用户名: 密码: 验证码:
膨胀阻燃聚乳酸复合材料的制备、性能和阻燃机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸是一种来源于可再生农作物的完全可生物降解聚合物,其良好的力学性能和生物相容性使其成为公认的可以在一定程度上取代传统石油基聚合物,但是其燃烧熔滴现象严重等问题限制了其应用范围,因此需要对其进行阻燃处理。本文在大量文献调研的基础上,综述了聚乳酸基本性能、聚乳酸的阻燃研究及POSS和碳纳米管作为聚合物阻燃剂的研究。针对聚乳酸燃烧熔滴现象严重的问题,采用膨胀型阻燃体系作为聚乳酸的阻燃剂,制备了阻燃复合材料,研究了材料的阻燃性能和阻燃机理,并将新型膨胀阻燃技术如包裹技术和三元一体膨胀阻燃技术应用于聚乳酸的阻燃,同时将POSS和碳纳米管作为阻燃协效剂引入聚乳酸阻燃体系,研究了POSS和碳纳米管对聚乳酸热降解机理和阻燃性能的影响,并讨论了阻燃机理。
     本论文归纳起来分以下几个部分:
     1.合成了成炭剂PEPA和ODOPM并将其与MP复配组成膨胀型阻燃体系应用于聚乳酸的阻燃。研究表明MP/ODOPM可以提高聚乳酸的极限氧指数,降低聚乳酸的PHRR,并能使聚乳酸通过UL94 V0测试,其最佳配比为1:1;MP /PEPA的加入可以极大的提高聚乳酸的极限氧指数,复合材料能通过UL94 V0测试,同时复合材料燃烧时并不产生熔滴现象,PU的加入可以提高复合材料的拉伸强度和冲击强度,并且使得燃烧后形成的炭层更加致密。
     2.以10-(2, 5-二羟基苯基)-10-氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO-BQ)和聚磷酸铵(APP)为酸源,以异氰尿酸三缩水甘油酯(TGIC)为气源,以聚乳酸为炭源制备了膨胀型阻燃聚乳酸复合材料。研究表明膨胀型阻燃体系能够提高聚乳酸的极限氧指数,并能使得复合材料达到UL94 V0级别。MCC结果显示,膨胀型阻燃剂能够降低复合材料的PHRR,TGA结果显示,阻燃复合材料的热稳定性和热解后成炭量都比聚乳酸高。对炭渣进行分析表明,复合材料的膨胀炭层较为致密,提高了材料的火灾安全性。制备了“三元一体”膨胀型阻燃剂BTOCPM,将其应用于聚乳酸阻燃,可以明显提高聚乳酸的阻燃级别,机理研究表明BTOCPM可以促进聚乳酸的燃烧成炭。动态力学研究表明,BTOCPM与聚乳酸的相容性较好。
     3.为了降低阻燃剂的吸水性,提高阻燃剂与聚乳酸基体的相容性,降低材料的成本,以微胶囊包裹聚磷酸铵(PUMAPP)为酸源,三聚氰胺为气源,淀粉为炭源的膨胀阻燃体系应用于聚乳酸阻燃。膨胀阻燃聚乳酸复合材料的极限氧指数有着极大的提高,同时能够通过UL94 V0测试,并且其PHRR和THR相比纯聚乳酸都有所降低。TGA测试表明其热稳定性和热解成炭量都有所提高。TG-FTIR、RTFTIR及XPS分析可得知膨胀阻燃体系的加入可以增加不可燃挥发性气体的释放量,并且使得聚乳酸燃烧时,其表面形成致密炭层,提高了材料的火灾安全性。
     4.将TPOSS作为阻燃协效剂引入微胶囊包裹聚磷酸铵和三聚氰胺膨胀阻燃体系,并应用于聚乳酸阻燃。研究表明,TPOSS以纳米尺寸聚集于复合材料基体中。IFR与TPOSS在一定的比例下能够大大提高聚乳酸材料的氧指数,并能够通过UL94 V0测试,同时能够极大的降低聚乳酸的PHRR和THR,随着TPOSS添加量的增加,阻燃复合材料的成炭量增加明显,膨胀性更加明显,并且燃烧时不会出现熔融滴落现象。对RTFTIR、TG-FTIR及XPS的测试结果进行分析,得到TPOSS协效膨胀阻燃聚乳酸复合材料的阻燃机理为:在燃烧初期囊材降解、破裂,PUMAPP放出磷酸和大量不燃性气体,催化PLA降解,形成膨胀、多孔炭层;TPOSS受热氧化降解生成SiO2类物质覆盖在炭层的表面,提高炭层的热稳定性。此炭层会阻止气相和固相之间的热与质量交换,阻止内部材料的进一步燃烧,达到阻燃的目的。
     5.将MWNTs和POSS作为阻燃协效剂引入PEPA/MP膨胀阻燃聚乳酸体系,研究了它们对复合材料的热降解性能和阻燃性能的影响。惰性气氛中和空气气氛中,MWNTs的引入可以提高复合材料在高温区的热稳定性和成炭量,MWNTs在复合材料基体中主要作用是形成了网状结构阻止了热解气体的释放;MCC和LOI结果表明,当MWNTs的添加量达到一定程度时可以明显提高复合材料的LOI,PHRR也有所降低。空气气氛下,MWNTs的加入可以提高复合材料的氧指数和成炭量,但是对热氧化降解机理没有明显的影响。惰性气氛下,TPOSS在较低的温度下升华和裂解,导致复合材料的起始热降解温度提前,对复合材料高温下的热稳定性和成炭量没有明显影响;TG-FTIR结果表明,TPOSS可以降低复合材料的二氧化碳和环状低聚物的释放,提高一氧化碳的释放;空气气氛下,TPOSS改变了复合材料的热氧化降解机理,提高了复合材料的热稳定性和成炭量。TPOSS加入后,可以提高复合材料的极限氧指数,并能通过UL94 V0测试。炭渣测试表明,TPOSS的加入可以提高复合材料的粘度,阻止气体的逸出,同时TPOSS在受热氧化后形成了二氧化硅类物质覆盖在炭层表面,使得炭层热稳定性提高,因此复合材料的热稳定性能提高。
Polylactide (PLA) is a biodegradable polymer derived from renewable agricultural products. The excellent mechanical and biocompatibility properties have made polylactide replace polyolefins to some extent. However, the poor fire resistance, especially the dripping tendency during the combustion limited the application of polylactide, so modification for flame retardancy is necessary. Based on the investigation of a large amount of literatures about the properties, the flame retardant development of polylactide and the use of carbon nanotubes and POSS on the flame retardant study of polymers, in this dissertation, intumescent flame retardant (IFR) have been used to impart PLA with flame retardancy, the flame properties and mechanism have been studied. New intumescent technology such microcapsulation and new intumescent flame retardant have been used to flame resistant of PLA study. In addition, Trisilanolisobutyl-POSS (TPOSS) and multi-walled carbon nanotubes (MWNTs) have been used, the synergistic effect on the thermal properties and flame retardancy of PLA/IFR composites have been studied.
