用户名: 密码: 验证码:
阻燃丙烯酸酯单体/低聚物的合成及其涂层热降机理与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了一种集酸源和炭源于一体的磷酸酯丙烯酸酯单体,对其固化膜的热降解机理和阻燃性能进行了研究,并讨论了其对于紫外光固化环氧和聚氨酯丙烯酸酯低聚物固化膜热降解机理和阻燃性能的影响:合成了一种含磷氮硅三种阻燃元素的丙烯酸酯单体和一种星形丙烯酸酯化三聚氰胺低聚物,对其固化膜的热降解机理和阻燃性能进行研究:同时制备了星形丙烯酸化三聚氰胺低聚物/磷酸酯三丙烯酸酯和星形丙烯酸化三聚氰胺低聚物/含磷氮硅的丙烯酸酯单体复合体系紫外光固化膨胀型阻燃涂层,研究其热降解机理和燃烧性能:选择最优的涂层体系,研究其对杉木的防火保护性能。具体的研究内容如下:
     1.以三氯氧磷、季戊四醇和丙烯酸羟乙酯为原料,合成了二官能度磷酸酯丙烯酸酯单体(BTP);采用热重分析、实时红外和直接进样质谱等表征手段对固化膜的热降解过程进行了研究。热重分析结果显示,BTP固化膜具有较好的成炭性能,在800℃时,仍然有36%的炭渣残留;动态红外和直接进样质谱结果表明,从160℃到270℃,BTP固化膜中磷酸酯结构首先降解生成磷酸结构,随着温度的进一步升高,这些降解产物缩聚生成聚磷酸,聚磷酸催化酯基降解生成芳香结构,并进一步成炭;BTP固化膜在300-400℃之间生成大量的水和二氧化碳;升温至500℃以上时,炭层中的聚磷酸结构进一步缩合生成磷氧化物,如P_2O_5、P_4O_(10)等。拉曼光谱、XRD和SEM结果表明,BTP固化膜燃烧后的炭层结构是致密的类石墨结构。
     2.将BTP作为环氧和聚氨酯丙烯酸酯稀释单体,用于紫外固化涂层。研究发现BTP的加入可以提高光固化速率,并明显提高固化膜的阻燃性能。研究了BTP阻燃环氧和聚氨酯丙烯酸酯固化膜热降解机理,含磷单体在低温下可以催化固化膜降解,生成稳定炭层,从而提高了高温热稳定性;极限氧指数、UL 94、热释放速率和质量损失速率研究结果表明BTP可以有效地提高EA和PUA的阻燃性能,在EA中加50 wt.%的BTP达V-0,而在PUA中只需30 wt.%的BTP达V-0;30wt.%的BTP可以使EA的氧指数由18.0提高到28.0,使PUA的氧指数由19.0提高到30.5;30 wt.%的BTP可以使EA/BTP和PUA/BTP体系的热释放速率分别降低58.9%和66.0%:BTP和聚氨酯丙烯酸酯之间存在明显的协同阻燃作用。
     3.以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)、γ-缩水甘油醚氧基丙基三甲氧基硅烷(KH-560)、2,4-甲苯二异氰酸酯(TDI)和丙烯酸羟乙酯为原料,合成了含磷氮硅三种阻燃元素的丙烯酸酯单体(DGTH):利用热重分析、实时红外和直接进样质谱等表征手段对固化膜的热降解过程进行了研究。DGTH固化材料具有较高的热稳定性,初始分解温度为273℃,在600℃时的炭渣量仍高达38%。DGTH固化材料的热降解主要分成三个部分:DOPO结构单元首先降解,生成含磷芳香族化合物,它进一步催化酯基降解;丙烯酸酯结构单元主要发生解聚反应,并在磷化物的催化下生成丙酮或丙烯醛化合物;聚氨酯结构单元发生解聚反应生成多元醇和异氰酸酯,异氰酸酯之间主要发生缩聚反应放出大量的二氧化碳,并生成聚脲结构。
     4.合成了星形丙烯酸酯化三聚氰胺(SPUA)低聚物,采用热重分析、实时红外等对SPUA固化膜的热降解过程进行了研究。将SPUA与TAEP和DGTH以不同比例混合制备膨胀型阻燃紫外可固化膜,讨论了SPUA添加量对热降解性能、阻燃性能和炭层形貌的影响,发现SPUA与TAEP和DGTH之间存在明显的协同阻燃效应。研究结果表明,SPUA和DGTH之间存在明显的阻燃协效作用,添加37.5 wt.%SPUA的样品具有最高的氧指数(41)和最低的热释放速率,并且生成致密的膨胀炭层。热降解机理结果表明,DGTH中DOPO结构单元首先降解生成芳香磷酸酯催化临近羰基成炭,同时SPUA降解生成大量含氮挥发物,形成膨胀炭层。热降解结果显示TAEP的磷酸酯首先降解生成聚磷酸,进一步催化成炭,同时,SPUA降解生成二氧化碳和氮挥发物,形成膨胀炭层。阻燃性能结果显示,适量的SPUA可以提高TAEP的阻燃性能,50 wt.%SPUA可以使材料的热释放速率的峰值、平均热释放速率和总热释放大幅度下降,并生成致密炭层。SPUA和TAEP之间存在较好的阻燃协效作用。
     5.将BTP、SPUA/DGTH和SPUA/TAEP体系应用于杉木防火保护,锥形量热仪测试研究结果表明,BTP和SPUA/DGTH体系对杉木具有较好的防火保护效果,其原因可能是BTP本身成炭和催化木材成炭,SPUA/DGTH体系则能形成强度较高、结构致密的炭层。
The thesis was aimed on the synthesis of bis(2-acryloxyethyl) 2.6.7-trioxa-1-phosphabicyclo[2.2.2.]octane-methylol-1-oxide(BTP)containing acid and carbon source,and the study on its thermal degradation and flame retardant mechanisms as well as applications in UV curable coatings together with epoxy acrylate and polyurethane acrylate.Then,the thesis was focused on the syntheses of an acrylate monomer containing phosphorus,nitrogen and silicon(DGTH)and a star acrylated melamine oligomer(SPUA).The thermal degradation mechanism and the flame retardant properties of the cured DGTH and SPUA films have been also investigated.The thermal degradation mechanism and combustion behaviours of the intumescent flame retardant resins by blending star acrylated melamine oligomer (SPUA)with DGTH and tri(acryloyloxyethyl)phosphate(TAEP)in different ratios have also been investigated.Based on the selected several coating systems,the fire protection of the Chinese fir wood has also been investigated.The detailed outline is elaborated as follows:
     1.Bis(2-acryloxyethyl)2.6.7-trioxa- 1-phosphabicyclo[2.2.2.]octane-methylol-1-oxide (BTP)as flame retardant multifunctional monomer used for UV curable systems has been synthesized using phosphorus oxychloride,pentaerythritol and hydroxylethyl acrylate.Its thermal degradation mechanism has been studied using thermogravimetric analysis,in-situ Fourier-transform infrared and direct pyrolysis/mass spectrometry measurements.The BTP cured film has high char residue in the thermogravimetric analysis test,and the residual weight is about 36%at 800℃.The flame retardant mechanism is proposed that the degraded products of phosphate formed poly(phosphoric acid)at the temperature of 160℃to 270℃, which further catalyzes the breakage of carbonyl groups to form an intumescent char for preventing the samples from further burning.A lot of water and carbon dioxide are released at the temperature of 300℃to 400℃.As the temperature is raised to 500℃,there are some phosphorus oxides such as P_2O_5 and P_4O_(10)formed.There is graphite-like structure in char residue using XRD,SEM and Raman measurements.
