用户名: 密码: 验证码:
膨胀阻燃聚丙烯的改性及协同作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膨胀型阻燃剂(IFR)是通过酸源、碳源和气源在一定温度下起反应生成膨胀疏松炭层覆盖在凝聚相表面,抑止凝聚相和气相间的传热和传质以起到阻燃作用的磷氮类阻燃剂。IFR是一类用来制备低烟无卤阻燃聚合物材料的环保型阻燃剂。目前大部分膨胀型阻燃剂主要应用于阻燃涂料,而少数高品质IFR可填充阻燃聚烯烃,应用于电线电缆、建筑材料、电器设备、交通工具等。IFR在国内塑料阻燃剂市场所占份额还较小。阻碍IFR大规模应用的关键技术问题有两个方面,一是要提高阻燃效率、降低用量和成本,二是要进一步提高IFR的初始热分解温度,降低其水溶性以拓宽其应用范围。本文针对以上两个要求进行了研究,并对国内商品化IFR产品的性能进行了初步的技术评估。
     在膨胀阻燃体系中加入协效剂是提高其阻燃效率的有效方法。要起到高效的协同作用,一般要从化学的角度来催化IFR组分间及IFR组分与聚合物基体间的相互反应,提高体系的成炭量,改善膨胀炭层的质量。采用稀土氧化物包括氧化镧和氧化钕为催化协效剂,提高了聚丙烯(PP)基膨胀阻燃热塑性聚烯烃(FRTPO)的极限氧指数(LOI),降低了热释放速率峰值(pHRR)和质量损失速率峰值(pMLR)。氧化钕的协同效率高于氧化镧。稀土氧化物提高了IFR和FRTPO的高温热稳定性和残炭量,但使IFR和FRTPO的初始热分解温度(Tonset)略有降低。稀土氧化物改变了FRTPO受热降解过程中的粘弹行为,有利于防止燃烧过程中的熔滴和衰减燃烧过程中释放气体而引起的压力,保持膨胀层的完整性。加入稀土氧化物后,FRTPO的强度略有增加,断裂伸长率基本不变。
     天然硅酸盐可作为塑料用低成本多功能填料。天然硅酸盐的种类众多,表面特性及金属元素含量差别很大。系统研究了不同硅酸盐在膨胀阻燃聚丙烯(FRPP)中的协同作用。在FRPP中加入0.5%~7%未剥分蛭石(VMT)和剥分蛭石(EVMT),LOI值明显上升。用含磷钛酸酯偶联剂处理VMT后可以使LOI值进一步提高。VMT和EVMT都可以降低FRPP的pHRR和pMLR,EVMT降低效果好于VMT。EVMT还可以明显降低FRPP的烟释放速率峰值(pSPR)和总烟释放量(TSP)。含有蛭石的FRPP比不含有蛭石FRPP燃烧后的残炭更致密,阻隔作用更好。蛭石的加入提高了FRPP的Tonset和最终残炭量。无机蒙脱土(MMT)、凹凸棒土(ATP)和沸石(ZLT)也可以有效提高FRPP的LOI值,降低FRPP的pHRR、pMLR和pSPR。以双十八烷基二甲基溴化铵为插层剂的有机蒙脱土(O-MMT)和附载锆离子的有机蒙脱土(Zr-OMMT)对于FRPP LOI值没有改变,但能降低FRPP的pHRR、pMLR和pSPR,Zr-OMMT降低效果好于O-MMT。Zr-OMMT具有很好的抑烟效果。基于LOI变化值计算结果表明EVMT在FRPP体系中的协同效率(SE)为1.6、VMT和ZLT为1.4、MMT为1.3、ATP为1.2。加入硅酸盐可以降低FRPP的火灾发展指数(FIGRA)和火灾性能指数(FPI),EVMT效果最好。硅酸盐协同效率的高低与其所含过渡金属Fe和Ti元素含量之和密切相关,协同效率也与硅酸盐的径粒和形态有关。加入硅酸盐对FRPP力学性能影响不明显。
     为了降低聚磷酸铵(APP)的水溶性和提高其热稳定性,对其进行表面包覆改性是必不可少的。采用二异氰酸酯与高效成炭剂三羟乙基异氰尿酸酯(THEIC)在APP存在下进行原位溶液聚合制备了包覆APP (CUAPP)。与THEIC和APP的混合物相比,CUAPP的水中溶解度大大降低,Tonset提高。CUAPP的阻燃效率低于THEIC和APP混合物,但阻燃PP的耐水性明显提高,经过浸水实验后能达到UL94V-0级阻燃要求。
     为了对国内膨胀型阻燃剂的质量进行初步技术评估,系统研究了国内外5种代表性IFR对于增韧PP和PP/POE基热塑性弹性体(TPE)的阻燃效果、耐水性、力学性能及流变性能的影响。结果表明JLS-PNP1D、Deflam EM82与Budit3167阻燃效率相当,ANTI-6阻燃效率较差。Budit3167阻燃增韧PP或TPE的Tonset较高,经过耐水性实验后仍能保持UL94V-0级。
     论文的创新之处:
     (1)对比研究了不同催化活性的稀土氧化物在膨胀阻燃TPO(FRTPO)中的协同作用,通过多种表征方式揭示了稀土氧化物协同作用产生的原理。稀土氧化物提高了FRTPO在降解前的粘度,有利于防止燃烧过程中的熔滴。稀土氧化物提高了FRTPO的成炭率,减缓了膨胀层的降解,提高了膨胀层的损耗因子,有利于衰减气体释放引起的压力,保持炭层的完整。
     (2)系统研究了多种硅酸盐包括未剥分蛭石、剥分蛭石、无机蒙脱土、凹凸棒土、沸石在膨胀阻燃聚丙烯中的协同效应,选出了一种最佳的新型低成本高效协效剂-剥分蛭石。在IFR中加入少量剥分蛭石可以显著提高阻燃PP的LOI值,降低阻燃PP的热释放、质量损失和烟释放速率峰值。制备了附载锆离子的有机蒙脱土(Zr-OMMT),在IFR中加入少量Zr-OMMT,可以显著提高阻燃PP的热稳定性,降低阻燃PP的热释放、质量损失和烟释放速率峰值。Zr-OMMT具有很好的抑烟效果。
     (3)采用二异氰酸酯与高效成炭剂三羟乙基异氰尿酸酯在聚磷酸铵存在下进行原位溶液聚合制备了包覆聚磷酸铵,得到了一类水溶性低、初始热分解温度高的新型膨胀型阻燃剂。将其应用于聚丙烯,得到初始热分解温度高,经过耐水实验后仍能保持UL94V-0级的阻燃材料。
Intumescent flame retardant (IFR) is a kind of phosphorus-nitrogen based flameretardant, in which the acid source, char forming agent and blowing agent can reactbeyond a certain temperature to form cellular charred layer on the surface of condensedphase to slow down heat and mass transfer between gas and condensed phases andinterrupt the self-sustained combustion of the polymer. IFR is one of the environmentfriendly flame retardant to produce low smoke halogen free flame retardant polymericmaterials. Nowadays, most IFR is mainly used in flame retardant coating. Small part ofIFR with high quality can be filled in polyolefin as flame retardant for application in wireand cable, construction materials, electric equipment and vehicles. IFR only has verysmall percentage in flame retardant market of China. There are two technical aspectswhich limit the wide application of IFR, the first is improvement of the flame retardantefficiency, decrease of the required filling level and cost, the second is increase of thedecomposition onset temperature (Tonset) and decrease of the solubility. The research targetof this dissertation focuses on the two aspects mentioned above and making a primaryevaluation to the quality of commercial available IFR in domestic market.
