用户名: 密码: 验证码:
印刷电路板生产企业多溴联苯醚和重金属污染排放特征以及对典型区域环境的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印刷电路板(Printed Circuit Boards, PCB)是当代电子元件中最为活跃的产业,据中国电子元件行业协会印刷电路分会的调查,2003年中国印刷电路板的生产产值为500.69亿元,同比增长32.4%,超过美国,次于日本,居世界第二位。与此同时,由于印刷电路板生产过程中产生的废水、固体废弃物中含有重金属和PBDEs,日本和韩国很多企业搬入我国各个城市,使我国的重金属和PBDEs污染趋势加剧。印刷电路板产业虽然并未列入重污染行业,但作为相对耗水、耗能较多,同时又是污染排放物较多的产业,值得我们关注。PCB制造企业的污染主要产生在钻孔、蚀刻、电镀、金属化、去膜、显影等工艺过程中,排放的污染因子主要是工业废水,其次是固体废弃物。但以往的研究更多的是关注废水和固定废弃物中重金属的污染问题,对于钻孔、蚀刻过程中PBDEs的污染问题关注较少。因此,本文的主要研究内容就是印刷电路板生产企业PBDEs和重金属污染排放特征以及对典型区域环境的影响。
     在实验室建立可靠的环境介质中PBDEs和重金属分析检测方法的基础上,通过前期的文献调研、印刷电路板生产企业联系和实地考察,选择了具有代表性的印刷电路板生产企业为我们的主要研究对象。然后,系统采集印刷电路板各生产流程、车间的原料、清洗水、灰尘和大气样品。通过分析得出印刷电路板生产原料中含有不同浓度的重金属,其中Cu的含量最高,在28000-438000mg/kg之间,其他重金属的浓度比Cu低几个数量级,浓度由高低分别是Zn>Pb>Ni>Cd;原料中几乎没有PBDEs。而在其生产过程中产生的污水和污泥中,也检测到了不同浓度的重金属和PBDEs。出水样品中检测出的含量最高的重金属是Cu(1.14±0.71mg/L),接着是Pb(0.09±0.03mg/L),Ni(0.04±0.01mg/L)和Cd(N.D.),而几乎不含有PBDEs;污泥中重金属浓度最高的是Cu,浓度为(1.71±0.49)×105(mg/kg dw),接下来分别是Ni(1640.36±484.77mg/kg dw)、Pb(791.63±112.05mg/kg dw)和Cd(ND),PBDEs浓度为0.02±0.01ng/kg dw。印刷电路板在生产过程中会产生大量的悬浮颗粒物,各车间空气中TSP、PM1o和PM2.5浓度分别在6.1-365.3、27.1-289.8和22.1-212.3μg/m3之间;各车间大气中PM1o和TSP以及PM2.5和PM1o之间的相关性都非常好,而且PM2.5所占比例在50%-80%之间;说明车间大气颗粒物来源一致,另外车间除尘装置对车间空气中颗粒物有很好的去除效果。各车间大气TSP、PM1o和PM2.5中Zn的浓度是最高的,其他金属浓度由高到低依次是Cu>Pb≈Cr>Ni>Cd。
     印刷电路企业各车间灰尘样品的粒径范围在0.3-750μm之间。其中PM2.5和PM1o所占百分比分别在5.59-10.72%和14.22-26.15%之间。各个车间灰尘样品的体积平均直径D(4,3)从大到小依次为:钻孔车间(47.83gm)>原料仓库(44.11μm)>压合车间(41.53μm)>成型车间(37.371μm)>捞边车间(32.76μm)>下料车间(31.23μm)。灰尘中浓度最高的重金属是Cu,其浓度范围为6.54-56.31mg/g;其他金属浓度由高到低依次是Zn、Pb、Cr、Ni和Cd,其浓度范围分别为0.77-4.47,0.26-0.49,0.39-1.59,0.13-0.41和nd-0.056mg/g。各采样点的灰尘中均没有检出低溴代的BDEs,而只检测出少量的BDE-209。而就TBBPA来说,各车间的浓度差异较大,浓度在125-9091ng/g之间。另外,类似于RoHHS指令一样的相关法令对部分重金属(Pb)和溴系阻燃剂在印刷电路板生产工艺中的使用有决定性的影响。通过灰尘和空气颗粒物中重金属的浓度和相关风险评价模型对各车间进行风险评价发现:就各重金属的非致癌性风险来说,不管是哪种暴露途径,所有这6种重金属的HQs都低于安全值1,这说明虽然印刷电路板在生产制造过程中会向周边的环境释放一定量的重金属,但是并没有造成明显的非致癌性风险;但是就致癌性风险来说,Cr的致癌性风险值都大于10-6,在3.70×10-5-1.60×10-3之间;而Ni和Cd的致癌性风险值都低于10-6,这表明印刷电路板的生产车间中Cr会对生产工人造成致癌风险。这对印刷电路板生产原料、生产工艺和现场保护措施提出了新的挑战。