     2.BTP has been used as reactive-type flame retardant diluent monomer for commercial epoxy acrylate(EA)and polyurethane acrylate(PUA)oligomers in UV curable resins.It has been found that the addition of BTP obviously increases the photopolymerization rates and the flame retardance.The thermal degradation results showed that the phosphate in BTP decomposes to form poly(phosphoric acid)at low temperature,which catalyze EA and PUA carbonization,and increase the thermal stability at high temperature.The LOI,UL 94,HRR and MLR results showed that BTP effectively improve the flame retardance of EA and PUA.The UL 94 rating can raise to V-0 with the addition of 50 wt.%BTP for EA,however,it can pass V-0 for PUA with only 30 wt.%BTP loading.The LOI of EA and PUA can increase 18.0 to 28.0 and 19.0 to 30.5,the heat release rate decreases by 58.9%and 66.0%, respectively with the addition of 30 wt.%BTP.There is obviously distinct synergistic flame retardant effect between BTP and PUA.
     3.An acrylate monomer containing phosphorus,nitrogen and silicon(DGTH)as flame retardant multifunctional monomers used for UV/moisture curable systems has been synthesized using 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO),3-Glycidoxypropyltrimethoxysilane(GPTMS),2,4-Toluene diisocyanate (TDI)and hydroxylethyl acrylate(HEA).Its thermal degradation mechanism has been studied using thermogravimetric analysis,in-situ Fourier-transform infrared and direct pyrolysis/mass spectrometry measurements.The cured DGTH film showed high thermal stability with the initial decomposition temperature of 273℃.And the residue is as high as 38%at 600℃.The process of thermal degradation of the cured DGTH film can be mainly divided into three parts.DOPO structure units firstly degrade to form aromatic compounds containing phosphorus,and then catalyze the adjacent ester groups to decomposition.Acrylate units mainly occurs depolymerization,and then form acetone or acrolein compound under the catalyst phosphide.Polyurethane waits generate depolymerization to polyol and isocyanate, and the isocyanates generate polyurea structure with the release of carbon dioxide.
     4.Star aerylated melamine oligomer(SPUA)as a flame retardant multifunctional oligomer used for UV curable systems has been synthesized.The thermal degradation mechanism of SPUA cured film was characterized using thermogravimetric analysis and in-situ FTIR.DGTH and TAEP were blended with SPUA in different ratios to obtain a series of UV curable intumescent flame retardant resins.There is a distinct synergistic flame retardant effect in DGTH/SPUA and TAEP/SPUA systems.The sample containing 37.5 wt.%SPUA in DGTH/SPUA systems showed the highest LOI value of 41 and the lowest heat release rate among all resins.The degradation mechanism suggested that phosphate group in DGTH first degraded to form Aromatic compounds containing phosphorus,which further catalyze the degradation of the material to form char with the emission of nitrogen volatiles from SPUA,leading to the formation of expanding char.The degradation mechanism suggested that phosphate group in TAEP first degraded to form poly(phosphoric acid)s,which further catalyze the degradation of the material to form char with the emission of nitrogen volatiles from SPUA,leading to the formation of expanding char.The sample containing 50 wt.%SPUA in TAEP/SPUA systems showed lowest heat release rate and total heal release among all resins.There is a better synergistic flame retardant effect between TAEP and SPUA.