     Addition of synergist is helpful to get intumescent flame retardant system with highefficiency. Generally, chemical catalysis is needed to promote the reaction betweencomponents of IFR and polymer matrix to produce more char yield and improve thequality of charred layer. Rare earth oxides (REO) including La2O3and Nd2O3wereemployed as synergists in intumescent flame retardant thermalplastic olefin (FRTPO)based on polypropylene (PP). The limiting oxygen index (LOI) increased. Peak of heatrelease rate (pHRR) and peak of mass loss rate (pMLR) decreased. The synergistic effect(SE) of Nd2O3is higher than that of La2O3. REO increases the thermal stability in hightemperature range and final char yield but decrease the Tonsetof IFR and FRTPO slightly.The presence of REO changes the viscous-elastic behavior of FRTPO during thermal degradation process and is helpful to suppress the melt dripping and damp the pressaroused by release of gas to keep the intactness of charred layer. Addtion of REOincreases the tensile strength of FRTPO slightly and has no remarkable effect onelongation at break.
     Natural silicate can be used as multi-functional filler with low cost in plastics andrubber. There are lots of categories in natural silicate, which differs much in surface traitand metal content. Addition of0.5~7wt%unexfoliated vermiculite (VMT) or exfoliatedvermiculite (EVMT) can increase the LOI values of intumescent flame retardant PP(FRPP). EVMT has better performance than VMT to increase LOI values. LOI values canbe further increased if VMT was modified by titanate coupling agent containingphosphorus. pHRR and pMLR of FRPP can be lowered by addition of vermiculite andperformance of EVMT is better than VMT. Peak of smoke production rate (pSPR) andtotal smoke production (TSP) also can be lowered by addition of EVMT. The residual charof FRPP with vermiculite after combustion is more compact than that of FRPP withoutvermiculite and so has better barrier property. Addition of vermiculite increase the TonsetofFRPP and final residual char. Original montmorillonite (MMT), attapulgite (ATP) andzeolite (ZLT) also can increase the LOI values of FRPP and decrease pHRR and pMLR.Organic montmorillonite (OMMT) using dioctadecyl dimethyl ammonium bromide asintercalation agent and OMMT modified by zirconium ion (Zr-OMMT) has no effect onthe LOI values of FRPP but can change pHRR, pMLR and pSPR. Zr-OMMT has betterperformance than OMMT. Zr-OMMT has excellent smoke suppression performance.Synergistic affectivity (SE) values of EVMT, VMT, ZLT, MMT and ATP in FRPPcalculated based on the increase of LOI values is1.6,1.4,1.4,1.3and1.2, respectively.Addition of silicate decreases the fire growth rate index (FIGRA) and fire performanceindex (FPI) of FRPP. EVMT has the best synergistic performance. Synergistic effect ofsilicate has close relationship with the summary weight content of transition metalincluding Fe and Ti, but is not determined by this factor only.
     To lower the solubility of ammonium polyphosphate (APP) and improve its thermalstability, encapsulation is essential. Diisocyanate was in-situ polymerized in solution witha charring agent tri(2-hydroxyethyl) isocyanurate (THEIC) in the presecne of APP toprepare encapsulated APP (CUAPP). Solubility of CUAPP in water was greatly decreasedcompared with that of mixture of APP and THEIC.The Tonsetof CUAPP was also increased. Flame retardant efficiency of CUAPP is lower than that of mixture of APP and THEIC buthydrolytic stability of FRPP containing CUAPP is improved compared with that of FRPPcontaining APP and THEIC. FRPP containing CUAPP can pass UL94V-0rating afterhydrolytic stability test.
     To make a primary technical evaluation on the quality of commercial available IFR inChina, the effect of one imported IFR and four kinds of domestic IFR on the flammability,hydrolytic stablity, mechanical and rheology properties of toughened PP (TGPP) andthermalplastic olefin elastomer (TPE) was investigated in detail. IFR with brand nameDeflam EM82, JLS-PNP1D and Budit3167has no remarkable discrepancy in flameretardant efficiency, but only flame retardant TG (FRPP) or flame retardant TPE (FRTPE)containing Budit3167can pass UL94V-0rating after hydrolytic stability test. FRPP orFRTPE containing Budit3167has higher Tonsetthan FRPP or FRTPE containing other IFR.
     The innovative points of this dissertation are listed as follows:
     (1) Synergistic effect of REO with different catalytic activity in FRTPO wasinvestigated systemically. The change of viscous-elastic behavior of FRTPO duringthermal degradation was detected by thermal scanning rheology tests and mechanismresponsible for the synergistic effect was revealed in detail. REO increases the thermalstability in high temperature range and final char yield but decrease the Tonsetof IFR andFRTPO slightly. The presence of REO changes the viscous-elastic behavior of FRTPOduring thermal degradation process and is helpful to suppress the melt dripping and dampthe press aroused by release of gas to keep the intactness of charred layer.
     (2) The synergistic effect of various silicates including unexfoliated vermiculate,exfoliated vermiculite, original montmorillonite, organic montmorillonite, organicmontmorillonite modified by zirconium ion, attapulgite and zeolite in FRPP was studied indetail. Exfoliated vermiculite is the optimal synergist with high synergistic efficiency andlow cost. Organic montmorillonite modified by zirconium ion (Zr-OMMT) with highsynergistic efficiency was prepared. Zr-OMMT has excellent smoke suppressionperformance.
     (3) Diisocyanate was in-situ polymerized in solution with a charring agenttri(2-hydroxyethyl) isocyanurate (THEIC) in the presence of APP to prepare encapsulatedAPP (CUAPP). CUAPP is a novel IFR with good thermal stability and hydrolytic stability. Use of CUAPP in PP can produce flame retardant materials with good thermal stabilityand hydrolytic stability.
引文
[1]卢灿辉,张新星,梁梅.难回收废弃交联高分子材料再生利用新技术,国外塑料2008,26(2),66-69.
    [2] Chen L,Wang Y Z. A review on flame retardant technology in China. Part I: development of flameretardants, Polymers for Advanced Technologies2010,21(1),1-26.
    [3] Horrocks A R, D P. Fire retardant materials, Abington, Woodhead Publishing Limited,2001.
    [4] van Krevelen D W. Some basic aspects of flame resistance of polymeric materials, Polymer1975,16(8),615-620.
    [5]王永强.阻燃材料及应用技术,北京,化学工业出版社,2003.
    [6]中国国家标准GB/T2408-1996,塑料燃烧性能试验方法水平法和垂直法. In.
    [7] Beyer G. Nanocomposites: a new class of flame retardants for polymers, Plastics Additives&Compounding2002,4(10),4-34.
    [8] Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements,Fire and Materials1980,4(2),61-65.
    [9]胡源,宋磊.阻燃聚合物纳米复合材料,北京,化学工业出版社,2008.
    [10] Babrauskas V, Peacock R D. Heat release rate: The single most important variable in fire hazard,Fire Safety Journal1992,18(3),255-272.
    [11] Hansen A S. Prediction of heat release in the single burning item test, Fire and Materials2002,26(2),87-97.
    [12] Petrella R V. The Assessment of Full-Scale Fire Hazards from Cone Calorimeter Data, Journal ofFire Sciences1994,12(1),14-43.
