈瑞英,林金国,杨庆贤.木材弦向导热系数的理论表达式[J].林业科学.2005,41(4):145-148.
    [21]杨庆贤.木材径向导热系数的物理力学研究[J].应用科学学报1999,17(3):366-370.
    [22]杨庆贤.类比推理的物理学方法研究木材热导率[J].漳州师范学院学报, 2003,169(2):14-15.
    [23]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001.
    [24]侯祝强.木材导热系数的的研究[J].林业科学,1992,28(2):153-160.
    [25]杨庆贤.木材弦向导热系数的理论研究[J].南京大学学报,1997,33(3):84-87.
    [26]杨倩,顾平道.分形理论在耐火纤维材料的导热特性研究中的应用[J].制冷空调与电力机械,2007,(3):14-18.
    [27]杜了伟.软木制品及应用[M].北京:中国林业出版社,1989.
    [28]赵戈,段新芳,官恬,等.世界软木加工利用现状和我国软木工业发展对策[J].世界林业研究,2004,(5):25-28.
    [29]郑志峰.软木资源及其利用[J].云南林业,2005,26(3):23-24.
    [30]吴明作.栓皮栎研究进展[J].陕西林业科技,1998,(4):65-69.
    [31]曾新德.葡萄牙软术工业的现状及发展趋势[J].林产化工通讯,1995,(5):62~63.
    [32]张文辉,卢志军.栓皮栎种群的生物学生态学特性和地理分布研究[J].西北植物学报,2002,22(5):1093-1101.
    [33]傅焕光,于光明.栓皮栋栽培与利用[M].北京:中国林业出版社,1986.
    [34]王明庥.我国栓皮栎树种的改良[J].林业科学,1983,8(4):347-353.
    [35]杨柳.新型软木原料栓皮储的采剥、再生试验及理化性能研究[J].湖北林业科技,1996,(1):20-23.
    [36]Carvell. Environmental Factor's Influence on Juvenile Abundance in a Mature[J]. Oak Forest, For. Sci.,1961,7(2):98-105.
    [37]Pereira, H. Rosa, M. E. Fortes, et al. The cellular structure of cork from Quercus suberL[J].IAWA Bulletin,1987,8(3):213-218.
    [38]Joao, F. Mano. The viscoelastic properties of cork[J]. Journal of materials science, 2002,(37):257-262.
    [39]Pereira, H.,Marquez,A.V. The effect of chemical treatments on the cellular structure of cork [J].IAWA Bulletin,1988,9(4):337-345.
    [40]Pereira, H. Structure and chemical composition of cork from Calotropis procera (Ait.) R. Br[J]. IAWA Bulletin,1988,8(1):53-58.
    [41]Irle, M. A. A preliminary investigation into the compatibility of granulated cork with ordinary Portland cement [J]. Forest Products Research Centre, UK, 2001:93-96.
    [42]Giboson L. J., Easterling K. E., Ashby M. F. The Structure and Mechanics of Cork. Proc. R. soc., Lond. A.1981,377:99-117.
    [43]Pinay P., Fortes M. A. Characterization Of cells in cork[J]. J. Phys D Appl Phys, Printed in the UK, (29):2507-2514.
    [44]Novoa P. J. R.O.. Ribeiro M. C. S., Ferreira A. J. M. Marques mechanical characterization of lightweight polymer mortar modified with cork granulates [J].Composites science and Technology,2004, (64):2197-2205.
    [45]孙伟圣,傅峰,吴盛富,等.我国木基静音地板发展现状分析[J].木材工业,2008,(5):21-23.
    [46]Pereira H. Chemical composition and variability of cork from Quercus suber L [J]. Wood Science and Technology,1988,22:211-218.
    [47]周建云,林军,何景峰,等.栓皮栎研究进展与未来展望[J].西北林学院学报,2010, (3):43-49.
    [48]彭万喜,朱同林,郑真真,等.木材抽提物的研究现状与趋势[J].林业科技开发,2004,(5):6-9.