     5.BTP,DGTH/SPUA and TAEP/SPUA protective fire coatings has been prepared on the Chinese fir wood.The cone calorimeter results showed that BTP and DGTH/SPUA systems have better protective effect among the all the samples.The reason may be that BTP can form high char residue,that BTP can catalyze wood to carbonization,and SPUA/DGTH can form compact char residue with high intensity.
引文
1.D.K.Chattopadhyay,K.V.S.N.Raju,2007.Structural engineering of polyurethane coatings for high performance applications[J].Progress in Polymer Science.32(3):352-418.
    2.Birgit Ostman,Angelika Voss,Andrew Hughes,Per Jostein Hovde,Ondrej Grexa,2001.Durability of fire retardant treated wood products at humid and exterior conditions review of literature[J].Fire and Materials 25(3):95-104.
    3.Subyakto,Takeshi Kajimoto,Toshimitsu Hata,Shigehisa lshihara,Shuichi Kawai,Hideo Gerto,1998.hnproving fire retardancy of fast growing wood by coating with fire rctardant and surface densification[J].Fire and Materials.22(5):207-212.
    4.Lally,Thomas Joseph,2005.Fire-retardant coating,method for producing fire-retardant building materials.US Patent 20050229809.
    5.Thewes Volker,Hennemann Achim,2006.Fire-protection coating.US Patent 20060041042.
    6.Jun-wei Gu,Guang-cheng Zhang,Shan-lai Dong,Qiu-yu Zhang,Jie Kong,2007.Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings[J].Surface and Coatings Technology.201(18):7835-7841.
    7.M.Jimenez,S.Duquesne,S.Bourbigot,2006.Intumescent fire protective coating:Toward a better understanding of their mechanism of action[J].Thermochimica Attn.449(1-2):16-26.
    8.Zhenyu Wang,Enhou Hart,Wei Ke,2006.Effect of acrylic polymer and nanocomposite with nano-SiO_2 on thermal degradation and fire resistance of APP-DPER-MEL coating[J].Polymer Degradation and Stability.91(9):1937-1947.
    9.Zhenyu Wang,Enhou Hun,Wei Ke,2006.Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating[J].Surface and Coatings Technology.200(20-21):5706-5716.
    10.Jincheng Wang,Guang Li,Shenglin Yang,Jianming Jiang,2004.New intumescent flame-retardant agent:Application to polyurethane coatings[J].Journal of Applied Polymer Science.91(2):1193-1206.
    11.J.A.Rhys,1980.Intumescent coatings and their uses[J].Fire and Materials.4(3):154-156.
    12.Lester D Bennington,2001.Flame-retardant UV and UV/moisture curable silicone compositions.US Patent 6323253.
    13.Reinhard Kalbskopf,Felix Trojer,1979.Method of forming a fire-resistant silicate coating. US Patent 4179535.
    
    14. Thomas Sardo, 2002. Fire retardant coating composition. US Patent 20020108760.
    
    15. Claire Marie Lepont, Long Van Ha, Chau Thi Minh Ha, 2005. Radiation-curable flame retardant optical fiber coatings. US Patent 6850681.
    
    16. Ursula Murschall, Ulrich Kern, Andreas Stopp, Guenther Crass, 2005. Transparent, flame retardant, thermoformable, UV-resistant film made from crystalizable thermoplastics, its use, and process for its production. US Patent 6875803.
    
    17. Kozlowskl Ryszard, Wladyka-Przyby-Lak Maria, 2007. An intumescent fire retardant and the method of its manufacture. WO 2007027114.
    18. M. Ravey, Eli M. Pearce. Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam[J]. Journal of Applied Polymer Science. 1997, 63( 1): 47-74.
    19. Th. Randoux, J. -Cl. Vanovervelt, H. Van den Bergen, G. Camino. 2002. Halogen-free flame retardant radiation curable coatings[J]. Progress in Organic Coatings. 45(2-3): 281-289.
    20. Frank Bauer, Roman Flyunt, Konstanze Czihal, Helmut Langguth, Reiner Mchnert, Rolf Schubert, Michael R. Buchmeiser, 2007. UV curing and matting of acrylate coatings reinforced by nano-silica and micro-corundum particles[J]. Progress in Organic Coatings. 60(2): 121-126.
    21. ChenYang YW, Chuang JR, Yang YC, 1996. New UV Curable Cyclotriphosphazenes as Fire-retardant Coating Materials for Wood. Abstracts of Papers of the American Chemical Society 212:127-POLY Part 2.
    22. Inan TY, Ekrem F.kinci, 1999. Halogcnated and phosphorous containing difunctional monomers for UVcurable application[J], Polymer Preprints. 40: 47-48.
    23. P. Kannan, Gangadliara, K. Kishore, 1997. Novel photo-crosslinkable flame retardant polyvanillylidene arylphosphate esters[Jj. Polymer. 38(17):4349-4355.
    24. Dennis Price, Kelly Pyrah, T. Richard Hull, G. John Milnes, John R. Ebdon, Barry J. Hunt, Paul Joseph, Christopher S. Konkel, 2001. Flame retarding poly(methyl methacrylate) with phosphorus-containing compounds: comparison of an additive with a reactive approach. Polymer Degradation and Stability[J], 74(3): 441 -447.
    25. Dennis Price, Kelly Pyrah, T Richard Hull, G John Milnes, W Dave Wooley, John R Ebdon, Barry J Hunt, Christopher S Konkel, 2000. Ignition temperatures and pyrolysis of a flame-retardant methyl methacrylate copolymer containing diethyl(methacryloyloxymethyl)-phosphonate units[J]. Polymer International. 49(10): 1164-1168.