     This dissertation is composed of six parts:
     1. Charring agents PEPA and ODOPM have been prepared the combination of charring agents and MP have been used as intumescent flame retardants for PLA. From the results of LOI, UL94 test, it can be found that flame retardant PLA composite with the suitable content of MP and ODOPM has a better flame retardant properties and a higher fire safety. PLA/MP/PEPA has a high LOI value and passes the UL94 V0 test, no drip has been seen during the combustion, the addition of PU can improve the impact strength and tensile strength of PLA/MP/PEPA composites, more stable char has been seen after combustion with the PU.
     2. PLA/IFR composites which the acid source is DOPO-BQ, the gas source is TGIC and the carbon source is PLA have been prepared. By the addition of IFR, higher LOI value has been achieved; UL94 V0 rate has been reached; PHRR has been reduced compared with pure polylactide. TGA results show that PLA/IFR composites have higher thermal stability and char production. The analysis of the char after combustion shows that more impact of char has achieved which can improve the fire safety of the material. New IFR BTOCPM which combined with acid source, gas source and carbon source has been synthesized. High flame retardancy has been achieved by the addition of BTOCPM. Dynamic mechanical analysis shows that compatibility of BTOCPM and polylactide is well.
     3. In order to reduce the water absorption of the flame retardant; improve the compatibility of the flame retardant and polylactide; reduce the cost of material, microencapsulated ammonium polyphosphate (PUMAPP) has been used as acid source, melamine (MA) has been used as gas source and starch has been used as carbon source to unit a IFR system, the PLA/IFR composites have been prepared. LOI, UL94, MCC and TGA results show that PLA/IFR has high thermal stability and flame retardancy. TG-FTIR, RTFTIR and XPS results show that more non-flammable gas has been released and more stable char has been formed during the combustion of the material, which improve the fire safety of polylactide.
     4. TPOSS has been introduced to IFR system composed with PUMAPP and MA as synergistic agent. PLA/IFR/TPOSS composites have been prepared. SEM shows that nanoscale TPOSS particles are well dispersed in PLA/IFR matrix. LOI, UL94 MCC and TGA results show that the addition of TPOSS can enhance the thermal stability and flame retardancy of PLA/IFR composites. TG-FTIR, RTFTIR and XPS results reveal that the flame retardant mechanism of PLA/IFR/TPOSS: early during the combustion, PUMAPP release of phosphoric acid and a large number of non-flammable gas, catalytic PLA degradation, expanded, porous carbon layer has been formed; SiO2 substances generated by thermal degradation of TPOSS covering the surface of carbon layers to improve thermal stability.