    [13]中国国家标准GB8624-2006,建筑材料及制品燃烧性能分级
    [14] Camino G, Costa L. Performance and mechanisms of fire retardants in polymers--A review,Polymer Degradation and Stability1988,20(3-4),271-294.
    [15] Camino G, Costa L, Luda di Cortemiglia M P. Overview of fire retardant mechanisms, PolymerDegradation and Stability1991,33(2),131-154.
    [16]欧玉湘,李建军.阻燃剂-性能、制造及应用,北京,化学工业出版社,2006.
    [17] Weil E A, Levchik S V. Flame retardants in commercial use or development for polyolefins,Journal of Fire Sciences2008,26(1),5-43.
    [18] Babushok V, Tsang W. Inhibitor rankings for alkane combustion, Combustion and Flame2000,123(4),488-506.
    [19] Davis J, Huggard M. The technology of halogen-free flame retardant phosphorus additives forpolymeric systems, Journal of Vinyl and Additive Technology1996,2(1),69-75.
    [20] Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers.2. Mechanism of action in polypropylene-ammonium polyphosphate pentaerythritolmixtures, Polymer Degradation and Stability1984,7(1),25-31.
    [21] Granzow A, Cannelongo J F. The effect of red phosphorus on the flammability of poly(ethyleneterephthalate), Journal of Applied Polymer Science1976,20(3),689-701.
    [22] Peters E N. Flame-retardant thermoplastics. I. Polyethylene-red phosphorus, Journal of AppliedPolymer Science1979,24(6),1457-1464.
    [23] Wu Q, Lü J, Qu B. Preparation and characterization of microcapsulated red phosphorus and itsflame-retardant mechanism in halogen-free flame retardant polyolefins, Polymer International2003,52(8),1326-1331.
    [24] Shih Y F, Wang Y T, Jeng R J,Wei K M. Expandable graphite systems for phosphorus-containingunsaturated polyesters. I. Enhanced thermal properties and flame retardancy, Polymer Degradation andStability2004,86(2),339-348.
    [25] Levchik S V, Costa L, Camino G. Effect of the fire-retardant ammonium polyphosphate on thethermal decomposition of aliphatic polyamides. Part III--Polyamides6.6and6.10, PolymerDegradation and Stability1994,43(1),43-54.
    [26] Duquesne S, Bras M L, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T,Vezin H.Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate, Journal of AppliedPolymer Science2001,82(13),3262-3274.
    [27] Levchik S V, Weil E D. Flame retardancy of thermoplastic polyesters-a review of the recentliterature, Polymer International2005,54(1),11-35.
    [28] Levchik S V, Bright D A, Alessio G R, Dashevsky S. New halogen-free fire retardant forengineering plastic applications, Journal of Vinyl and Additive Technology2001,7(2),98-103.
    [29] Wang G A, Wang C C, Chen C Y. The flame-retardant material-1. Studies on thermalcharacteristics and flame retardance behavior of phosphorus-containing copolymer of methylmethacrylate with2-methacryloxyethyl phenyl phosphate, Polymer Degradation and Stability2006,91(11),2683-2690.
    [30] Ebdon J R, Price D, Hunt B J, Joseph P, Gao F, Milnes G J, Cunliffe L K. Flame retardance insome polystyrenes and poly(methyl methacrylate)s with covalently bound phosphorus-containinggroups: initial screening experiments and some laser pyrolysis mechanistic studies, PolymerDegradation and Stability2000,69(3),267-277.
    [31] Horacek H, Grabner R. Advantages of flame retardants based on nitrogen compounds, PolymerDegradation and Stability1996,54(2-3),205-215.
    [32] Costa L, Camino G, luda D, Cortemiglia P. In Fire and polymers, ACS symposium, WashingtonDC,1990; Washington DC,1990; p425.
    [33] Iji M, Serizawa S. Silicone derivatives as new flame retardants for aromatic thermoplastics used inelectronic devices, Polymers for Advanced Technologies1998,9(10-11),593-600.
    [34] Zhou W, Yang H. Flame retarding mechanism of polycarbonate containing methylphenyl-silicone,Thermochimica Acta2007,452(1),43-48.
    [35] Nodera A, Kanai T. Flame retardancy of a polycarbonate-polydimethylsiloxane block copolymer:The effect of the dimethylsiloxane block size, Journal of Applied Polymer Science2006,100(1),565-575.
    [36]李楠,贾润礼.阻燃聚丙烯的研究进展,上海塑料2006,(3),4-7.
    [37] Zhang S, Horrocks A R. A review of flame retardant polypropylene fibres, Progress in PolymerScience2003,28(11),1517-1538.
    [38] Morgan A B. Flame retarded polymer layered silicate nanocomposites: a review of commercialand open literature systems, Polymers for Advanced Technologies2006,17(4),206-217.
    [39] Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J M, Dubois P. New prospects in flameretardant polymer materials: From fundamentals to nanocomposites, Materials Science&EngineeringR-Reports2009,63(3),100-125.
    [40] Fina A, Bocchini S, Camino G. Catalytic fire retardant nanocomposites, Polymer Degradation andStability2008,93(9),1647-1655.
    [41] Castrovinci A, Camino G. Fire-Retardant mechanisms in polymer nano-composite materials,Berlin, Spring Berlin Heidelberg press,2007.
    [42] Zanetti M, Kashiwagi T, Falqui L, Camino G. Cone Calorimeter Combustion and GasificationStudies of Polymer Layered Silicate Nanocomposites, Chemistry of Materials2002,14(2),881-887.
    [43] Lewin M. Reflections on migration of clay and structural changes in nanocomposites, Polymersfor Advanced Technologies2006,17(9-10),758-763.
    [44] Song R, Wang Z, Meng X, Zhang B, Tang T. Influences of catalysis and dispersion of organicallymodified montmorillonite on flame retardancy of polypropylene nanocomposites, Journal of AppliedPolymer Science2007,106(5),3488-3494.
    [45] Jang B N, Costache M, Wilkie C A. The relationship between thermal degradation behavior ofpolymer and the fire retardancy of polymer/clay nanocomposites, Polymer2005,46(24),10678-10687.
    [46] Qin H, Zhang S, Zhao C, Hu G, Yang M. Flame retardant mechanism of polymer/claynanocomposites based on polypropylene, Polymer2005,46(19),8386-8395.
    [47] Gilman J W, Jackson C L, Morgan A B, Harris R, Manias E, Giannelis E P, Wuthenow M, HiltonD, Phillips S H. Flammability Properties of Polymer Layered-Silicate Nanocomposites. Polypropyleneand Polystyrene Nanocomposites, Chemistry of Materials2000,12(7),1866-1873.
    [48] Gilman J W. Flammability and thermal stability studies of polymer layered-silicate (clay)nanocomposites, Applied Clay Science1999,15(1-2),31-49.
    [49] Zhu J, Uhl F M, Morgan A B,Wilkie C A. Studies on the Mechanism by Which the Formation ofNanocomposites Enhances Thermal Stability, Chemistry of Materials2001,13(12),4649-4654.
    [50] Xie W, Xie R, Pan W P, Hunter D, Koene B, Tan L S,Vaia R. Thermal Stability of QuaternaryPhosphonium Modified Montmorillonites, Chemistry of Materials2002,14(11),4837-4845.
    [51] Calderon J U, Lennox B, Kamal M R. Thermally stable phosphonium-montmorilloniteorganoclays, Applied Clay Science2008,40(1-4),90-98.