    26. Dennis Price, Kelly Pyrah, T. Richard Hull, G. John Milnes, John R. Ebdon, Barry J. Hunt, Paul Joseph, 2002. Flame retardance of poly(methyl methacrylate) modified with phosphorus-containing compounds[J]. Polymer Degradation and Stability. 77(2): 227-233.
    
    27. John R. Ebdon, Barry J. Hunt, Paul Joseph. Christopher S. Konkel, Dennis Price, Kelly Pyrah, T. Richard Hull, G. John Milnes, Stephen B. Hill, Christopher I. Lindsay, John McCluskey, Ian Robinson, 2000. Thermal degradation and flame retardance in copolymers of methyl methacrylate with diethyl(methacryloy]oxymethyl)phosphonate[J]. Polymer Degradation and Stability. 70(3): 425-436.
    28. Tzong-Liu Wang, Yu-Liang Cho, Ping-Lin Kuo, 2001. Flame-retarding materials. II. Synthesis and flame-retarding properties of phosphorus-on-pendent and phosphorus-on-skeleton polyols and the corresponding polyurethanes[J]. Journal of Applied Polymer Science. 82(2): 343-357.
    29. Smit CN, Heinnink WE, De Ruiter B, Luiken AH, Marsman MPW, Bouwma J, 1990. North American Conference Proceedings of Rad Tech'90. 2:148.
    30. Franklin WE, Rowland SP, 2003. Effects of phosphorus-containing flame retardants on pyrolysis of cotton cellulose[J]. Journal of Applied Polymer Science. 24(5): 1281-1294.
    31. Stowell Jeffrey K, Well Edward D, Coble William L, Yang Charles Q, 2001. Formaldehyde-free Flame Retardant Treatment For Cellulose-containing Materials. WO 2001023663.
    32. Timothy E. Bishop, Erwin S. Poklacki, 1995. Arlington Heights. Halogen-free Radiation Curable Flame Retardant Compositions. US Patent 5456984.
    33. Avci D, 2000. Synthesis and Characterization of Quaternized Poly-alky] Alpha-chloroacetoxymethacrylates[J]. Polymer Bulletin. 44 (5-6): 469-475.
    34. Van Den Bergen Hugues, Vanovervelt Jean-Claude, 2000. Phosphorus-comprising Materials, Their Preparation and Use. WO 0052016.
    35. Derouet D, Morvan F, Brosse JC, 1996. Chemical modification of epoxy resins by dialkyl(or aryl) phosphates: Evaluation of fire behavior and thermal stability[J]. Journal of Applied Polymer Science. 62(11): 1855-1868.
    36. Van Den Bergen Hugues, Vanovervelt Jean-Claude, 2001. Phosphorus-comprising Materials, Their Preparation and Use. WO 0174826.
    37. Van Den Bergen Hugues, 2003. Phosphorus-comprising Materials, Their Preparation and Use. EP 01105713.
    38. Shinn-Jen Chang, Yuung-Ching Sheen, Yi-Ni Cheng, Rong-Shuh Chang, 1997. High pendant phosphorus-containing reactive oligomer flame retardant. US Patent 5650531.
    39. Shengwu Zhu, Wenfang Shi, 2002. Synthesis and photopolymerization of hyperbranched polyurethane acrylates applied to UV curable flame retardant coatings[J]. Polymer International. 51(3): 223-227.
    40. Shengwu Zhu, WenFang Shi, 2002. Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings[J]. Polymer Degradation and Stability. 75(3): 543-547.
    41. Shengwu Zhu, Wenfang Shi, 2003. Thermal degradation of a new flame retardant phosphate methacrylate polymet[J]. Polymer Degradation and Stability. 80(2): 217-222.
    42. Shengwu Zhu, Wenfang Shi, 2003. Flame retardance of UV cured epoxy acrylate blended with different states of phosphated mcthacrylate[J]. Polymer Degradation and Stability. 82(3): 435-439.
    43. Shengwu Zhui Wenfang Shi, 2003. Combustion behaviour and thermal properties of UV cured methacrylated phosphate/epoxy acrylate blends[JJ. Polymer Degradation and Stability. 81(2): 233-237.
    44. Shengwu Zhu, Wenfang Shi, 2004. Synthesis, characterization and flame retardancy of methacrylated phosphate/dipliosphate[Jj. Polymer International. 53 (3): 266-271.
    45. Y. W. Chen-Yang. .J. R. Chuang, Y. C. Yang, C. Y. Li. Y. S. Chiu, 1998. New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood[J]. Journal of Applied Polymer Science. 69(1): 115-122.
    46. Qingfeng Wang, Wenfang Shi, 2006. Photopolymerization and thermal behaviors of acrylated benzenephosphonates/epoxy acrylate as flame retardant resins[J]. European Polymer Journal. 42:2261-2269.
    47. Hongbo Liang, Wenfang Shi, 2004. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings[J]. Polymer Degradation and Stability. 84:525-532.
    48. Zhanguang Huang, Wenfang Shi, 2007. Effect of poly(bisphenol a acryloxyethyl phosphate) on the activation energy in thermal degradation of urethane acrylate[J]. Journal of Thermal Analysis and Calorimetry. 88(3): 833-841.
    49. Zhanguang Huang. Wenfang Shi, 2007. Thermal degradation behavior of hyperbranched polyphosphate acrylate/tri(acryloyloxyethyl) phosphate as an intumescent flame retardant system[J]. Polymer Degradation and Stability. 92: 1193-1198.