     5. The effect of MWNTs and TPOSS on the thermal stability and flame retardancy of PLA/MP/PEPA composites has been studied. The net-work of MWNTs with the suitable content has been generated which can improve the thermal stability and flame retardancy of PLA/MP/PEPA composites in inert and air atmosphere. In inert atmosphere, sublimation of TPOSS has been observed, which reduced the thermal stability of PLA/MP/PEPA composites; more flammable gas has been released which reduced the flame retardancy of PLA/MP/PEPA composites. In air atmosphere, more stable compounds have been generated during the thermal degradation of hybrids, the addition of TPOSS can enhance the viscosity of the char during the combustion of hybrids which can prevent the release of gas, the improving intumescent of hybrids has been observed, thermal stability and flame retardancy has been improved by the addition of TPOSS in air atmosphere.
引文
[1] Garlotta D. 2001. A literature review of poly(lactic acid). J Polym Environ, 9: 63-84
    [2] Auras R, Harte B, Selke S. 2004. An overview of polylactides as packaging materials. Macromol Biosci, 4: 835-864
    [3] Conn RE, Kolstad JJ, et al. 1995. Safety assessment of polylactide(PLA) for use as a food-contact polymer. Fd Chem Toxic, 33: 273-283
    [4] Grijpma DW, nijenhuis AJ, et al. 1992. High impact strength as-polymerization PLLA. Polym Bull, 29: 571-578
    [5] Fambri L, Pegoretti A, et al. 1997. Biodegradable fibers of poly(L-lactic acid) produced by melt spinning. Polymer, 38: 79-85
    [6] Tormala P. 1992. Biogeradable self-reinforced composite materials; manufacturing structure and mechanical properties. Clin Mater, 10: 29-34
    [7] McNeill C, Leiper HA. 1985. Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions. Polym Degrad Stab, 11: 267-285
    [8] McNeill C, Leiper HA. 1985. Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab, 11: 309-326
    [9] Jamshidi K, Hyon SH, et al. 1988. Thermal characterization of polylactide. Polymer, 29: 2229-2234
    [10] Kopinke FD, Remmler M, et al. 1996. Thermal decomposition of biodegradable polyesters-??. Poly(lactic acid). Polym Degrad Stab, 53: 329-342
    [11] Cam D, Marucci M. 1997. Influence of residual monomers and metals on poly(L-lactide) thermal stability. Polymer, 38: 1879-1884
    [12] Westphal C, Perrot C, et al. 2001. Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modeled on LDPE and PLA. Polym Degrad Stab, 73: 281-287
    [13] Babanalbandi A, Hill D, et al. 1999. Thermal stability of poly(lactic acid) before and after -radiolysis. Polym Int, 48: 980-984
    [14] Lee SH, Kim SH, et al. 2001. Synthesis and Degradation of End Group Functionalized Polylactide. J Polym Sci, Part A: Polym Chem, 39: 973-985
    [15] Yang SL, Wu ZH, et al. 2008. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test, 27: 957-963
    [16] Signori F, Coltelli MB, et al. 2009. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab, 94: 74-82
    [17] Zhou Q, Xanthos M. 2009. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab, 94: 327-338
    [18] Kubolawa H, Hatakeyama T. 1999. Thermal decomposition behavior of polylactide fabrics treated with flame retardants. Sen-I Gakkaishi, 55: 349-355
    [19] Kubolawa H, Ohta M, Hatakeyama T. 1999. Flame-retarding of polylactide fabrics. Sen-I Gakkaishi, 55: 290-297
    [20] Kimura K, Horikoshi Y. 2005. Bio-based polymers. Fujitsu Sci Tech J, 41: 173-180
    [21] Reti C, Casetta M, et al. 2008. Flammability properties of intumescent PLA including starch and lignin. Polym Adv Tech, 19: 628-635
    [22] Ke CH, Li J, et al. 2010. Synergistic effects between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab, 95: 763-770
    [23] Li SM, Ren J, et al. 2010. Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polym Int, 59: 242-248
    [24] Zhan J, Song L, et al. 2009. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab, 94: 291-296
    [25] Ma HY, Tong LF, et al. 2007. A novel intumscent flame-retardant: synthesis and application in ABS copolymer. Polym Degrad Stab, 92: 720-726
    [26]Gao F, Tong LF, Fang ZP. 2006. Effect of a novel phosphorous-nitrogen containing intumesecnt flame retardant on the fire retardancy and the thermal behaviour of poly(butylenes terphthalate). Polym Degrad Stab, 91: 1295-1299