     采集印刷电路板企业周边环境土壤和灰尘样品,分析发现土壤样品中∑11PBDE(不包含BDE-209)污染浓度范围为1.00~18.43ng/g dw(平均值7.23ng/g dw);BDE-209污染浓度范围为3.50~330.0ng/g dw(平均值69.88ng/g dw)。林地土壤中PBDEs同系物分布主要以BDE-209为最主要污染物,其含量占77.82%~96.45%,平均为86.57%。灰尘中∑11PBDE(不包含BDE-209)污染浓度范围为16.00~258.2ng/g dw(平均值113.8ng/gdw); BDE-209污染浓度范围为216.1~1947ng/g dw(平均值983.8ng/g dw)。灰尘中PBDEs同系物分布主要以BDE-209为最主要污染物,其含量占67.52%~86.54%,平均为76.57%。电路板厂向四个方向的扩散基本呈现出PBDEs浓度随距离增大而逐渐降低的趋势。这说明PBDEs的释放源与电路板厂生产有关,但总的来说影响较小。此外,采样点周边环境如建筑工地出现了PBDEs浓度的跳跃现象,表明PBDEs释放源的多样性。
     在污水处理厂所有污泥样品中都有PBDEs检出:各构筑物污泥中PBDEs浓度范围都在4226.76-9204.14ng/g dw之间。其中,BDE-209是主导同系物,在所有PBDEs浓度之和所占的平均比例为83.16%,其比例范围为75.75-89.48%。接下来分别是:BDE-99>BDE-47>BDE-28,BDE-183,和BDE-153>BDE-15,BDE-100,BDE-154和BDE-206>BDE-203,BDE-207和BDE-208。该污水处理厂的进水样品中溶解态PBDEs总浓度为183.11ng/L,而改污水处理厂的最终出水样品中溶解态PBDEs浓度则降至7.07ng/L, PBDEs的去除率达到96%以上。所有污水样品中BDE-209都是最主要的同系物,所占浓度比例在75.75%-85.68%之间,BDE-99和BDE-47是仅次于BDE-209的另外2种主要同系物。通过对污水处理流程中PBDEs的溶解态和颗粒态分配系数的研究得出,溶解性颗粒物对疏水性有机物在整个污水处理流程中的迁移、转化有重要的影响。该污水厂的日均PBDEs负荷量为21311.2mg/d,污水经初沉池和二沉池处理之后分别有58.07%和39.91%的PBDEs被去除,即一共有97.98%的PBDEs被去除了,最后在出水中只剩2.02%的PBDEs。该污水厂通过出水的日均排放PBDEs的量为430.8mg,通过脱水污泥日均排放PBDEs的量高达20880.4mg。土壤在污泥农用之后PBDEs浓度年增加量为25.4ng/g,污泥农用需要百年以上才能达到欧盟的规定限值。污水厂出水接纳河流表层沉积物中检测到了较高的PBDEs,而且在距离出水口下游5km处仍然能检测出比上游0.2km处高的PBDEs,说明污水处理厂出水对接纳河流水体沉积物中PBDEs影响显著,是其PBDEs的一个主要污染源。
     在所采集的太湖28个采样点的样品中,检出率最高的是BDE-209、-47和-99,平均浓度分别为22.72、0.124和0.279ng/g dw。其中,BDE-209的浓度最高,占总浓度的80%以上;除去BDE-209之外,占∑7PBDEs总浓度比例最高的两个是BDE-47和-99,分别占44.65%和24.24%。PBDEs浓度与样品的TOC值之间的相关性较差,表明太湖沉积物中的PBDEs分布不仅受沉积物中TOC影响,而且还受其他迁移、转化的机制影响。沉积物中PBDEs同系物组成显示其主要来源于商业十溴和商业五溴产品。