    [49]刘艳贞.栓皮栎(Quercus variabilis B.)软木构造及主要化学成分的分析[D].西安:西北农林科技大学,2008.
    [50]张丽丛,雷亚芳,常宇婷.栓皮栎软木主要化学成分的分析[J].西北林学院学报,2009,24(4):163-165.
    [51]刘真民.栓皮栎树皮的采剥技术[J].广西林业,1995,(4):23-25.
    [52]甘启蒙,吕宏.软木伸缩缝填料用作水电站钢蜗壳垫层材料的探讨[J].林业机械与木工设备,2008,(12):28-29.
    [53]刘国信.葡萄牙的软木加工颇具产业优势[J].中国包装,2008,(5):58.
    [54]赵戈,段新芳,官恬,等.世界软木加工利用现状和我国软木工业发展对策[J].世界林业研究,2004,(10):25-28.
    [55]Beate Groh, Carin Hubner, Klaus J Lendzian. Water and oxygen permeance of phellems isolated from trees:the role of waxes and lenticels [J]. Planta,2002, 215(5):794-801.
    [56]罗伟祥,郝怀晓,薛安平.橡树资源—优质林木生物质能源发展战略研究[J].生物质化学工程,2006,S1:147-152.
    [57]马心.软木橡胶[M].北京:中国林业出版社,1989.
    [58]PerryR. H. Chemical Engineers'Handbook[M](4th ed),McGrawhill,1963.
    [59]施明恒,陈永平.多孔介质传热传质分形理论初析[J].南京师大学报(工程技术版),2001,1(1):6-12.
    [60]雷亚芳,刘艳贞,周伟.栓皮栎软木的微观构造[J].林业科学,2009,45(1):167-170.
    [61]Gibson L. J.,Easterling K. E. The structure and mechanics ofcork [J]. Pro. R. Soc.Lond,1981,A377:99-117.
    [62]李椿.热学[M].北京:高等教育出版社,2008.
    [63]李坚.木材科学[M].北京:高等教育出版社,2002.
    [64]尹思慈.木材学[M].北京:中国林业出版社,1996.
    [65]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [66]赵镇南.传热学[M].北京:高等教育出版社,2002.
    [67]成俊卿.木材学[M].北京:中国林业出版社,1985.
    [68]高瑞堂,戴澄月,刘一星.木材热学性质与温度的关系[J].东北林业科技大学学报,1985,(4):34-36
    [69]KollmannF. F. P. Principles of Wood Science and Technology.I. Solid Wood[M]. New York:SpringerVerlag,1968.
    [70]Yang Qing-xian. Theoretical expressions of thermal conductivity of wood [J]. J. Forestry Research,2001,12(1):43-46.
    [71]樊孟维.软木地板性能[J].长春工业大学学报,2003,24(3):76-78.
    [72]虞红.软木作为运载火箭隔热材料的研究[J].上海航天,1996,(5):54-56.
    [73]Gibson L. J., Ashby M. F. Cellular Solids:Structure and properties[M](Second edition). Cambridge:Cambridge University Press,1997.
    [74]李坚,文达,刘一星.体视显微术在木材组织学中的应用[J].东尔北林业大学学报,1986,(3):92-94.
    [75]Geza Ifju. Quantitative wood anatomy-certain geometrical statistical relationships [J]. Wood Fiber Sci.,1983,(4):326-337.
    [76]方文彬,吴义强.阔叶树材组织率的研究[J].福建林学院学报,2006,26(3):224-228.
    [77]方文彬,吴义强.针叶树材组织率的分析[J].东北林业大学学报.2007,35(2):12-14.
    [78]易爱华,刘建勇,赵伙.有机保温材料的热解分析[J].化工新型材料,2011,39(1):94-96.
    [79]胡荣祖,史学启祯.热分析动力学[M].北京:科学出版社,2001.
    [80]陆振荣.热分析动力学的新进展[J].无机化学学报,1998,14(2):119-126.
    [81]Chen D. H. Conductivities of poly (ethylene oxide) and poly (2-vinyl pyridine) blend [J]. J. Macro molecular Science,1996, A33 (3):247-259.