    [27] Nguyen C, Kim JH. 2008. Thermal stabilities and flame retardancies of nitrogen-phosphorusflame retardants based on bisphosphoramidates. Polym Degrad Stab, 93: 1037-1043
    [28] Zhao CS, Huang FL, et al. 2008. A novel halogen-free flame retardant for glass-fiber-reinforced poly(ethylene terephthalate). Polym Degrad Stab, 93: 1188-1193
    [29] Wu K, Wang ZZ, Hu Y. 2008. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene. Polym Adv Technol, 19: 1118-1125
    [30] Saihi D, Vroman I, et al. 2006. Microencapsulation of ammonium phosphate eith a polyurethane shell. Part II. Interfacial polymerization technique. React Funct Polym, 66: 1118-1125
    [31] Wang ZZ, Wu K, et al. 2008. Study on flame retardance of co-microencapsulated ammonium polyphosphate and dipentaerythritol in polypropylene. Polym Eng Sci, 48: 2426-2431
    [32]胡源,宋磊等. 2008.阻燃聚合物纳米复合材料.北京:化学工业出版社
    [33]胡源,宋磊,尤飞,钟茂华. 2007.火灾化学导论.北京:化学工业出版社
    [34]Ray SS, Okamoto K, Yamada K et al. 2002. New polylactide-layred silicate nanocomposites: Preparation, characterization, and properties. Macromolecules. 35: 3104-3110
    [35] Ray SS, Okamoto M, Yamada M et al. 2003. New polylactide-layred silicate nanocomposites. Concurrent improverments of material properties, biodegradability and melt rheology. Polymer. 44: 857-866
    [36] Ray SS, Okamoto M, Yamada K et al. 2003. New polylactide/layred silicate nanocomposites. High-performance biodegradable materials. Chem Mater. 15: 1456-1465
    [37] Ray SS, Okamoto M, Yamada K et al. 2003. New polylactide/layred silicate nanocomposites. Structure, properties and biodegrability. Macromol Rapid Common. 24: 815-840
    [38] Ray SS, Okamoto M, Yamada K et al. 2003. New polylactide/layred silicate nanocomposites. Designing of materials with desired properties. Polymer. 44: 6633-6646
    [39] Ray SS, Okamoto M. 2003. New polylactide/layred silicate nanocomposites. 6. Melt rheology and foam processing. Macromol Mater Eng. 288: 936-944
    [40] Ray SS, Yamada K Okamoto K, et al. 2003. Control of biodegradability of polylactide nanocomposties technology. Macromol Mater Eng. 288: 203-208
    [41] Paul MA, Alexander M, Degee M et al. 2003. Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization. Macromol Rapid Commun. 24: 561-566
    [42] Chen GX, Kim HS, Shim JH et al. 2005. Role of epoxy groups on clay surface in the improvement of morphology of poly(L-lactide)/clay composites. Macromolecules. 38: 3738-3744
    [43] Paul MA, Alexander M, Degee M et al. 2003. New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer. 44: 443-450
    [44] Solarski S, Mahjoubi F, et al. 2007. (Plasticized) Polylactide/clay nanocomposite textile: thermal, mechanical, shrinkage and fire properties. J Mater Sci, 42: 5105-5117
    [45] Fukushima K, Murariu M, et al. 2010. Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polym Degrad Stab, 95: 1063-1076
    [46] Murariu M, Dechief AL, et al. 2010. The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab, 95: 889-900
    [47] Bourbigot S, Duquesne S, et al. 2008. Polymer nanocomposites with and without conventional flame retardants: reaction to fire and synergy. Mol Cryst Liq Cryst, 486: 325-332
    [48] Bourbigot S, Le Bras, et al. 2004. Recent advances for intumenscent polymers. Macromol Mater Eng, 289: 499-511
    [49]Tang Y, Hu Y, et al. 2003. Intumescent flame retardant montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polymer, 53: 1396-1400
    [50] Li SM, Yuan H, et al. 2009. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating monmorillomite on poly(lactic acid). Polym Adv Technol, 20: 1114-1120
    [51] Fontaine G, Bourbigot S.2009. Intumescent polylactide: A nonflammable material. J Appl Polym Sci, 113: 3860-3865
    [52] Murariu M, Bonnaud L, et al. 2010. New trends in polylactide(PLA)-based materials:“Green”PLA-calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab, 95: 374-381
    [53] Lichtenhan JD, Gilman JW. 2002-03-26. Preceramic additives as fire retardants for plastics, US Patent, 6362279
    [54] Liu L, Hu Y, et al. 2007. Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci, 42: 4325-4333
    [55] Bourbigot S, Turf T, et al. 2009. Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab, 94: 1230-1237
    [56] Fina A, Abbenhuis HCL, et al. 2006. Metal functionalized POSS as fire retardants in polypropylene. Polym Degra Stab, 91: 2275-2281