    [52] Nawani P, Gelfer M Y, Hsiao B S, Frenkel A, Gilman J W, Khalid S. Surface Modification ofNanoclays by Catalytically Active Transition Metal Ions, Langmuir2007,23(19),9808-9815.
    [53] Nawani P, Desai P, Lundwall M, Gelfer M Y, Hsiao B S, Rafailovich M, Frenkel A, Tsou A H,Gilman J W,Khalid S. Polymer nanocomposites based on transition metal ion modified organoclays,Polymer2007,48(3),827-840.
    [54] Tang T, Chen X, Chen H, Meng X, Jiang Z, Bi W. Catalyzing Carbonization of PolypropyleneItself by Supported Nickel Catalyst during Combustion of Polypropylene/Clay Nanocomposite forImproving Fire Retardancy, Chemistry of Materials2005,17(11),2799-2802.
    [55] Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J. Thermal Degradation andFlammability Properties of Poly(propylene)/Carbon Nanotube Composites, Macromolecular RapidCommunications2002,23(13),761-765.
    [56] Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, DouglasJ. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites, Polymer2004,45(12),4227-4239.
    [57] Kashiwagi T, Du F, Winey K I, Groth K M, Shields J R, Bellayer S P, Kim H, Douglas J F.Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects ofnanotube dispersion and concentration, Polymer2005,46(2),471-481.
    [58] Schartel B, P tschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide6/multiwall carbonnanotube nanocomposites, European Polymer Journal2005,41(5),1061-1070.
    [59] Kashiwagi T, Du F, Douglas J F, Winey K I, Harris R H, Shields J R. Nanoparticle networksreduce the flammability of polymer nanocomposites, Nat Mater2005,4(12),928-933.
    [60] Peeterbroeck S, Alexandre M, Nagy J B, Pirlot C, Fonseca A, Moreau N, Philippin G, Delhalle J,Mekhalif Z, Sporken R, Beyer G,Dubois P. Polymer-layered silicate-carbon nanotube nanocomposites:unique nanofiller synergistic effect, Composites Science and Technology2004,64(15),2317-2323.
    [61] Beyer G. Filler blend of carbon nanotubes and organoclays with improved char as a new flameretardant system for polymers and cable applications, Fire and Materials2005,29(2),61-69.
    [62] Bourbigot S, Turf T, Bellayer S, Duquesne S. Polyhedral oligomeric silsesquioxane as flameretardant for thermoplastic polyurethane, Polymer Degradation and Stability2009,94(8),1230-1237.
    [63] Devaux E, Rochery M, Bourbigot S. Polyurethane/clay and polyurethane/POSS nanocompositesas flame retarded coating for polyester and cotton fabrics, Fire and Materials2002,26(4-5),149-154.
    [64] Glodek T E, Boyd S E, McAninch I M, LaScala J J. Properties and performance of fire resistanteco-composites using polyhedral oligomeric silsesquioxane (POSS) fire retardants, Composites Scienceand Technology2008,68(14),2994-3001.
    [65]He Q L, Song L, Hu Y, Zhou S. Synergistic effects of polyhedral oligomeric silsesquioxane (POSS)and oligomeric bisphenyl A bis(diphenyl phosphate)(BDP) on thermal and flame retardant propertiesof polycarbonate, Journal of Materials Science2009,44(5),1308-1316.
    [66] Wu K, Song L, Hu Y, Lu H D, Kandola B K, Kandare E. Synthesis and characterization of afunctional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin, Progress inOrganic Coatings2009,65(4),490-497.
    [67] Fina A, Abbenhuis H C L, Tabuani D, Frache A, Camino G. Polypropylene metal functionalisedPOSS nanocomposites: A study by thermogravimetric analysis, Polymer Degradation and Stability2006,91(5),1064-1070.
    [68] Fina A, Abbenhuis H C L, Tabuani D, Camino G. Metal functionalized POSS as fire retardants inpolypropylene, Polymer Degradation and Stability2006,91(10),2275-2281.
    [69] Laachachi A, Cochez M, Ferriol M, Lopez-Cuesta J M, Leroy E. Influence of TiO2and Fe2O3fillers on the thermal properties of poly(methyl methacrylate)(PMMA), Materials Letters2005,59(1),36-39.
    [70] Shen K K, Kochesfahani S, Jouffret F. Zinc borates as multifunctional polymer additives,Polymers for Advanced Technologies2008,19(6),469-474.
    [71] Lewin M. Synergistic and catalytic effects in flame retardancy of polymeric materials-Anoverview, Journal of Fire Sciences1999,17(1),3-19.
    [72] Lewin M. Synergism and catalysis in flame retardancy of polymers, Polymers for AdvancedTechnologies2001,12(3-4),215-222.
    [73]张建耀,张维龙. PP电缆料无卤阻燃技术的研究与应用进展,合成树脂及塑料2007,24(1),72-76.
    [74]刘英俊.在科学发展观引领下持续快速发展中的中国塑料加工工业(下),塑料制造2009,(4),32-37.
    [75] Maio L D, Acierno D, Martino D D. Halogen Free Flame Retardant Agents for Polypropylene inWire Coating Process, Macromolecular Symposia2007,247(1),371-378.
    [76] Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers,Macromolecular Materials and Engineering2004,289(6),499-511.
    [77] Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: Toward a betterunderstanding of their mechanism of action, Thermochimica Acta2006,449(1-2),16-26.
    [78] Duquesne S, Magnet S, Jama C, Delobel R. Intumescent paints: fire protective coatings formetallic substrates, Surface&Coatings Technology2004,180,302-307.
    [79] Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers1. Thermal-degradation of ammonium polyphosphate pentaerythritol mixtures, PolymerDegradation and Stability1984,6(4),243-252.
    [80] Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers.3. Effect of urea on the ammonium polyphosphate pentaerythritol system, PolymerDegradation and Stability1984,7(4),221-229.
    [81] Camino G, Costa L, Trossarelli L, Costanzi F, Landoni G. Study of the mechanism ofintumescence in fire retardant polymers.4. Evidence of ester formation in ammonium polyphosphatepentaerythritol mixtures., Polymer Degradation and Stability1984,8(1),13-22.
    [82] Camino G, Costa L, Trossarelli L. Study of the mechanism of intumescence in fire retardantpolymers.5. Mechanism of formation of gaseous products in the thermal-degradation of ammoniumpolyphosphate, Polymer Degradation and Stability1985,12(3),203-211.
    [83] Camino G, Costa L, Trossarelli L, Costanzi F, Pagliari A. Study of the mechanism of intumescencein fire retardant polymers.6. Mechanism of ester formation in ammonium polyphosphatepentaerythritol mixtures, Polymer Degradation and Stability1985,12(3),213-228.
    [84] Camino G, Martinasso G, Costa L. Thermal degradation of pentaerythritol diphosphate, modelcompound for fire retardant intumescent systems: Part I--Overall thermal degradation, PolymerDegradation and Stability1990,27(3),285-296.
    [85] Camino G, Martinasso G, Costa L, Gobetto R. Thermal degradation of pentaerythritol diphosphate,model compound for fire retardant intumescent systems: Part II--Intumescence step, PolymerDegradation and Stability1990,28(1),17-38.
    [86] Le Bras M, Bourbigot S, Delporte C, Siat C, Le Tallec Y. New intumescent formulations offire-retardant polypropylene-Discussion of the free radical mechanism of the formation ofcarbonaceous protective materials during thermo-oxidative treatment of the additives, Fire andMaterials1996,20,191-203.