    [82]Chen D. H. Thermal decomposition kinetics of M (mnt) (5-NO2下-phen) completes [J]. Thermochim Acta,1998,320:291-295.
    [83]Chen D. H. Studies on thermal stability and non-isothermal decomposition kinetics of vinyl choloride-vinyl acetate copolymer prepared by micro-suspension polymerization [J]. J. Applied Polymer Science,2000,78:1057-1062.
    [84]Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids:A view from a historical perspective [J]. Int. Reviews in Physical Chemistry,2000,19(1): 45-60.
    [85]Flynn J H. The'Temperature Integral'-Its use and abuse [J]. Thermochim. Acta, 1997,300(1):83-92.
    [86]Dollimore D, Tong P, Alexander K S, et al. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation [J]. Thermochim. Acta,1996,282-283(1):13-27; 290(1): 73-83.
    [87]Vyazovkin S. Alternative description of process kinetics [J]. Thermochim. Acta, 1992,211(1):181-187.
    [88]Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures [J]. Thermochim. Acta,1971,3(1):1-12.
    [89]Brown M E, Dollimore D, Galwey A K. Comprehensive Chemical Kinetics Vol.2: Reaction in the Solid-State [M]. Amsterdam:Elsevier,1980.
    [90]Sestak J. Thermophysical Properties of Solids:their measurements and theoretical thermal analysis [M]. Amsterdam:Elsevier,1984.
    [91]Galwey A K, Brown B E. Thermal Decomposition of Ionic Solids:Chemical Properties and Reactivities of Ionic Crystalline Phases [M]. Amsterdam:Elsevier, 1999.
    [92]Koga N, Malek J, Sestak J, et al. Data treatment in non-isothermal kinetics and diagnostic limits of phenomenological models [J]. Netsu Sokutei,1993,20(4): 210-223.
    [93]Tanaka H. Thermal analysis and kinetics of solid state reactions [J]. Thermochim. Acta,1995,267(1):29-44.
    [94]Sestak J, Malek J. Diagnostic limits of phenomenological models of heterogeneous reactions and thermal analysis kinetics [J]. Solid State Ionics,1993, 63-65:245-254.
    [95]Koga N, Tanaka H. Accommodation of the actual solid-state process in the kinetic-model function.1. Significance of the non-integral kinetic exponents [J]. J. Thermal. Anal.,1994,41(2-3):455-469.
    [96]Ortega A. Some successes and failures of the methods based on several experiments [J]. Thermochim. Acta,1996,284 (2):379-387.
    [97]Malek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J]. Thermochim. Acta,1995,267:61-73.
    [98]Cumbrera F L, Sanchez-Bajo F. The use of the JMAYK kinetic equation for the analysis of solid-state reactions:critical considerations and recent interpretations [J]. Thermochim. Acta,1995,266(3):315-330.
    [99]Koga N, Sestak J, Melek J. Distortion of the Arrhenius parameters by the inappropriate kinetic model function [J]. Thermochim. Acta,1991,188(2): 333-336.
    [100]Sestak J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function [J]. J. Therm. Anal.,1990,36(6):1997-2007.
    [101]Koga N, Tanaka H. Kinetics and mechanisms of the thermal dehydration of dilithium sulfate monohydrate [J]. J. Phys. Chem.,1989,93(23),7793-7798.
    [102]Ozao R, Ochiai M. Fractal Reaction in Solids-Reaction Functions Reconsidered [J]. J. Ceram. Soc. Jpn.,1993,101(3):263-267.
    [103]Koga N, Malek J. Accommodation of the actual solid-state process in the kinetic model function. Part 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions [J]. Thermochim. Acta,1996,282-283: 69-80.
    [104]Gorbatchev V M. Some aspects of Sestak's generalized kinetic equation in thermal analysis [J]. J. Therm. Anal.,1980,18(1):193-197.
    [105]Criado J M, Malek J, Gotor F J. The applicability of the Sestak-Berggren kinetic equation in constant rate thermal analysis (CRTA) [J]. Thermochim. Acta, 1990,158(2):205-213.