    [57] Fina A, Abbenhuis HCL, et al. 2008. Catalytic fire retardant nanocomposites. Polym Degrad Stab, 93: 1647-1655
    [58] He QL, Song L, et al. 2009. Synergistic effects of polyhedral oligomeric silsesquioxane (POSS) and oligomeric bisphenyl A bis(diphenyl phosphate) (BDP) on thermal and flame retardant properties of polycarbonate. J Mater Sci, 44:1308–1316
    [59] Iijima S. 1991. Helical microtubules of graphitic carbon. Nature. 354: 56-68
    [60] Kashiwagi T, Grulke E, et al. 2002. Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites. Macromol Rapid Commun, 23: 761-765
    [61] Kashiwagi T, Grulke E, et al. 2004. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer, 45: 4227-4239
    [62] Kashiwagi T, Du FM, et al. 2005. Nanoparticle networks reduce the flammability of polymer nanocomposites. Natur Mater, 4: 928-933
    [63] Kashiwagi T, Du FM, et al. 2005. Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: effects of nanotube dispersion and concentration. Polymer, 46: 471-481
    [64] Cipiriano BH, Kashiwagi T, et al. 2007. Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer, 48: 6086-6096
    [65] Beyer G. 2002. Short communication: carbon nanotubes as flame retardants for polymers. Fire Mater, 26: 291-293
    [66] Peeterbroeck S, Laoutid F, et al. 2007. Mechanical properties and flame-retardant behavior of Ethylene Vinyl Acetate/High-density polyethylene coated carbon nanotube nanocomposites. Adv Funct Mater, 17: 2787-2791
    [67] Ma YH, Tong LF, et al. 2008. Functionalizing carbon nanotubes by grafting on intumescent flame retardant: nanocomposite synthesis, morphology, rheology, and flammability. AdvFunct Mater, 18: 414-421
    [68] Wang RY, Wang SF, Zhang Y. 2009. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci, 113: 3095-3102
    [69] Pan H, Qiu ZB. 2010. Biodegradable poly(L-lactide)/polyhedral oligomeric silsequioxanes nanocomposties: enhanced crystallization, mechanical properties, and hygrolytic degradation. Macromolecules, 43: 1499-1506
    [70] Goffin AL, Duquesne E, et al. 2007. New organic-inorganic nanohybrids via ring opening polymerization of (di)lactones initiated by functionalized polyhedral oligomeric silsesquioxane. Euro Polym J, 43: 4103-4113
    [71] Tsuji H, Kawashima Y, et al. 2007. Poly(L-lactide)/nano-structured carbon composites: conductivity, thermal properties, crystallization, and biodegradation. Polymer, 48: 4213-4225
    [72] Wu DF, Wu L, et al. 2010. Relations between the aspect ration of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Part B-Polym Phys, 48: 479-489
    [73] Tang Y, Hu Y, et al. 2004. Polypropylene/montmorillonite nanocomposites and intumescent, flame retardant montmorillonite synergism in polypropylene nanocomposites. J Polym Sci: Part A: Polym Chem, 42: 6163-6173
    [74] Zhou S, Wang ZZ, et al. 2008. A study of the novel intumescent flame-retarded PP/EPDM copolymer blends. J Appl Polym Sci, 110: 3804-3811
    [75] Lu HD, Hu Y, et al. 2008. Effects of charring agents on the thermal and flammability properties of intumescent flame-retardant HDPE-based clay nanocomposites. Polym-Plast Technol Eng, 47: 152-156
    [76] Zhou S, Song L, et al. 2008. Flme retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Polym Degrad Stab, 93: 1799-1806
    [77] Zhou S, Wang ZZ, et al. 2008. Flme retardation and thermal degradation of flame-retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Fire Mater, 32: 307-319
    [78] Wu K, Song L, et al. 2008. Microencapsulation of ammonium polyphosphate with PVA-melamine-formaldehyde resin and its flame retardance in polypropylene. Polym AdvTechnol, 19: 1914-1921
    [79] Xing WY, Song L, et al. 2009. Thermal properties and combustion behaviors of a novel UV-curable flame retarded coating containing silicon and phosphorus. Polym Degrad Stab, 94: 1503-1508
    [80] Nie SB, Song L, et al. 2009. Intumescent flame retardation of starch containing polypropylene semibiocomposites: flame retardancy and thermal degradation. Ind Eng Chem Res, 48: 10751-10758
    [81] Wu K, Song L, et al. 2009. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog Organ Coat, 65: 490-497
    [1] Sen AK, Mukheriee B, et al. 1991. Preparation and characterization of low-halogen and nonhalogen fire-resistant low-smoke (FRLS) cable sheathing compound from blends of functionalized polyolefins and PVC. J Appl Polym Sci, 43: 1673-1684.