    [87] Bourbigot S, Le Bras M, Delobel R, Bréant P, Trémillon J-m. Carbonization mechanisms resultingfrom intumescence-part II. Association with an ethylene terpolymer and the ammoniumpolyphosphate-pentaerythritol fire retardant system, Carbon1995,33(3),283-294.
    [88] Bugajny M, Le Bras M, Bourbigot S. Short communication: new approach to the dynamicproperties of an intumescent material, Fire and Materials1999,23(1),49-51.
    [89] Bugajny M, Le Bras M, Bourbigot S, Delobel R. Thermal behaviour of ethylene-propylenerubber/polyurethane/ammonium polyphosphate intumescent formulations--a kinetic study, PolymerDegradation and Stability1999,64(1),157-163.
    [90] Duquesne S, Delobel R, Le Bras M, Camino G. A comparative study of the mechanism of actionof ammonium polyphosphate and expandable graphite in polyurethane, Polymer Degradation andStability2002,77(2),333-344.
    [91] Shen. Chung Yu, Stahlheber. Norman E, Dyroff. David R. Preparation and characterization ofcrystalline long-chain ammonium polyphosphates, Journal of the American Chemical Society1969,91(1),62-67.
    [92] Bourbigot S, Bras M L, Bréant P, Trémillon J-M, Delobel R. Zeolites: New Synergistic Agents forIntumescent Fire Retardant Thermoplastic Formulations-Criteria for the Choice of the Zeolite, Fireand Materials1996,20(3),145-154.
    [93]梁诚.聚磷酸铵合成技术和应用进展,塑料科技2005,166(2),60-64.
    [94]张健.聚磷酸铵合成工艺研究.硕士论文,四川大学,成都,2005.
    [95]王清才.聚磷酸铵(APP)分子量表征及结晶结构研究.博士学位论文,北京理工大学,北京,2006.
    [96] Chakrabarti P, Sienkowski K J, Quaternary ammonium salt surface-modified ammoniumpolyphosphate, US5071901,1991.
    [97] Chakrabarti P, Sienkowski K J, Nonionic surfactant surface-modified ammonium polyphosphate,US5162418,1992.
    [98] Chakrabarti P, Sienkowski K J, Anionic surfactant surface-modified ammonium polyphosphate,US5164437,1992.
    [99] Chakrabarti P M, Sienkowski K J, Silicone surface-modified ammonium polyphosphate,WO92/08758,1992.
    [100]单渊复,於莉莉,陈崇伟,刘彦明,微胶囊包覆聚磷酸铵的制备方法, CN1216679C,2005.
    [101] Saihi D, Vroman I, Giraud S, Bourbigot S. Microencapsulation of ammonium phosphate with apolyurethane shell part I: Coacervation technique, Reactive and Functional Polymers2005,64(3),127-138.
    [102] Saihi D, Vroman I, Giraud S, Bourbigot S. Microencapsulation of ammonium phosphate with apolyurethane shell. Part II. Interfacial polymerization technique, Reactive and Functional Polymers2006,66(10),1118-1125.
    [103] Le Bras M, Bourbigot S, Le Tallec Y, Laureyns J. Synergy in intumescence--application to
    [beta]-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethyleneformulations, Polymer Degradation and Stability1997,56(1),11-21.
    [104] Bugajny M, Le Bras M, Bourbigot S, Poutch F, Marc L J. Thermoplastic polyurethanes ascarbonization agents in intumescent blends. Part1: fire retardancy of polypropylene/thermoplasticpolyurethane/ammonium polyphosphate blends, Journal of Fire Sciences1999,17,494-513.
    [105] Bugajny M, Le Bras M, Bourbigot S. Thermoplastic polyurethanes as carbonization agents inintumescent blends. Part2: Thermal behavior of polypropylene/thermoplastic polyurethane/ammoniumpolyphosphate blends, Journal of Fire Sciences2000,18,7-27.
    [106] Almeras X, Dabrowski F, Le Bras M, Delobel R, Bourbigot S, Marosi G,Anna P. Usingpolyamide6as charring agent in intumescent polypropylene formulations II. Thermal degradation,Polymer Degradation and Stability2002,77(2),315-323.
    [107] Almeras X, Dabrowski F, Le Bras M, Poutch F, Bourbigot S, Marosi G, Anna P. Usingpolyamide-6as charring agent in intumescent polypropylene formulationsI. Effect of thecompatibilising agent on the fire retardancy performance, Polymer Degradation and Stability2002,77(2),305-313.
    [108] Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F. Effect of fillers onthe fire retardancy of intumescent polypropylene compounds, Polymer Degradation and Stability2003,82(2),325-331.
    [109] Fontanelli R, landoni G, Legnani G, Self-extinguishing polymeric compositions, US4504610,1985.
    [110] Hu X P, Li Y L, Wang Y Z. Synergistic Effect of the Charring Agent on the Thermal and FlameRetardant Properties of Polyethylene, Macromolecular Materials and Engineering2004,289(2),208-212.
    [111] Li B, Xu M. Effect of a novel charring-foaming agent on flame retardancy and thermaldegradation of intumescent flame retardant polypropylene, Polymer Degradation and Stability2006,91(6),1380-1386.
    [112]王玉忠,胡小平,无卤膨胀阻燃聚烯烃聚合物, CN1709968A,2005.
    [113]李斌,许苗军,张秀成,大分子三嗪成炭-发泡剂及其合成方法, CN1715272A,2006.
    [114]姜宏宇,王宇旋,靳晓雨,三嗪类交联化合物及其制备方法与应用, CN101362819A,2009.
    [115] Lv P, Wang Z, Hu K, Fan W. Flammability and thermal degradation of flame retardedpolypropylene composites containing melamine phosphate and pentaerythritol derivatives, PolymerDegradation and Stability2005,90(3),523-534.
    [116] Bourbigot S, LeBras M, Delobel R, Breant P, Tremillon J M.4A zeolite synergistic agent in newflame retardant intumescent formulations of polyethylenic polymers-Study of the effect of theconstituent monomers, Polymer Degradation and Stability1996,54(2-3),275-287.
    [117] Bourbigot S, LeBras M, Delobel R, Tremillon J M. Synergistic effect of zeolite in anintumescence process-Study of the interactions between the polymer and the additives, Journal of theChemical Society-Faraday Transactions1996,92(18),3435-3444.
    [118] Bourbigot S, LeBras M, Delobel R, Decressain R, Amoureux J P. Synergistic effect of zeolite inan intumescence process: Study of the carbonaceous structures using solid-state NMR, Journal of theChemical Society-Faraday Transactions1996,92(1),149-158.
    [119] Le Bras M, Bourbigot S. Mineral Fillers in Intumescent Fire Retardant Formulations-Criteria forthe Choice of a Natural Clay Filler for the Ammonium Polyphosphate/Pentaerythritol/PolypropyleneSystem, Fire and Materials1996,20,39-49.
    [120] Chen Y J, Fang Z P, Yang C Z, Wang Y, Guo Z H, Zhang Y. Effect of Clay Dispersion on theSynergism Between Clay and Intumescent Flame Retardants in Polystyrene, Journal of AppliedPolymer Science2010,115(2),777-783.
    [121] Ma H Y, Tong L F, Xu Z B, Fang Z P. Intumescent flame retardant-montmorillonite synergism inABS nanocomposites, Applied Clay Science2008,42(1-2),238-245.