    50. Zhanguang Huang, Wenfang Shi, 2007. Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable retardant coatings[J]. European Polymer Journal. 43: 1302-1312.
    51. M. Vezir Kahraman, Nilhan Kayaman-Apohan. Nergis Arsu, Atilla Gungor, 2004. Flame retardance of epoxy acrylate resin modified with phosphorus containing compounds.Progress in Organic Coatings.51(3):213-219.
    52.Hongbo Liang,Anila Asif,Wenfang Shi,2005.Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings[J].Polymer Degradation and Stability.87:495-501.
    53.Hongbo Liang,Wenfang Shi,Ming Gon,2005.Expansion behaviour and thermal degradation of tri(acryloyloxyethyl)phosphate/methacrylated phenolic melamine intumescent flame retardant system[J].Polymer Degradation and Stability.90:1-8.
    54.Zhanguang Huang,Wenfang Shi,2007.UV curing behavior of hyperbranched polyphosphate acrylate/di(hydroxylpropyl methacrylate)piperazine and properties of the cured film[J].Progress in Organic Coatings.59:312-317.
    55.汤杨,2007.UV涂料中丙烯酸光敏树脂的合成及清洁生产工艺研究(M):[硕士].长沙:湖南大学.
    56.Yoshimoto Abe,Takahiro Gunji,2004.Oligo- and polysiloxanes.Progress in Polymer Science.29:149-182.
    57.E Masson,C.Decker,S.Andre and X.Andrieu,2004.UV-curable formulations for UV-transparent optical fiber coatings:I.Acrylic resins.Progress in Organic Coatings.49(1):1-12.
    58.W.X.Zhou and Mary B.Chan-Park,2006.Segregation of silicone acrylate from acrylate mixture at resin-mold interface and its effect on UV embossing.Applied Surface Science.25(4):1921-1928.
    59.S.Ozgumus,T.B.Iyim,I.Acar,E.Kucukoglu,2007.Synthesis of novel silicone modified acrylic resins and their film properties.Polymers for Advanced Technologies.18(3):213-219.
    60.Jie Kong,Xiaodong Fan,Guobin Zhang,Xiao Xie,Qingfa Si,Shenjie Wang,2006.Synthesis and UV-curing behaviors of novel rapid UV-curable polyorganosilazanes.Polymer.47:1519-1525.
    1. Lecamp L, Youssef B, Bunel C, Lebaudy P, 1999. Photoinitiated polymerization of a dimethacrylate oligomer: Part 3. Postpolymerization study[J]. Polymer. 40(23): 6313-6320.
    2. Shengwu Zhu, Wenfang Shi, 2003. Thermal degradation of a new flame retardant phosphate methacrylate polymer. Polymer Degradation and Stability. 80(2):217-222.
    3. Hongbo Liang, Wenfang Shi, 2004. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polymer Degradation and Stability. 84(3):525-532.
    4. Jun Ding, Wenfang Shi, 2004. Thermal degradation and flame retardancy of hexaacrylated/hexaethoxyl cyclophosphazene and their blends with epoxy acrylate[J]. Polymer Degradation and Stability. 84(1): 159-165.
    5. Fouassier JP, Morlet-Savary F. Yamashita K, linahashi S, 1996. Visible light-induced polymerization reactions: The seven-role of the electron transfer process in the dye/iron arene complex/amine system[J]. Journal of Applied Polymer Science. 62(11): 1877-1885.
    6. Chris I Lindsay, Stephen B Hill, Martin Hearn, Gary Manton, Neil Everall, Alan Bunn, Jayne Heron, Ian Fletcher, 2000. Mechanisms of action of phosphorus based flame retardants in acrylic polymers[J]. Polymer International. 49(10): 1183-1192.
    7. Hongbo Liang, Anila Asif, Wenfang Shi, 2005. Thermal degradation and flame retardancy of a novel metliacrylated phenolic melamine used for UV curable flame retardant coatings[J]. Polymer Degradation and Stability. 87(3): 495-501.
    8. Zhanguang Huang, Wenfang Shi, 2006. Thermal behavior and degradation mechanism of poly(bisphenyl acryloxyethyl phosphate) as a UV curable flame-retardant oligomer. Polymer Degradation and Stability. 91(8): 1674-1684.
    9. Berchtold KA, Hacioglu B, Lovell L, Nie J, Bowman CN, 2001. Using changes in initiation and chain transfer rates to probe the kinetics of cross-linking photopolymenzations: Effects of chain length dependent termination[J]. Macromolecules. 34(15): 5103-5 111.
    10. Huanyu Wei, Yu Lu, Wenfang Shi, Huiya Yuan, Yonglie Chen, 2001. U V curing behavior of methacrylated hyperbranched poly(amine-ester)s[J]. Journal of Applied Polymer Science. 80(1): 51-57.
    11. Kwiakowski R, Wlochowicz A, 2000. Conformation and packing of poly(alkylene phosphate) chains in the crystal lattice. Part II: Temperature FTIR studies[J]. Journal of Molecular Structure. 516(1):57-69.
    12. Chun-Shan Wang, Jeng-Yueh Shieh, 2000. Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate[J]. European Polymer Journal. 36(3): 443-452.
    13. McKee DW, Spiro CL, Lamby EJ, 1984. The inhibition of graphite oxidation by phosphorus additives[J]. Carbon. 22(3): 285-290.