太湖沉积物中PBDEs的浓度在近10年增长迅速,且没有放缓的趋势。太湖沉积物中∑25PBDEs和BDE-209的赋存量估值分别为3668.48kg和26296.61kg。太湖表层沉积物中Cu的浓度在20.79-113.79mg/kg之间,平均浓度为62.04±30.43mg/kg;Zn的浓度在80.7-285.10mg/kg之间,平均浓度为144.92±45.57mg/kg;Pb的浓度在57.28-117.52mg/kg之间,平均浓度为88.84±15.04mg/kg;Cd的浓度在0.09-1.00mg/kg之间,平均浓度为0.53±0.26mg/kg;Ni的浓度在33.45-82.54mg/kg之间,平均浓度为56.84±15.16mg/kg。相关性分析表明,太湖表层沉积物中重金属除了r(Cu,Zn)=0.46和r(Cd,Pb)=-0.382之外,其他重金属之间的相关性都不明显。这说明太湖沉积物中哥重金属元素的的来源非常不一致;而且受到人为活动影响极大,人为活动所排放的重金属已经远远高于其背景值。另外,主成分分析表明太湖表层沉积物主要受人类生活生产污水、大气沉降和矿石自然风化侵蚀这三个因素的影响。
     东海表层沉积物中∑PBDEs的浓度范围为0.20-2.09ng/g dw,BDE-209的浓度范围为0.57-2.87ng/g dw。东海表层沉积物中BDE-209在所有PBDEs中所占浓度百分比范围为57.9-76.7%,接下来分别是BDE-99和BDE-47,所占比例范围分别为11.7-21.5%和7.1-17.4%。PBDEs主要来源于内陆河流的输送和大气沉降,其分布受海流方向、TOC和大气沉降共同影响。其分布呈现出(离海岸线)由近及远浓度越来越低的趋势;由北到南浓度上升的趋势。东海柱状沉积物中PBDEs浓度很好的反应出了PBDEs在中国大陆的使用历史和现状,其浓度呈现出先上升后下降的趋势,说明相关法令对PBDEs的使用具有决定性影响。表层沉积物TOC含量在0.54-0.88%之间,柱状沉积物TOC的含量在0.62-0.88%之间,而且不管是表层沉积物(R2=0.723,p<0.01)还是柱状沉积物(R2=0.595,p<0.01),PBDEs浓度和TOC含量之间有较强的线性关系都非常好,这进一步验证了东海沉积物中PBDEs浓度分布的一个重要影响因素就是沉积物中TOC含量。
PCB (Printed Circuit Boards) industry are the most active industry among the Contemporary Electronic Components Industry. According to investigation of the China Electronics industry Association, the PCB production output value of China in2003was¥50.069billion, which is more than the United States, after Japan, ranking second in the world. On the other hand, due to the severe pollution of PCB industry, a large number of PCB manufactory were moved into China from other country, such as Japan, South Korea and so on, which make the Heavy metals and PBDEs pollution more aggravated in China. However, there were few study focus on the pollution which was made during the PCB process. So, our study is made to focus on the Heavy metals and PBDEs pollution during the PCB process.