    [122] Tang Y, Hu Y, Wang S F, Gui Z, Chen Z Y, Fan W C. Intumescent flameretardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites, PolymerInternational2003,52(8),1396-1400.
    [123] Tang Y, Hu Y, Li B G, Liu L, Wang Z Z, Chen Z Y, Fan W C. Polypropylene/montmorillonitenanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylenenanocomposites, Journal of Polymer Science Part A-Polymer Chemistry2004,42(23),6163-6173.
    [124] Zhang K, Wang L J, Wu X M, Zhang G W, Xie X L. Preparation and characteristics ofpolypropylene/nylon/montmorilltonite flame retardant nanocomposites, Plastics Rubber andComposites2008,37(5-6),210-213.
    [125] Zhi-Ling M, Wei-Yan Z, Xin-Yu L. Using PA6as a charring agent in intumescent polypropyleneformulations based on carboxylated polypropylene compatibilizer and nano-montmorillonitesynergistic agent, Journal of Applied Polymer Science2006,101(1),739-46.
    [126] Duquesne S, Samyn F, Bourbigot S, Amigouet P, Jouffret F, Shen K. Influence of talc on the fireretardant properties of highly filled intumescent polypropylene composites, Polymers for AdvancedTechnologies2008,19(6),620-627.
    [127] Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metalliccompounds, Polymers for Advanced Technologies2003,14(1),3-11.
    [128] Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent: Facilesynthesis, reaction to fire in PP and synergy with zinc borate, Polymer Degradation and Stability2008,93(1),68-76.
    [129] Wu Z P, Shu W Y, Hu Y C. Synergist flame retarding effect of ultrafine zinc borate on LDPE/IFRsystem, Journal of Applied Polymer Science2007,103(6),3667-3674.
    [130] Li Y T, Li B, Dai J F, Jia H, Gao S L. Synergistic effects of lanthanum oxide on a novelintumescent flame retardant polypropylene system, Polymer Degradation and Stability2008,93(1),9-16.
    [131] Wu J, Hu Y, Song L, Kang W J. Synergistic effect of lanthanum oxide on intumescentflame-retardant polypropylene-based formulations, Journal of Fire Sciences2008,26(5),399-414.
    [132] Liu Y, Wang Q. Catalytic action of phospho-tungstic acid in the synthesis of melamine salts ofpentaerythritol phosphate and their synergistic effects in flame retarded polypropylene, PolymerDegradation and Stability2006,91(10),2513-2519.
    [133] Zhang P, Song L, Lu H D, Hu Y, Xing W Y, Ni J X,Wang J. Synergistic effect of nanoflakymanganese phosphate on thermal degradation and flame retardant properties of intumescent flameretardant polypropylene system, Polymer Degradation and Stability2009,94(2),201-207.
    [134] Chen X, Ding Y, Tang T. Synergistic effect of nickel formate on the thermal and flame-retardantproperties of polypropylene, Polymer International2005,54(6),904-908.
    [135]欧玉湘. Exolit系列新型无卤低烟低毒阻燃剂,塑料科技2001,141(1).1-3
    [1] Morgan A B. A Review of Transition Metal-Based Flame Retardants: Transition Metal Oxide/Salts,and Complexes. In ACS Symposium Series, Wilkie, C A, Nelson, G L, Morgan, A B, Eds. AmericanChemical Society: Washington, DC,2009,312-328.
    [2]欧玉湘,李建军.阻燃剂-性能、制造及应用,北京,化学工业出版社,2006.
    [3] Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metalliccompounds, Polymers for Advanced Technologies2003,14(1),3-11.
    [4] Hassan M A, Shehata A B. The effect of some polymeric metal chelates on the flammabilityproperties of polypropylene, Polymer Degradation and Stability2004,85(1),733-740.
    [5] Chen X, Ding Y, Tang T. Synergistic effect of nickel formate on the thermal and flame-retardantproperties of polypropylene, Polymer International2005,54(6),904-908.
    [6] Liu Y, Wang Q. Catalytic action of phospho-tungstic acid in the synthesis of melamine salts ofpentaerythritol phosphate and their synergistic effects in flame retarded polypropylene, PolymerDegradation and Stability2006,91(10),2513-2519.
    [7] Wu Z P, Shu W Y, Hu Y C. Synergist flame retarding effect of ultrafine zinc borate on LDPE/IFRsystem, Journal of Applied Polymer Science2007,103(6),3667-3674.
    [8] Komarewsky V I. Catalytic properties of rare earths, Industrial and Engineering Chemistry49(2),264-265.
    [9]郑德,钱玉英,冯嘉春,黄玉松.稀土化合物在塑料中的应用研究,化工新型材料2007,35(3),38-42.
    [10]黄小卫,李红卫,王彩凤,王国珍,薛向欣,张国成.我国稀土工业发展现状及进展,稀土金属2007,31(3),279-288.
    [11] Sato S, Takahashi R, Kobune M, Inoue H, Izawa Y, Ohno H,Takahashi K. Dehydration of1,4-butanediol over rare earth oxides, Applied Catalysis A: General2009,356(1),64-71.
    [12] Yu G X, Zhou X L, Li C L, Chen L F,Wang J A. Esterification over rare earth oxide and aluminapromoted SO42-/ZrO2, Catalysis Today2009,148(1-2),169-173.
    [13] Li Y T, Li B, Dai J F, Jia H,Gao S L. Synergistic effects of lanthanum oxide on a novelintumescent flame retardant polypropylene system, Polymer Degradation and Stability2008,93(1),9-16.
    [14] Lewin M. Synergistic and catalytic effects in flame retardancy of polymeric materials-Anoverview, Journal of Fire Sciences1999,17(1),3-19.
    [15] Dean J A. Lange's Chemistry Handbook Version14th, New York, McGraw-Hill Inc,1999.
    [16] Almeras X, Le Bras M, Poutch F, Bourbigot S, Marosi G,Anna P. Effect of fillers on fireretardancy of intumescent polypropylene blends, Macromolecular Symposia2003,198,435-447.
    [17] Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers,Macromolecular Materials and Engineering2004,289(6),499-511.
    [18] Bourbigot S, LeBras M, Delobel R, Decressain R,Amoureux J P. Synergistic effect of zeolite in anintumescence process: Study of the carbonaceous structures using solid-state NMR, Journal of theChemical Society-Faraday Transactions1996,92(1),149-158.
    [19] Samyn F, Bourbigot S, Duquesne S,Delobel R. Effect of zinc borate on the thermal degradation ofammonium polyphosphate, Thermochimica Acta2007,456(2),134-144.
    [20] Albrand K R, Attig R, Fenner J, Jeser J P, Mootz D. Crystal structure of the laser materialNdP5O14, Materials Research Bulletin1974,9(2),129-140.
    [21] Camino G, Martinasso G, Costa L. Thermal degradation of pentaerythritol diphosphate, modelcompound for fire retardant intumescent systems: Part I--Overall thermal degradation, PolymerDegradation and Stability1990,27(3),285-296.
    [22] Camino G, Martinasso G, Costa L,Gobetto R. Thermal degradation of pentaerythritol diphosphate,model compound for fire retardant intumescent systems: Part II--Intumescence step, PolymerDegradation and Stability1990,28(1),17-38.
    [23] Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent: Facilesynthesis, reaction to fire in PP and synergy with zinc borate, Polymer Degradation and Stability2008,93(1),68-76.
    [24] Bugajny M, Le Bras M, Bourbigot S. Short communication: new approach to the dynamicproperties of an intumescent material, Fire and Materials1999,23(1),49-51.