    14. Bourbigot S, LeBras M, Delobel R, Tremillon JM. 1996. Synergistic effect of zeolite in an intumescence process-Study of the interactions between the polymer and the additives[J]. Journal of the Chemical Society-Faraday Transactions. 92(18): 3435-3444.
    15. Le Bras M, Bourbigot S, Revel B, 1999. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. Journal of Materials Science. 34(23): 5777-5782.
    16. Radu Setnescu, Silviu Jipa, Tanta Setnescu, Wilhelm Kappel, Shodo Kobayashi, Zenjiro Osawa, 1999. 1R and X-ray characterization of the ferromagnetic phase of pyrolysed polyacrylonitrile[J]. Carbon, 37(1): 1-6.
    17. Ging-Ho Hsiue, Shin-Jen Shiao, Hsiao-Fen Wei, Wen-Jang Kuo, Yi-An Sha, 2001. Novel phosphorus-containing dicyclopentadicne-modified phenolic resins for flamc-rctardancy applications[J]. Journal of Applied Polymer Science. 79(2): 342-349.
    1.ChenYang YW,Chuang JR,Yang YC,Li CY,Chiu YS,1998.New UV-curable cyclotriphosphazenes as fire-retardant coating materials for wood[J]..Journal of Applied Polymer Science.69(1):115-122.
    2.Ravey M,Pearce Eli M,1997.Flexible polyurethane foam.I.Thermal decomposition of a polyether-based,water-blown commercial type of flexible polyurethatane foam[J].Journal of Applied Polymer Science.63(1):47-74.
    3.Kang UG,Bush RW,Ketley AD,Grace WR.J Radiation Curing,1983,1:14.
    4.ChenYang YW,Chuang JR,Yang YC,1996.New UV curable cyclotriphosphaze~es as fire-retardant coating materials for wood.Abstracts of Papers of the American Chemical Society.212:127-POLY.Part 2.
    5.Ebdon JR,Hunt B J,Joseph P,Konkel CS,Price D,Pyrah K,Hull TR,Milnes G.I,Hill SB,Lindsay CI,McCluskey J,Robinson 1,2000.Thermal degradation and flame retardance in copolymers of methyl methacrylate with diethyl(methacryloyloxymethyl)phosphonate[J].Polymer Degradation and Stability.70(3):425-436.
    6.Guo WJ,1992.Flame-retardant modification of UV-curable resins with monomers containing bromine and phosphorus[J].Journal of Polymer Science Part A:Polymer Chemistry.30(5):819-827.
    7.Chen-Yang YW,Lee HF,Yuan CY,2000.A flame-retardant phosphate and cyclotriphosphazene-containing epoxy resin:Synthesis and properties[J].Journal of Polymer Science Part A:Polymer Chemistry.38(6):972-981.8.Park HS,Kim DW,Hwang KH,Yoon BS,Wu JP,Park JW,Hahm HS,Im WB,2001.Preparation and characterization of polyurethane flame-retardant coatings using pyrophosphoric lactone-modified polyesters/isophorone diisocyanatc-isocyanurate[J].Journal of Applied Polymer Science.80(12):2316-2327.
    9.Price D,Pyrah K,Richard Hull T.Milnes JG,Wooley DW,Ebdon JR,Hunt B J,Konkel CS,2000.Ignition temperatures and pyrolysis of a flame-retardant methyl mcthacrylate copolymer containing diethyl(methacryloyloxymethyi)-phosphonate units[J].Polymer International.49(10):1164-1168.
    10.Ging-Ho Hsiue,Shin-Jen Shiao,Hsiao-Fen Wei,Wen-Jang Kuo,Yi-An Sha,2001.Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications[J].Journal of Applied Polymer Science.79(2):342-349.
    11.Bill C,Lissa D,Oscar VA.The Premier UV/EB Conference& Exhibition,Rad Tech 2000, pp920.
    
    12. Rongcai Xie, Baojun Qu, Keliang Hu, 2001. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends[J]. Polymer Degradation and Stability. 72(2): 313-321.
    13. Michel Bugajny, Serge Bourbigot, Michel Le Bras, Rene Delobel, 1999. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750[J]. Polymer International. 48(4): 264-270.
    14. Le Bras M, Bourbigot S, Revel B, 1999. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[Jj. Journal of Materials Science. 34(23): 5777-5782.
    15. Levchik SV, Balabanovich AI, Levchik GF, Costa L, 1997. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6[J], Fire and Materials. 21(2): 75-83.
    1.Koleske JV,2002.Radiation Curing of Coatings;ASTM International:West Conshohocken,PA.
    2.Christian Decker,1998.The use of UV irradiation in polymerization[J].Polymer International,45(2):133-141.
    3.Pappas SP,1992.Radiation Curing:Science and Technology;Plenum:New York.
    4.Lee JH,Prud'homme RK,Aksay IA,2001.Cure depth in photopolymerization:Experiments and theory[J].Journal of Materials Research.16(12):3536-3544.
    5.Licari JJ,2003.Coating Materials For Electronic Applications;Noyes Publications/William Andrew,Inc.:Norwich,NY.
    6.Yamamura T,Watanabe T,Takeuchi A,Ukachi T,2002.Photo-curable resin composition used for photo-fabrication of three-dimensional object.US Patent 6365644.
    7.Bennington LD,2001.Flame-retardant UV and UV/moisture curable silicone compositions[J].US Patent 6323253.
    8.Qi YS,Zeng ZH,Yang JW,Chcn YL,2004.Study on silicone modified UV-moisturc dual curable polyurethane-acrylatc[J].Chinese Journal of Appllied Chemistry.21(9):918-922.