    [2]胡源,宋磊,尤飞,钟茂华. 2007.火灾化学导论.北京:化学工业出版社
    [3] Zhan J, Song L, et al. 2009. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab, 94: 291-296
    [4] Li X, Ou Y, Shi Y. 2002. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate. Polym Degrad Stab, 77:383–390
    [5] Zhou S, Song L, et al. 2008. Flame retardation and char formation mechanicsm of intumescent flame retarded polypropylene composites containning melamine phosphate and pentaerythritol phosphate. Polym Degrad Stab, 93: 1799-1806
    [6] Gao F, Tong LF, Fang ZP. 2006. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behavior of poly(butylene terephthalate). Polym Degrad Stab, 91: 1295-1299
    [7] Shieh JY, Wang CS. 2001. Synthesis of novel flame retardant epoxy hardeners and properties of cured products. Polymer, 42: 7617-7625
    [8] Levchik SV, Balabanovich AI, et al. 1997. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6. Fire Mater; 21:75-83
    [9] Jahromi S, Gabri?lse W, Braam A. 2003. Effect of melamine polyphosphate on thermal degradation of polyamides: a combined X-ray diffraction and solid-state NMR study. Polymer, 44: 25-37
    [10] Weil ED, Levchik S. 2004. Current practice and recent commercial developments in flame retardancy of polyamides.J Fire Sci, 22: 251-264
    [11] Balabanovich AI. 2005. Thermal decomposition study of intumescent additives: pentaerythritol phosphate and its blend with melamine phosphate. Therm Acta, 435: 188-196
    [12] Halpem Y, Deona MM, Nisvander RH. 1984. Fire retardancy of thermoplastic materials by intumescent. Ind Eng Chem Prod Res Dev, 23: 233-238
    [13] Hergenrother PM, Thompson CM, et al. 2005. Flame retardant aircraft epoxy resinscontaining phosphorus. Polymer, 46: 5012-5024
    [14] Zhang H, Westmoreland PR, et al. 2002. Themal decomposition and flammability of fire-resistant, UV/visible-sensitive polyarylates, copolymers and blends. Polymer; 43: 5463-5472
    [15] Reti C, Casetta M, et al. 2008. Flammability properties of intumescent PLA including starch and lignin. Polym Adv Tech, 19: 628-635
    [16] Costa L, Camino G, Dicortemiglia MPL. 1990. Mechanism of thermal-degradation of fire- retardant melamine salts. ACS Symp Ser; 425: 211–238
    [17] George GA, Celina M, et al. 1995. Real-time analysis of the thermal oxidation of polyolefins by FT-IR emission. Polym Degrad Stab, 48:199-210
    [18] Xie RC, Qu BJ, Hu KL. 2001. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends. Polym Degrad Stab, 72: 313-321
    [19] Bugajny M, Bourbigot S. 1999. The origin and nature of flame retardance in ethylene–vinyl acetate copolymers containing hostaflam AP 750. Polym Int, 48:264–270
    [20] Liu W, Chen DQ, et al. 2007. Char-forming mechanism of a novel polymeric flame retardant with char agent. Polym Degrad Stab, 92: 1046–1052
    [21] Wang CS, Shieh JY, 2000. Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate. Eur Polym J, 36: 443-452
    [22] Yuan YM, Ruckenstein E. 1998. Polyurethane toughened polylactide. Polym Bul, 40: 485-490
    [1] Garlotta D. 2001. A literature review of poly(lactic acid). J Polym Environ, 9: 63-84
    [2] Auras R, Harte B, Selke S. 2004. An overview of polylactides as packaging materials. Macromol Biosci, 4: 835-864
    [3] Conn RE, Kolstad JJ, et al. 1995. Safety assessment of polylactide(PLA) for use as a food-contact polymer. Fd Chem Toxic, 33: 273-283
    [4] Reti C, Casetta M, et al. 2008. Flammability properties of intumescent PLA including starch and lignin. Polym Adv Tech, 19: 628-635
    [5] Ke CH, Li J, et al. 2010. Synergistic effects between a novel hyperbranched charring agent and ammonium polyphosphate on the flame retardant and anti-dripping properties of polylactide. Polym Degrad Stab, 95: 763-770
    [6] Ma HY, Tong LF, et al. 2007. A novel intumscent flame-retardant: synthesis and application in ABS copolymer. Polym Degrad Stab, 92: 720-726
    [7] Gao F, Tong LF, Fang ZP. 2006. Effect of a novel phosphorous-nitrogen containing intumesecnt flame retardant on the fire retardancy and the thermal behaviour of poly(butylenes terphthalate). Polym Degrad Stab, 91: 1295-1299
    [8] Nguyen C, Kim JH. 2008. Thermal stabilities and flame retardancies of nitrogen-phosphorus flame retardants based on bisphosphoramidates. Polym Degrad Stab, 93: 1037-1043
    [9] Kumar SA, Denchev Z. 2009. Development and characterization of phosphorus- containing siliconized epoxy resin coatings. Progress Organ Coat, 66: 1-7
    [10] Wang X, Hu Y, et al. 2010. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer, 51: 2435-2445
    [11]欧育湘,李建军. 2008.阻燃剂-性能、制造机应用.北京:化学工业出版社
    [12]邓晶晶,黄宇等. 2009.有机磷系化合物反应阻燃聚乳酸的机理与性能.工程塑料应用, 37: 54-57
    [1] Rasala RM, Janorkarc AV, Hirt DE. 2010. Poly(lactic acid) modifications. Prog Polym Sci, 35: 338-356
    [2] Yu T, Ren J, et al. 2010. Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Composites: Part A, 41: 499–505
    [3] Li SM, Yuan H, et al. 2009. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym Adv Technol, 20: 1114–1120
    [4] Sykacek E, Hrabalova M, et al. 2009. Extrusion of five biopolymers reinforced with increasing wood flour concentration on a production machine, injection moulding and mechanical performance. Composites: Part A, 40: 1272–1282
    [5] Li BH, Yang MC. Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polym Adv Technol, 17: 439–443.