    [25] Mighri F, Huneault M A, Ajji A, Ko G H,Watanabe F. Rheology of EPR/PP blends, Journal ofApplied Polymer Science2001,82(9),2113-2127.
    [26] Sperling L H. Introduction to physical polymer science,4th ed.;New Jersey, John Wiley&Sons,2006.
    [1] Xanthos M, Functional Fillers for Plastics. WILEY-VCH Verlag GmbH&Co KGaA: Weinheim,2005.
    [2]孙金梅,彭同江,孙红娟.有机蛭石的制备及应用研究现状,材料导报2007,21(3),50-53.
    [3] Letaief S, Martin-Luengo M A, Aranda P,Ruiz-Hitzky E. A colLOI值dal route for delamination oflayered solids: Novel porous-clay nanocomposites, Advanced Functional Materials2006,16(3),401-409.
    [4] Tjong S C, Meng Y Z, Hay A S. Novel preparation and properties of polypropylene-vermiculitenanocomposites, Chemistry of Materials2002,14(1),44-51.
    [5] Tjong S C, Meng Y Z. Impact-modified polypropylene/vermiculite nanocomposites, Journal ofPolymer Science Part B-Polymer Physics2003,41(19),2332-2341.
    [6] Tjong S C, Meng Y Z. Preparation and characterization of melt-compoundedpolyethylene/vermiculite nanocomposites, Journal of Polymer Science Part B-Polymer Physics2003,41(13),1476-1484.
    [7] Tjong S C, Bao S P. Crystallization regime characteristics of exfoliated polyethylene/vermiculitenanocomposites, Journal of Polymer Science Part B-Polymer Physics2005,43(3),253-263.
    [8] Ze-Peng Z, Jian-hui L, Li-bin L, Cheng-bin X, Rui L,Zhi-ping Z. Preparation and properties ofchloroprene rubber/vermiculite nanocomposites, Key Engineering Materials2007,334-335, pt.2,833-6.
    [9] Zhang J H, Zhuang W, Zhang Q, Liu B L, Wang W, Hu B X,Shen J. Novel polylactide/vermiculitenanocomposites by in situ intercalative polymerization. I. Preparation, characterization, and properties,Polymer Composites2007,28(4),545-550.
    [10] Zhang K, Xu J, Wang K Y, Cheng L, Wang J, Liu B. Preparation and characterization of chitosannanocomposites with vermiculite of different modification, Polymer Degradation and Stability2009,94(12),2121-2127.
    [11] Zhang Y, Han W, Liu W, Xu S A, Wu C F. Preparation and properties of polyamide66/organo-vermiculite nanocomposites, Journal of Macromolecular Science Part B-Physics2008,47(3),532-543.
    [12] Zhang Y, Han W, Wu C F. Preparation and Properties of Polypropylene/Organo-VermiculiteNanocomposites, Journal of Macromolecular Science Part B-Physics2009,48(5),967-978.
    [13] Zhang Y, Liu W, Han W, Guo W H, Wu C F. Preparation and Properties of Novel NaturalRubber/Organo-Vermiculite Nanocomposites, Polymer Composites2009,30(1),38-42.
    [14] Zhaobin T, Peng L, Jinshan G, Zhixing S. Preparation of polyaniline/vermiculite claynanocomposites by in situ chemical oxidative grafting polymerization, Polymer International2009,552-6.
    [15] Horacek H, Pieh S. The importance of intumescent systems for fire protection of plastic materials,Polymer International2000,49(10),1106-1114.
    [16] Kozlowski R, Mieleniak B, Helwig M, Przepiera A. Flame resistant lignocellulosic-mineralcomposite particleboards, Polymer Degradation and Stability1999,64(3),523-528.
    [17] Yadong Y, Guangfu Y, Xiaowei C, Xiangli G. Design and properties of fire-proof coating fortunnels, Key Engineering Materials2007,1753-5.
    [18]安特杰W,阿恩R,具有提高的膨胀体积的层状硅酸盐插层化合物、其制备方法以及其用途,CN100436547C,2003.
    [19] Zanetti M, Camino G, Reichert P, Mulhaupt R. Thermal behaviour of poly(propylene) layeredsilicate nanocomposites, Macromolecular Rapid Communications2001,22(3),176-180.
    [20] Bourbigot S, Bras M L, Bréant P, Trémillon J-M,Delobel R. Zeolites: New Synergistic Agents forIntumescent Fire Retardant Thermoplastic Formulations-Criteria for the Choice of the Zeolite, Fireand Materials1996,20(3),145-154.
    [21] Le Bras M, Bourbigot S. Mineral Fillers in Intumescent Fire Retardant Formulations-Criteria forthe Choice of a Natural Clay Filler for the Ammonium Polyphosphate/Pentaerythritol/PolypropyleneSystem, Fire and Materials1996,20,39-49.
    [22] James J D, Spittle J A, Brown S G R, Evans R W. A review of measurement techniques for thethermal expansion coefficient of metals and alloys at elevated temperatures, Measurement Science&Technology2001,12(3), R1-R15.
    [23] Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent: Facilesynthesis, reaction to fire in PP and synergy with zinc borate, Polymer Degradation and Stability2008,93(1),68-76.
    [24] Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S,Poutch F. Effect of fillers onthe fire retardancy of intumescent polypropylene compounds, Polymer Degradation and Stability2003,82(2),325-331.
    [25] Jacobs P A, Uytterho J. B. Quantitative infrared spectroscopy of amines in synthetic zeolites X andY.1. Alkylammonium Y zeolites as precursors of acid hydroxyls in deaminated zeolites Y, Journal ofCatalysis1972,26(2),175-190.
    [26] Green J. Mechanisms for Flame Retardancy and Smoke suppression-A Review, Journal of FireSciences1996,14(6),426-442.
    [27] Marosi G, Marton A, Szep A, Csontos I, Keszei S, Zimonyi E, Toth A,Almeras X. Fire retardancyeffect of migration in polypropylene nanocomposites induced by modified interlayer, PolymerDegradation and Stability2003,82(2),379-385.
    [28] Tang Y, Hu Y, Li B G, Liu L, Wang Z Z, Chen Z Y, Fan W C. Polypropylene/montmorillonitenanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylenenanocomposites, Journal of Polymer Science Part A-Polymer Chemistry2004,42(23),6163-6173.
    [29] Liu Y, Wang J S, Deng C L, Wang D Y, Song Y P,Wang Y Z. The synergistic flame-retardant effectof O-MMT on the intumescent flame-retardant PP/CA/APP systems, Polymers for AdvancedTechnologies2009, DOI:10.1002/pat.1502.
    [30] Nawani P, Gelfer M Y, Hsiao B S, Frenkel A, Gilman J W,Khalid S. Surface Modification ofNanoclays by Catalytically Active Transition Metal Ions, Langmuir2007,23(19),9808-9815.
    [31] Nawani P, Desai P, Lundwall M, Gelfer M Y, Hsiao B S, Rafailovich M, Frenkel A, Tsou A H,Gilman J W, Khalid S. Polymer nanocomposites based on transition metal ion modified organoclays,Polymer2007,48(3),827-840.
    [32] Tang T, Chen X, Chen H, Meng X, Jiang Z, Bi W. Catalyzing Carbonization of PolypropyleneItself by Supported Nickel Catalyst during Combustion of Polypropylene/Clay Nanocomposite forImproving Fire Retardancy, Chemistry of Materials2005,17(11),2799-2802.