    [106]Koga N. A review of the mutual dependence of Arrhenius parameters evaluated by the thermo-analytical study of solid-state reactions:The kinetic compensation effect [J]. Thermochim. Acta,1994,244(3):1-20.
    [107]Lu Z R, Sun J P, Yang L, et al. Synthesis, spectral and structural characterization and thermal decomposition kinetics of dinitrato (N,N,N',N'-tetra-n-butyl aliphatic diamide) urany(Ⅱ) by thermo-gravimetric analysis [J]. Thermochim. Acta,1995,255(1):281-295; 1992,210:205-213.
    [108]Lu Z R, Yang L, Sun J P. Study of kinetics of thermal decomposition of uranyl nitrate complexes with Nalkylcaprolactams by means of non-isothermal gravimetry [J]. J. Therm. Anal.,1995,44(6):1391-1399.
    [109]Flynn J H. Thermal analysis kinetics-past, present and future [J]. Thermochim. Acta,1992,203(1):519-526.
    [110]Vyazovkin S, Wight C A. Isothermal and Nonisothermal Kinetics of Reactions of Solids [J]. Int. Reviews in Physical Chemistry,1998,17(3):407-433.
    [111]Brown M E. Introduction to Thermal Analysis:Techniques and Applications [M]. London:Chapman & Hall Ltd,1988,127.
    [112]Carrasco F. The evaluation of kinetic parameters from thermo-gravimetric data:comparison between established methods and the general analytical equation [J]. Thermochim. Acta,1993,213:115-134.
    [113]Lu Z R, Yang L. The non-isothermal decomposition kinetics of palladium (Ⅱ) chloride complexes with sulphoxides R-SO-C6H4CH3 and thioethers R-S-C6H4CH3 [J]. Thermochim. Acta,1991,188(1):135-142.
    [114]Criado J M, Ortega A. Remarks on the discrimination of the kinetics of solid-state reactions from a single non-isothermal trace [J]. J. Therm. Anal.,1984, 29(6):1225-1236.
    [115]Koga N, Tanaka H. Conventional kinetic analysis of the thermo-gravimetric curves for the thermal decomposition of a solid [J]. Thermochim. Acta,1991, 183(1):125-136.
    [116]Ozawa T. Initial kinetic parameters from thermogravimetric rate and conversion data [J]. Bull. Chem. Soc. Jpn.,1965,38(11),1881-1886.
    [117]Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermo-gravimetric data [J]. J. Polym. Sci. Part B, Polymer Letters,1966,4(5):323-328.
    [118]Kissinger H E. Reaction Kinetics in Differential Thermal Analysis [J]. Anal. Chem.,1957,29(11):1702-1706.
    [119]Ozawa T. Estimation of activation energy by isoconversion methods [J]. Thermochim. Acta,1992,203(1):159-165.
    [120]Friedman H L. Kinetics of thermal degradation of charforming plastics from thermogravimetry:application to a phenolic plastic [J]. J. Polym. Sci., Part C, 1964,6(1):183-195.
    [121]Ozawa T. Applicability of Friedman plot [J]. J. Therm. Anal.,1986,31(3): 547-551.
    [122]H. Pereira. Chemical composition and variability of cork from Quercus suber I.[J]. Wood Science and Technology,1987,(3):211-218.
    [123]魏新莉,向仕龙,周蔚红.3种栓皮化学成分对其性能的影响[J].木材工业.2007(6):18-20.
    [124]Liu Q., Wang S. R. Mechanism study of wood lignin pyrolysis by using TG=FTIR analysis [J]. Journal of Analytical and Applied Pyrolysis,2008,82(1): 170-177.
    [125]金湓,李宝霞.纤维素与木质素共热解试验及动力学分析[J].化工进展.2013,32(2):303-307.
    [126]Lu Q., Yang X. C, Dong C. Q., et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products:Analytical Py-GC/MS study [J]. Journal of Analytical and Applied Pyrolysis,2011,92(2):430-438.