    [6] Zhang JF, Sun XZ. 2004. Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules, 5: 1446-1451
    [7] Ke TY, Sun XZ , Seib P. 2003. Blend of poly ( lactic acid) and starch containing varying amylose content. J Appl Polym Sci, 89 :3639-3646
    [8] Kweon DK, Kawasaki N, et al. 2004. Preparation and characterization of starch/ polycaprolactone blend. J Appl Polym Sci, 92: 1716–1723
    [9] Jiang L, Liu B, Zhang JW. 2009. Novel high-strength thermoplastic starch reinforced by in situ poly(lactic acid) fibrillation. Macromol Mater Eng, 294: 301–305
    [10] Reti C, Casetta M, et al. 2008.Flammability properties of intumescent PLA including starch and lignin. Polym Adv Technol, 19: 628–635
    [11] Gao M, Wu W, Yan Y. 2009. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J Therm Anal Calorim, 95: 605–608
    [12] Zhan J, Song L, et al. 2009. Combustion properties and thermal degradation behavior of polylactide with an effective intumescent flame retardant. Polym Degrad Stab, 94: 291-296
    [13] Gao M, Yang SS. 2010. A novel intumescent flame-retardant epoxy resins system. J Appl Polym Sci, 115: 2346–2351
    [14] Li Q, Jiang PK, Wei P. 2005. Thermal degradation behavior of poly(propylene) with a novel silicon-containing intumescent flame retardant. Macromol Mater Eng, 290: 912–919
    [15] Liu MF, Huang X, et al. 2007. Flame retardant polyethylene with intumescent system containing macromolecule-encapsulated low molecular weight charring agent. Polym & Polym Comp, 15: 591-596
    [16] Walters RN, Lyon RE. 2003. Molar group contributions to polymer flammability. J Appl Polym Sci, 87: 548–563
    [17] Lyon RE, Walters RN, Stoliarov SI. 2007. Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci, 47: 1501–1510
    [18] Shi Y, Kashiwagi T, et al. 2009. Ethylene vinyl acetate/layered silicate nanocomposites prepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer, 50: 478-3487
    [19] Baker RR, Coburn S, et al. 2005. Pyrolysis of saccharide tobacco ingredients: a TGA–FTIR investigation. J Anal Appl Pyrol, 74: 171–180
    [20] Braun U, Schartel B, et al. 2007. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6. Polym Degrad Stab, 92: 1528-1545
    [21] Colthup NB, Daly LH, 1990. Wiberley SE. Introduction to infrared and raman spectroscopy. Boston. Academic Press
    [22] Rudnik E. 2007. Thermal properties of biocomposites. J Therm Anal and Calorim, 88: 495–498
    [23] Bourbigot S, Le Bras M, et al. 1996. Synergistic effect of zeolite in an intumescence process - Study of the interactions between the polymer and the additives. J Chem Soc-Farad Transact, 92: 3435-3444.