     In this study, reliable analysis and instrument method for qualitative and quantitative determination of Heavy metals and PBDEs in different environment mediums were built up. After literature survey and field investigation, we chose a typical PCB manufacturing enterprises as our main research object. Then we sampling raw material, wastewater, sludge, particular matters and dust during the PCB process. In raw material, Cu is the highest concentration metal, which concentration is between28000-438000mg/kg, followed by Zn> Pb> Ni> Cd. There is almost none of PBDEs. In wastewater, Cu (1.14±0.71mg/L) is the highest concentration metal, followed by Pb (0.09±0.03mg/L), Ni (0.04±0.01mg/L) and Cd (N.D.). There is almost none of PBDEs. In sludge, Cu ((1.71±0.49)×105mg/kg dw) is the highest concentration metal, followed by Ni (1640.36±484.77mg/kg dw), Pb (791.63±112.05mg/kg dw) and Cd (N.D.). The concentration of PBDEs in wastewater is0.02±0.01mg/kg dw, respectively.
     The concentration of TSP (total suspended particulate matter), PM10and PM2.5(particular matter diameter below10and2.5μm) in the workshop atmosphere during the PCB process are6.1-365.3,27.1-289.8and22.1-212.3μg/m3, respectively. The correlation between TSP, PM10and PM2.5is very well, and the proportion of PM2.5in TSP is between50%and80%.In TSP, PM10and PM2.5, Zn is the highest concentration metal, followed by Cu>Pb≈Cr> Ni> Cd. There is almost none of PBDEs in PM10.
     The particle size range of dust in the workshop during the PCB process is between0.3and750μm, in which the proportion of PM2.5and PM10are5.59-10.72%and14.22-26.15%, respectively. The volume average diameter (D(4,3)) of dust sample are in the following order: Drilling (47.83μm)> Raw materials warehouse (44.11μm)> Lamination (41.53μm)> Profiling (37.37μm)> Milling (32.76μm)> Cut lamination (31.23μm). In dust, Cu (6.54-56.31mg/g) is the highest concentration metal, followed by Zn (0.77-4.47mg/g), Pb (0.26-0.49mg/g), Cr (0.39-1.59mg/g), Ni (0.13-0.41mg/g) and Cd (nd-0.056mg/g). There is almost none of PBDEs in dust except a little of BDE-209. Then we take a risk assessment about the six heavy metal in each workshop, the HQ value for each non-carcinogenic metal via all three exposed way (ingestion, inhalation and dermal contact) are all below the safe value1, it indicated that there are no obvious non-carcinogenic risk for each heavy metal. However, the carcinogenic risk for Cr are between3.70×l0-5and1.60×10-3,which is higher than the safe value10-6, the carcinogenic risk for Ni and Cd are all below the safe value10-6, it indicated that there are some carcinogenic risk for Cr.
     In soil samples collect around the PCB manufactory, the concentration of∑11PBDE (except BDE-209) are among1.00to18.43ng/g dw, average concentration is7.23ng/g dw; The concentration of BDE-209are among3.50to330.0ng/g dw, average concentration is69.88ng/g dw. Obviously, BDE-209is the major congeners, and it contribution77.82%~96.45%(average:86.57%) for the total PBDEs. In dust samples collect around the PCB manufactory, the concentration of∑11PBDE (except BDE-209) are among16.00to258.2ng/g dw, average concentration is113.8ng/g dw; The concentration of BDE-209are among216.1to1947ng/g dw, average concentration is983.8ng/g dw. Similar to PBDEs in soil sample, BDE-209is also the major congeners, and it contribution67.52%~86.54%(average:76.57%) for the total PBDEs. PBDEs concentration decreases gradually with the increase of distance, the sampling site far from the PCB manufactory. This indicate that the PCB manufactory is the source of PBDEs release. Moreover, there are some abrupt phenomenon within PBDEs in soil samples, this indicate that PCB manufactory is not the only source of PBDEs release, there are some other source.