    9.Qi YS,Meng X,Yang JW,Zeng ZH,Chen YL,2005.Synthesis and properties of ultraviolet/moisture dual-curable polysiloxane acrylates[J].Journal of Applied Polymer Science.96:846-853.
    10.Liu YL,Wu CS,Chiu YS,Ho WH,2003.Preparation,Thermal properties,and flame retardance of epoxy-silica hybrid resins[J].Journal of Polymer Science:Part A:Polymer Chemistry.4 I:2354-2367.
    11.N.Kayaman-Apohana,A.Amanoela,N.Arsu,A.Gungor,2004.Synthesis and characterization of UV-curable vinyl ether functionalized urethane oligomers[J].Progress in Organic Coatings.49:23-32.
    12.Liu YL,Wu CS,Chirr YS.Ho WH,2003.Preparation,thermal properties,and flame retardance of epoxy-silica hybrid rcsins.Journal of Polymer Science,Part A:Polymer Chemistry.41(15):2354-2367.
    13.Berchtold KA,Lu BH,Lovel L,Nie J,Bowman CN,2001.Using changes in initiation and chain transfer rates to probe the kinetics of cross-linking photopolymcrizations:cffects of chain length dependent termination[J].Maeromolecules.34(15):5103-5111.
    14.Wei HY,Lu Y,Shi WF,Yuan HY,Chen YL,2001.UV curing behavior of methacrylated hyperbranched poly(amine-ester)s[J].Journal of Appllied Polymer Science.80(1):51-57.
    15. Hilado CJ, 1998. Flammability handbook for plastics. Basel, Switzerland: Technomic; p. 189-230 [chapter 5].
    16. Goswami TH, Singh R, Alam S, Mathur GN, 2004. One-pot synthesis of a novel water-soluble fullerene-core starlike macromolecule via successive Michael and nucleophilic addition reaction[J]. Chemistry Materials. 16(12): 2442-2448.
    17. Zhu SW, Shi WF, 2003. Thermal degradation of a new flame retardant phosphate methacrylate polymer[J]. Polymer Degradation and Stability. 77(2):217-222.
    18. Wang CS, Shieh JY, 2000. Synthesis and properties of epoxy resins containing bis(3-hydroxyphenyl) phenyl phosphate[J]. European Polymer Journal. 36(3): 443-452.
    19. Camino G, Duquesne S, Delobel R, Eling B, Lindsay C, Roels T. 2000. In: 220th ACS national meeting, 20-24, Washington, DC.
    20. Grassie N, Zulfiqar M, 1978. In: Scott, editor. The effect of the fire retardant ammonium polyphosphate on the thermal degradation of polyurethane. Developments in polymer stabilization, vol. 1. Applied Science Publishers; p. 197-217.
    21. Guo WJ, Leu WT, Hsiao SH, Liou GS. 2006. Thermal degradation behaviour of aromatic poly(ester-amide) with pendant phosphorus groups investigated by pyrolysis-GC/MS[J]. Polymer Degradation and Stability. 91: 21-30.
    1. Horacek H, Grabner R, 1996. Advantages of flame retardants based on nitrogen compounds[J]. Polymer Degradation and Stability. 54(2-3): 205-215.
    2. Wen-Yen Chiang, Hu Howard CH. 2001. Phosphate-containing flame-retardant polymers with good compatibility to polypropylene. II. Effect of the flame-retardant polymers on polypropylene[J]. Journal of Applied Polymer Science. 82(10): 2399-2403.
    3. Chen YH, Liu Y, Wang Q, Yin H, Aelmans N, Kierkels R. 2003. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio[J]. Polymer Degradation and Stability. 81(2): 215-224.
    4. Liang HB, Shi WF, 2004. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings[J]. Polymer Degradation and Stability. 84(3): 525-532.
    5. W.H. Lu, W.J. Xu, Y.M. Wu, X. Zhou, Y.B. Lu, Y.Q. Xiong, 2006. Synthesis of dendritic polyurethane acrylate) used for UV-curable coatings. Progress in Organic Coatings. 56(2-3): 252-255.
    6. Tasic S, Bozic B, Dunjic B, 2004. Synthesis of new hyperbranched urethane-acrylates and their evaluation in UV-curable coatings[J]. Progress in Organic Coatings. 51(4): 320-327.
    7. Camino G, Duquesne S, Delobel R, Eling B, Lindsay C, Rods T, 2000. 220th ACS National Meeting, 20-24, Washington, DC.
    8. Goddard RJ, Cooper SL, 1995. Polyurethane Cationomers with pendant trimethylammonium groups .1. fourier-transform infrared temperature studies[J]. Macromolecules. 28(5): 1390-1400.
    9. Tsai YM, Yuu TL, Tseng YH, 1998. Physical properties of crosslinked polyurethane[J]. Polymer International. 47(4): 445-450.
    10. Yu TL, Lin TL, Tsai YM, Liu WJ. 1999. Morphology of polyurethanes with triol monomer crosslinked on hard segments. Journal of Polymer Science Part B-Polymcr Physics. 37(18): 2673-2681.
    11. Costa L, Camino G, 2005. Thermal behaviour of melamine[J]. Journal of Thermal Analysis and Calorimctry, 34:423-429.
    12. Xu G, Shi WF, 2005. Synthesis and characterization of hyperbranched polyurethane acrylatcs used as UV curable oligomers for coatings[J]. Progress in Organic Coatings 52(2): 110-117.