    [33]黄炎球,潘忠华,高广立.柱撑蒙脱石研究现状,材料导报1999,13(5),31-33.
    [34]李庆伟,周春晖,葛忠华,刘化彦,蔡晔.蒙脱土改性催化材料的研究进展,工业催化2002,10(4),55-59.
    [35] Al-Zahrani S M, Jibril B Y, Abasaeed A E. Propane Oxidative Dehydrogenation overAlumina-Supported Metal Oxides, Industrial&Engineering Chemistry Research2000,39(11),4070-4074.
    [36] Qin H, Zhang S, Zhao C, Hu G, Yang M. Flame retardant mechanism of polymer/claynanocomposites based on polypropylene, Polymer2005,46(19),8386-8395.
    [37]曲成东,田明,冯予星,张立群.凹凸棒土/聚合物复合材料的研究进展,合成橡胶工业2003,26(1),1-4.
    [38] Hansen A S. Prediction of heat release in the single burning item test, Fire and Materials2002,26(2),87-97.
    [39] Petrella R V. The Assessment of Full-Scale Fire Hazards from Cone Calorimeter Data, Journal ofFire Sciences1994,12(1),14-43.
    [40]孔庆红.聚合物/铁蒙脱土纳米复合材料的制备及阻燃性能研究.博士学位论文,科学技术大学,合肥,2006.
    [1] Le Bras M, Bourbigot S, Le Tallec Y, Laureyns J. Synergy in intumescence-application to
    [beta]-cyclodextrin carbonisation agent in intumescent additives for fire retardant polyethyleneformulations, Polymer Degradation and Stability1997,56(1),11-21.
    [2] Fontanelli R, landoni G, Legnani G, Self-extinguishing polymeric compositions, US4504610,1985.
    [3] Hu X P, Li Y L,Wang Y Z. Synergistic Effect of the Charring Agent on the Thermal and FlameRetardant Properties of Polyethylene, Macromolecular Materials and Engineering2004,289(2),208-212.
    [4] Li B, Xu M. Effect of a novel charring-foaming agent on flame retardancy and thermaldegradation of intumescent flame retardant polypropylene, Polymer Degradation and Stability2006,91(6),1380-1386.
    [5]王玉忠,胡小平,无卤膨胀阻燃聚烯烃聚合物, CN1709968A,2005.
    [6]李斌,许苗军,张秀成,大分子三嗪成炭-发泡剂及其合成方法, CN1715272A,2006.
    [7]姜宏宇,王宇旋,靳晓雨,三嗪类交联化合物及其制备方法与应用, CN101362819A,2009.
    [8] Lewin M. Synergistic and catalytic effects in flame retardancy of polymeric materials-Anoverview, Journal of Fire Sciences1999,17(1),3-19.
    [9] Jimenez M, Duquesne S, Bourbigot S. Intumescent fire protective coating: Toward a betterunderstanding of their mechanism of action, Thermochimica Acta2006,449(1-2),16-26.
    [10] Bugajny M, Le Bras M, Bourbigot S, Poutch F, Marc L J. Thermoplastic polyurethanes ascarbonization agents in intumescent blends. Part1: fire retardancy of polypropylene/thermoplasticpolyurethane/ammonium polyphosphate blends, Journal of Fire Sciences1999,17,494-513.
    [11] Bugajny M, Le Bras M, Bourbigot S. Thermoplastic polyurethanes as carbonization agents inintumescent blends. Part2: Thermal behavior of polypropylene/thermoplastic polyurethane/ammoniumpolyphosphate blends, Journal of Fire Sciences2000,18,7-27.
    [12] Bugajny M, Le Bras M, Noel A, Bourbigot S. Use of thermoplastic polyurethanes ascarbonisation agents in intumescent blends. Part3: Modification of the dynamic properties ofpolypropylene/thermoplastic polyurethane/ammonium polyphosphate formulations with heat and stress,Journal of Fire Sciences2000,18(2),104-129.
    [13]王清才.聚磷酸铵(APP)分子量表征及结晶结构研究.博士学位论文,北京理工大学,北京,2006.
    [14] Pfanstiel R, Iler R K. Potassium Metaphosphate: Molecular Weight, Viscosity Behavior and Rateof Hydrolysis of Non-cross-linked Polymer, Journal of the American Chemical Society1952,74(23),6059-6064.
    [15] Horacek H, Grabner R. Advantages of flame retardants based on nitrogen compounds, PolymerDegradation and Stability1996,54(2-3),205-215.
    [16]潘祖仁.高分子化学,北京,化工工业出版社,2007.
    [17] Saihi D, Vroman I, Giraud S, Bourbigot S. Microencapsulation of ammonium phosphate with apolyurethane shell. Part II. Interfacial polymerization technique, Reactive and Functional Polymers2006,66(10),1118-1125.
    [1]http://www.flameretardants.eu/Content/Default.asp?PageName=openfile&DocRef=2008-04-07-00001.欧洲阻燃协会网站
    [2] http://www.cefic-efra.com/content/Default.asp?PageID=167.欧洲阻燃协会相关网站
    [3]欧玉湘,李建军.阻燃剂-性能、制造及应用,北京,化学工业出版社,2006.
    [4]赵海燕.聚烯烃弹性体改性聚丙烯的研究进展,山东化工2007,36(6),14-16.
    [5] Kukaleva N, Jollands M, Cser F,Kosior E. Influence of phase structure on impact toughening ofisotactic polypropylene by metallocene-catalyzed linear low-density polyethylene, Journal of AppliedPolymer Science2000,76(7),1011-1018.
    [6] Yang J, Zhang Y,Zhang Y. Brittle-ductile transition of PP/POE blends in both impact and highspeed tensile tests, Polymer2003,44(17),5047-5052.
    [7] Paul S,Kale D D. Impact modification of polypropylene copolymer with a polyolefinic elastomer,Journal of Applied Polymer Science2000,76(9),1480-1484.
    [8]李艳霞,孙文强,刘保成,李荣勋,刘光烨,刘建军.加相容剂的聚丙烯汽车仪表盘专用料的研制,工程塑料应用2001,29(6),8-10.
    [9]李艳霞,孙文强,刘保成,李荣勋,刘光烨,刘建军,申欣.聚丙烯汽车仪表盘专用料的研制,工程塑料应用2001,29(4),7-9.
    [10]刘喜军,贾宏革,唐万侠,胡玉洁,李青山.汽车保险杠、仪表盘及门板专用料的研制,齐齐哈尔大学学报2001,17(1),30-34.
    [11]崔丽梅,刘新民,邱桂学,潘炯玺.我国PP/POE汽车保险杠的研究进展,塑料2003,(05),45-49.
    [12] Maio L D, Acierno D, Martino D D. Halogen Free Flame Retardant Agents for Polypropylene inWire Coating Process, Macromolecular Symposia2007,247(1),371-378.
    [13] Hong C H, Lee Y B, Bae J W, Jho J Y, Nam B U, Nam G J, Lee K J. Tensile and flammabilityproperties of polypropylene-based RTPE/clay nanocomposites for cable insulating material, Journal ofApplied Polymer Science2005,97(6),2375-2381.
    [14] Hong C H, Lee Y B, Bae J W, Jho J Y, Nam B U, Chang D-H, Yoon S-H,Lee K-J. Tensileproperties and stress whitening of polypropylene/polyolefin elastomer/magnesium hydroxide flameretardant composites for cable insulating application, Journal of Applied Polymer Science2005,97(6),2311-2318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700