     In sludge samples collected from a typical Sewage Treatment Plant, PBDEs concentration are between4226.76and9204.14ng/g dw. BDE-209is the dominate congeners, which contribute75.75~89.48%of the total PBDEs, followed by BDE-99> BDE-47> BDE-28, BDE-183, and BDE-153> BDE-15, BDE-100, BDE-154and BDE-206> BDE-203, BDE-207and BDE-208. PBDEs concentration in influent and effluent are183.11ng/L and7.07ng/L, respectively, indicate about98%of PBDEs in influent is removed during the STP. Similar to PBDEs in sludge, BDE-209is the dominate congeners, which contribute75.75%-85.68%of the total PBDEs, followed by BDE-99and BDE-47. Research about the partition coefficient of PBDEs in solid phase and dissolved phase has shown that soluble particulate matter is a key factor for the migration and transformation of PBDEs during STP process. The mass loading of PBDEs in this STP is estimated as21311.2mg/d. There are58.07%and39.91%of total PBDEs removed from the wastewater when wastewater is treated by primary sedimentation tank and secondary sedimentation tank, in other words, there are only2.02%of PBDEs in effluent. And the mass of PBDEs release via effluent and dewater sludge are estimated as420.8mg/d and20880.4mg/d, respectively. The PBDEs in sediment from the Wastewater Receiving Stream indicate that effluent of STP is a source of PBDEs release.
     Twenty-eight sediment samples were collected from the Taihu Lake and analyzed to acquire information about the levels, distribution, possible sources, time trend and inventory of polybrominated diphenyl ethers (PBDEs) in the Taihu Lake. Our results showed that the most abundant BDE congeners in surface sediments were BDE-47,-99and-209, with a median value of0.124,0.279, and22.72ng/g dw, respectively. The levels of BDE-209in our samples were much higher relative to those of the other BDE congeners and made up more than80%of the PBDEs levels in almost all samples. Disregarding BDE209, among the seven PBDEs (BDE-28,-47,-99,-100,-153,-154,-183) more concerned, the most abundant ones were BDE-47and-99, which contributed44.65%(ranged from29.02%to73.11%),24.24%(ranged from2.27%to39.66%) to∑7PBDEs, respectively. The correlation between PBDE and TOC was poor, indicating that PBDEs concentrations in sediments of the Taihu Lake were controlled not only by TOC contents, but also by a combined effect of transport, mixing, depositional mechanisms associated with PBDEs, uncontaminated sediments, or fresh input of PBDEs. As expected, the time trend of PBDEs concentration in surface sediment from Taihu Lake were increasing, and the inventory of E25PBDEs and BDE-209were estimated to be3668kg and26296kg. In the surface sediment from Taihu Lake, the concentration of Cu, Zn, Pb, Cd and Ni are0.79-113.79mg/kg (62.04±30.43mg/kg),80.7-285.10mg/kg (144.92±45.57mg/kg),57.28-117.52mg/kg (88.84±15.04mg/kg),0.09-1.00mg/kg (0.53±0.26mg/kg) and33.45-82.54mg/kg (56.84±15.16mg/kg), respectively. According to the correlation analysis, the correlation among these heavy metals are not well, this indicate that the source of these heavy metals are different. Moreover, the PCA (Principal component analysis) manifest that there are three main source of these heavy metals:Anthropogenic emissions, Atmospheric deposition and Natural weathering.