    [127]吕当振,姚洪,王泉斌.纤维素、木质素含量对生物质热解气化特性影响的 实验研究[J].工程热物理学,2008,29(10):1771-1775.
    [128]赖艳华,吕明新,马春元,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [129]孙才英,史桂香,武兰在,等.杨木热分析[J].东北林业大学学报,1998,26(1):38-41.
    [130]陈则韶,钱钧,叶一火.复合材料等效导热系数的理论推算[J].中国科学技术大学学报,1992,(4):416-424.
    [131]刘晓燕,郑春媛,黄彩凤.多孔材料.导热系数影响因素分析[J].低温建筑技术,2009,135(9):121-122.
    [132]汤其建.松散煤体导热系数影响因素分析[J].江西煤炭科技,2006,(4):24-26.
    [133]P. Cheng, H.Chin-Tsau. Heat conduction, in:D.B. Ingham,I.Pop (Eds.), Transport Phenomena in Porous Media [J]. Pergamonpress,1998,57-76.
    [134]E. Tsotsas, H. Martin. Thermal conductivity of packe beds:A review[J]. Chem. Eng. Process,1987,22:19-37.
    [135]刘艳贞,雷亚芳,周伟.欧洲栓皮栎软木构造与物理性质研究进展[J].西北林学院学报,2007,22(6):144-147.
    [136]P. Sittle. Zum Feinbau der Suberinschichten im Flaschenkork [J]. Protoplasma,1962,54(4):555-559.
    [137]杨世铭,陶文铨铃.传热学[M].北京:高等教育出版社,1998.
    [138]李坚.术材抽提物对材性、加工及其利用的影响[J].森林工业文摘(综述),1984.6:1-3.
    [139]陈国符.植物纤维化学[M].北京:轻工业出版社,1980.
    [140]I. H. Tavman. Effective thermal conductivity of granular porous marterials [J]. Int. Commun. Heat Mass Transfer,1996,23.169-176.
    [141]Krilov A.木材中多酚化合物对锯片的磨蚀机理[M].李坚译.北京:林业译从,1987,2:30-33.
    [142]S.J.格雷格,K.S.W.辛.吸附、比表面与孔隙率[M].高敬琮等译.北京:化学工业出版社,1989.
    [143]崔静洁,何文,廖世军.多孔材料的孔结构表征及其分析[J].材料导报,2009,23(7):82-89.
    [144]陈凤婷,曾汉民.几种植物基活性炭材料的孔结构与吸附性能比较-(Ⅰ)孔结构表征[J].离子交换与吸附,2004,20(2):104-112.
    [145]李懋强.绝热材料的显微结构及绝热性能[J].稀有金属材料与工程,2009,38(Z2):56-58.
    [146]袁晓红,姚源,唐永良.活性炭吸附剂的孔结构农征[J].中国粉体技术, 2000,(6):190-191.
    [147]梁永信,马永轩,王德洪.X射线衍射法研究术材纤维结晶度[J].东北林业大学学报,1986,14(12):12-15.
    [148]张士成,齐华春,刘一星.高温过热蒸汽处理对木材结晶性能的影响[J].南京林业大学学报,2010,34(5):164-166.
    [149]刘晓燕,郑春媛,黄彩凤.多孔材料导热系数影响因素分析[J].低温建筑技术,2009,(9):121-122.
    [150]李娟,何建新,余燕平.纤维素-丝素复合膜的制备与表征[J].现代化工,2011,31(6):181-185.
    [151]薛振华,赵广杰.不同处理方法对木材结晶性能的影响[J].西北林学院学报,2007,22(2):169-171.
    [152]晋勇,孙小松,薛屺.X射线衍射分析技术[M].国防工业出版社,2008.
    [153]杜茂平.橡塑导热高分子材料的研究[D].西安:西北工业大学,2007.
    [154]齐华春,刘一星,程万里.高温过热蒸汽处理木材的吸湿解吸特性[J].林业科学,2010,46(1):110-114.
    [155]张丽丛.软木及其产品天然耐腐性的研究[D].西安:西北农林科技大学,2010.