    [24] Cheng XE, Liu SY, Shi WF. 2009. Synthesis and properties of silsesquioxane- based hybrid urethane acrylate applied to UV-curable flame-retardant coatings. Prog Org Coat, 65: 1–9
    [25] Zhu SW, Shi WF. 2003. Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polym Degrad Stab, 80: 217-222
    [26] Nakayama Y, Soeda F, Ishitani A. 1990. XPS study of the carbon fiber matrix interface. Carbon, 28: 21-26
    [27] Bourbigot S, Le Bras M, et al. 1997. XPS study of an intumescent coating II. Application to the ammonium polyphosphate/ pentaerythritol/ ethylenic terpolymer fire retardant system with and without synergistic agent. Appl Surf Sci, 120: 15-29
    [28] Gardner SD, Singamsetty CSK, Booth GL. 1995. Surface Characterization of Carbon-fibers using angle-resolved XPS and ISS. Carbon, 33: 587-595
    [1] Baney RH, Itoh M, et al. 1995. Silsesquioxanes. Chemical Reviews, 95: 1409-1430
    [2] Li GZ, Wang LC, et al. 2001. Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review. Journal of Inorganic and Organometallic Polymers, 11: 123-154
    [3] Lu TL, Liang GZ, Kou KC. 2005. Synthesis and characterization of cage octa(cyclohexylsilsesquioxane). J Mater Sci, 40: 4721-4726
    [4] Wang RY, Wang SF, Zhang Y. 2009. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci, 113: 3095–3102
    [5] Lee JH, Jeong YG. 2010. Preparation and characterization of nanocomposites based on polylactides tethered with polyhedral oligomeric silsesquioxane. J Appl Polym Sci, 115: 1039-1046
    [6] Li SM, Yuan H, et al. 2009. Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym Adv Technol, 20: 1114-1120
    [7] Nazare S, Kandola BK, Horrocks AR. 2006. Flame-retardant unsaturated polyester resin incorporating nanoclays. Polym Adv Technol, 17: 294-303
    [8] Morgan AB. 2006. Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol, 17: 206–217
    [9] Pluta M, Jeszka JK, Boiteux G. 2007. Polylactide/montmorillonite nanocomposites: Structure, dielectric, viscoelastic and thermal properties. Eur Polym J, 43: 2819-2835
    [10] Si MY, Zaitsev V, et al. 2007. Self-extinguishing polymer/organoclay nanocomposites. Polym Degrad Stab, 92: 86–93
    [11] Waddon AJ, Zheng L, et al. 2002.Nanostructured polyethylene-POSS copolymers: control of crystallization and aggregation. Nano letters, 2: 1149-1155
    [12] Walters RN, Lyon RE. 2003. Molar group contributions to polymer flammability. J Appl Polym Sci, 87: 548–563
    [13] Lyon RE, Walters RN, Stoliarov SI. 2007. Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci, 47:1501–1510
    [14] Shi Y, Kashiwagi T, et al. 2009. Ethylene vinyl acetate/layered silicate nanocompositesprepared by a surfactant-free method: Enhanced flame retardant and mechanical properties. Polymer, 50 :3478-3487
    [15] Bourbigot S, Le Bras M, et al. 1996. Synergistic effect of zeolite in an intumescence process - Study of the interactions between the polymer and the additives. J Chem Soc -Faraday Transactions, 92: 3435-3444.
    [16] Baker RR, Coburn S, et al. 2005. Pyrolysis of saccharide tobacco ingredients: a TGA–FTIR investigation. J Analyt Appl Pyroly, 74: 171–180
    [17] Wu K, Hu Y, et al. 2009. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind & Eng Chem Res, 48: 3150-3157
    [18] Colthup NB, Daly LH, Wiberley SE. 1990. Introduction to infrared and raman spectroscopy. Boston. Academic Press.
    [19] Zhu SW, Shi WF. 2003. Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polym Degrad Stab, 80: 217-222
    [20] Nakayama Y, Soeda F, Ishitani A. 1990. XPS study of the carbon fiber matrix interface. Carbon, 28: 21-26
    [21] Bourbigot S, Le Bras M, et al. 1997. XPS study of an intumescent coating II. Application to the ammonium polyphosphate/ pentaerythritol/ ethylenic terpolymer fire retardant system with and without synergistic agent. Appl Surf Sci, 120: 15-29
    [22] Gardner SD, Singamsetty CSK, Booth GL. 1995. Surface characterization of carbon-fibers using angle-resolved XPS and ISS. Carbon, 33: 587-595
    [23] Wang X, Hu Y, et al. 2010. Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J Polym Sci: Part B: Polym Phys, 48: 693–70
    [1]胡源,宋磊等. 2008.阻燃聚合物纳米复合材料.北京:化学工业出版社
    [2] Ma H, Tong L, et al. 2007. Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin. Nanotechnology, 18: 375602
    [3] Wu DF, Wu L, et al. 2008. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab, 93: 1577-1584
    [4] Schartel B, Potscheke P, et al. 2005. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J, 41: 1061-1070
    [5] McNeill C, Leiper HA. 1985. Degradation studies of some polyesters and polycarbonates—2. Polylactide: Degradation under isothermal conditions, thermal degradation mechanism and photolysis of the polymer. Polym Degrad Stab, 11: 309-326
    [6] Kopinke FD, Remmler M, et al. 1996. Thermal decomposition of biodegradable polyesters-??. Poly(lactic acid). Polym Degrad Stab, 53: 329-342
    [7] Zou HT, Yi CH, et al. 2009. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim, 97: 929-935
    [8] Hapuarachchi TD, Peijs T. 2010. Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos Pt A-Appl Sci Manul, 41: 954-963
    [9] Fina A, Tabuani D, et al. 2006. Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochim Acta, 440: 36-42
    [10] Wang RY, Wang SF, Zhang Y. 2009. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci, 113: 3095–3102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700