    13. Liu YL, Wu CS, Chiu YS, Ho WH, 2003. Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins[J]. Journal of Polymer Science Part A: Polymer Chemistry, 41(15): 2354-2367.
    
    14. Yoshimoto Abe, Takahiro Gunji, 2004. Oligo- and polysiloxanes. Progress in Polymer Science. 29(3): 149-182.
    15. Baney RH, Itoh M, Sakakibara A, Suzuki T, 1995. Silsesquioxanes[J]. Chemical Reviews. 95(5): 1409-1430.
    16. Wu CS, Liu YL, Chiu YS, 2002. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents[J]. Polymer. 43(15): 4277-4284.
    17. Hirschler MM, 1992. "Heat Release From Plastic Materials" in Heat Release in Fires, Babrauskas V, Grayson S, Eds., Elsevier, London, 375.
    18. Hook RJ, 1996. A Si-29 NMR study of the sol-gel polymerisation rates of substituted ethoxysilanes[J]. Journal of Non-Crystaline Solids. 195(1-2):1-15.
    19. Hsu YG, Lin KH, 2001. Preparation and properties of ABS-silica nanocomposites through sol-gel process under the catalyzation of different catalysts[J]. Journal of Polymer Research-Taiwan. 8(1): 69-76.
    20. Xiong MN, Wu LM, Zhou SX, You B, 2002. Preparation and characterization of acrylic !atex/nano-SiO_2 composites[J]. Polymer International. 51(8): 693-698.
    21. Wu CS, Liu YL, Chiu YS, 2002. Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer. 43(15): 4277-4284.
    22. Bourbigot S, Bras ML, Delobel R, Tremillon JM, 1996. Synergistic effect of zeolite in an intumescence process-Study of the interactions between the polymer and the additives. Journal of the Chemical Society-Faraday Transactions. 92(18): 3435-3444.
    23. Hsiue GH, Shiao SJ, Wei HF, Kou WJ, Sha YA, 2001. Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications[J]. Journal of Applied Polymer Science. 79(2): 342-349.
    24. Levchik SV, Balabanovich Al, Levchik GF, Costa L, 1997. Effect of melamine and its salts on combustion and thermal decomposition of polyamide 6. Fire and Materials. 21(2): 75-83.
    25. Camino G, Duquesne S, Delobel R, Eling B, Lindsay C, Roels T, 2000. 220th ACS National Meeting. Washington, DC. August 20-24.
    26. Grassie N, Zulftqar M, 1978. "Developments in polymer stabilization, Vol. 1: The effect of the fire retardant ammonium polyphosphate on the thermal degradation of polyurethane," in Applied Science Publications, G. Scott, Ed., London, 197.
    27. Xie RC, Qu BJ, Hu KL, 2001. Dynamic FTIR studies of thermo-oxidation of expandable graphite-based halogen-free flame retardant LLDPE blends. Polymer Degradation and Stability. 72(2): 313-321.
    28. Chen XL, Hu Y, Song L, Jiao C, 2007. Preparation and thermal properties of a novel UV-cured star polyurethane acrylate coating[J]. Polymers for Advanced Technologies. Published online.
    29. Kwiatkowski R, Wlochowicz A, 2000. Conformation and packing of poly(alkylene phosphate) chains in the crystal lattice. Part II: Temperature FTIR studies[JJ. Journal of Molecular Structure. 516(1):57-69.
    30. Bugajny M, Bourbigot S, 1999. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750[J]. Polymer International. 48(4):264-270.
    31. Le Bras M, Bourigot S, Revel B, 1999. Comprehensive study of the degradation of an intumescent EVA-based material during combustion[J]. Journal of Materials Science. 34(23):5777-5782.
    32. Liang HB, Asif A, Shi WF, 2005. Thermal degradation and flame retardancy of a novel methacrylated phenolic melamine used for UV curable flame retardant coatings[J]. Polymer Degradation and Stability. 87(3): 495-501.
    33. Liang HB, Shi WF, Gong M, 2005. Expansion behaviour and thermal degradation of tri(acryloyloxyethyl) phosphate/methacrylated phenolic melamine intumescent flame retardant system[J]. Polymer Degradation and Stability. 90(1): 1-8.
    34. Duquesne S, Magnet S. Jama C, Delobel R, 2004. Intumescent paints: fire protective coatings for metallic substrates[J]. Surface and Coatings Technology. 180:302-307.
    1. B. De Roover, M. Sclavons, V. Carlier. J. Devaux, R. Legras, A. Momtaz, 1995. Molecular characterization of maleic anhydride-functionalized polypropylene. Journal of Polymer Science Part A: Polymer Chemistry. 33(5): 829-842.
    2. Hongbo Liang, Wenfang Shi, 2004. Thermal behaviour and degradation mechanism of phosphate di/triacrylate used for UV curable flame-retardant coatings. Polymer Degradation and Stability. 84:525-532.
    3. Xilei Chen, Yuan Hu, Chuanmei Jiao, Lei Song, 2007. Thennal and UV-curing behavior of phosphate diacrylate used for flame retardant coatings. Progress in Organic Coatings. 59(4): 318-323.
    4. Xilei Chen, Yuan Hu, Chuaiimei Jiao, Lei Song, 2007. Preparation and thermal properties of a novel flame-retardant coating. Polymer Degradation and Stability. 92(6): 1141-1150.
    5. Xilei Chen, Yuan Hu, Lei Song, 2008. Thennal behaviors of a novel UV cured flame retardant coatings containing phosphorus, nitrogen and silicon. Polymer Engineering & Science. 48(1): 116-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700