    [156]林兰英,陈志林,傅峰.木材炭化与炭化物利用研究进展[J].世界林业研究,2007,(5):23-24.
    [157]李延军,唐荣强,鲍滨福等.高温热处理木材工艺的初步研究[J].林产工业,2008,35(2):16-18.
    [158]李贤军,刘元,苏洪泽.高温碳化处理对木材平衡含水率的影响规律[J].木材工业,2008,(10):50-51.
    [159]吴帅,于志明.木材碳化技术的发展趋势[J].中国人造板,2008,(5):3-6.
    [160]D-yakonov-KF, Kur-yanova-TK, Shchekin-VA. The hygroscopicity of heat-treated wood[J]. Izvestiya Vysshikh Uchebnykh Zavedenii, Lesnoi Zhumal,3:63-67.
    [161]王洁瑛,赵广杰.热处理过程中杉木压缩木材的材色及红外光谱[J].北京林业大学学报,2001,23(1):59-64.
    [162]Nelson M. L., O'Conner R. T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part I. Spectra of Lattice Type Ⅰ, Ⅱ, Ⅲ and of Amorphous [J]. J. Appl. Poly. Sci.,1964,8(3):1311-1324.
    [163]Dawy M., Nada A.IRanddielectricanalysisofcelluloseanditsderivative[J]. Polymer-Plastics Technology and Engineering,2003,42(4):643-658.
    [164]Kosikovab, Ebringerovaa, Kacurakovam. Effect of steaming on the solubility and structural changes of wood lignin-poly saccharide complex[J]. Cellulose Chemistry and Technology,1995,29(6):683-690.
    [165]Patrick J. W. Porosity in Carbons:Characterization and Application [M]. London:Edward Arnold,1995.
    [166]马召亮,雷亚芳,赵泾峰.软木膨化处理现状与发展趋势[J].西北林学院学报,2010,25(1):154-156.
    [167]周健,王河锦.X射线衍射放五基本要素的物理学意义与应用[J].矿物学报,2002,22(2):95-100.
    [168]Petrissans M., Gerardin P., El Bakali I., et al. Wettability of heat-treated wood [J]. Holzforschung,2003,57(3):301-307.
    [169]Sundqvist B., Karlsson O., Westermark U. Determination of formic acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to color, strength and hardness [J]. Wood Science and Technology, 2006,40(7):549-561.
    [170]邓邵平,陈寒娴,林金春.高温热处理人工林杉木木材的材色和涂饰性能[J].福建农林大学学报,2010,39(5):484-489.
    [171]李涛,顾炼百,忆江宁.高温热处理对水曲柳材色的影响[J].林业科学,2009,42(12):149-153.
    [172 ]汤顺青‘色度学[M].北京:北京理工大学出版社,1990.
    [173]朱林峰,刘元,罗玉华.粗皮桉不同家系木材的表面视觉性质[J].中南林学院学报,2004,24(4):41-46.
    [174]段新芳.木材变色防治技术[M].北京:中国建材工业出版社,2005.
    [175]郑庆惠,孟祥春,刘玉龙.酚醛树脂-软木复合发泡材料的研制[J].燃料工业,1986,(5):22-25.
    [176]孙志峰,孙玮,傅加林.国内绝热保热材料现状及发展趋势[J].实用节能技术,2001(4):26-28.
    [177]齐华春,程万里.高温高压过热蒸汽处理木材的力学特性及化学成分变化[J].东北林业大学学报,2005,33(3):44-46.
    [178]沈显杰,杨淑贞,张文仁.岩石热物理性质及其测试[M].北京:科学出版社,1988.
    [179]Perry, R. H. Chemical Engineers'Handbook[M](4th ed). New York:Mc Graw Hill,1963.
    [180]寇世立,王芝兰.软木砖导热系数与容重的关系[J].陕西林业科技,1989,(2):48-52.
    [181]李贤军,傅峰,蔡智勇.高温热处理对木材吸湿性和尺寸稳定性的影响[J].中南林业科技大学学报,2010,30(6):92-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700