     The concentration of∑PBDEs and BDE-209in surface sediment from East China Sea(ECS) are between0.20to2.09and0.57to2.87ng/g dw, respectively. BDE-209is the dominate congeners, contribute57.9-76.7%of total PBDEs, followed by BDE-99and BDE-47, which contribute11.7-21.5%and7.1-17.4%of total PBDEs, respectively. Moreover, the concentration of PBDEs decreased within the increase of distance between sampling site and coastline, rise from north to south. This indicate that, in surface sediment from ECS, PBDEs are mainly derived from the inland river transportation and atmospheric deposition, and the distribution of PBDEs are influenced by ocean current, TOC (Total Organic Carbon,%) and atmospheric deposition. The concentration of PBDEs in core sediment from ECS is well matching the history and status of PBDEs in China. The TOC content in surface and core sediment from ECS are between0.54to0.88%and0.62to0.88%, respectively. And the correlation between TOC and PBDEs in both surface and core sediment are very well, the correlation coefficient are R2=0.723(p<0.01) and R2=0.595(p<0.01) for surface and core sediment, respectively. This further indicate that TOC is a key factor for the distribution of PBDEs in sediment.
引文
[1]LaDou J. Printed circuit board industry.Int J Hyg Environ Health.2006,209(3):211-219
    [2]周翠红,路迈西.废旧电路板的组成与解离特性研究.环境污染治理技术与设备.2005,6(4):28-31
    [3]Jung L. The conundrum of computer recycling.Resource Recycling.1999,18(38-45
    [4]Neff D,Schmidt R. Recycling of Copper.ASM International, Metals Handbook, Tenth Edition.1990,2(1213-1216
    [5]Buyukbay B, Ciliz N, Goren G E, et al. Cleaner production application as a sustainable production strategy, in a Turkish Printed Circuit Board Plant.Resources, Conservation and Recycling.2010,54(10):744-751
    [6]Veit H M, Bernardes A M, Ferreira J Z, et al. Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.J Hazard Mater.2006,137(3):
    1704-1709
    [7]Alaee M, Arias P, Sjodin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release.Environment International.2003,29(6):683-689
    [8]Rahman F, Langford K H, Scrimshaw M D, et al. Polybrominated diphenyl ether (PBDE) flame retardants.Science of the total environment.2001,275(1):1-17
    [9]de Wit C A. An overview of brominated flame retardants in the environment.Chemosphere. 2002,46(5):583-624
    [10]La Guardia M J, Hale R C,Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures.Environmental Science & Technology.2006,40(20):6247-6254
    [11]Zhang X, Diamond M L, Ibarra C, et al. Multimedia modeling of polybrominated diphenyl ether emissions and fate indoors.Environmental Science & Technology.2009,43(8): 2845-2850
    [12]Zhao Y X, Qin X F, Li Y, et al. Diffusion of polybrominated diphenyl ether (PBDE) from an e-waste recycling area to the surrounding regions in Southeast China.Chemosphere.2009, 76(11):1470-1476
    [13]Schecter A, Papke O, Joseph J E, et al. Polybrominated diphenyl ethers (PBDEs) in US computers and domestic carpet vacuuming:possible sources of human exposure.Journal of Toxicology and Environmental Health, Part A.2005,68(7):501-513
    [14]Gouin T. Modelling the environmental fate of the polybrominated diphenyl ethers.Environ. Int.2003,29(6):717-724
    [15]Tian S, Zhu L, Bian J, et al. Bioaccumulation and Metabolism of Polybrominated Diphenyl Ethers in Carp (Cyprinus carpio) in a Water/Sediment Microcosm:Important Role of Particulate Matter Exposure.Environ Sci Technol.2012,46(5):2951-2958
    [16]Morrissey C A, Pollet I L, Ormerod S J, et al. American dippers indicate contaminant biotransport by Pacific salmon.Environ Sci Technol.2012,46(2):1153-1162
    [17]Lozano N, Rice C P, Pagano J, et al Concentration of organic contaminants in fish and their biological effects in a wastewater-dominated urban stream.Sci Total Environ.2012, 420(191-201
    [18]Chen T H, Cheng Y M, Cheng J O, et al. Growth and transcriptional effect of dietary 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) exposure in developing zebrafish (Danio rerio).Ecotoxicol Environ Saf.2010,73(3):377-383
    [19]Vermeulen F, Covaci A, D'Have H, et al. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain.Environ Int.2010,36(7):721-727
    [20]Cetin B,Odabasi M. Atmospheric concentrations and phase partitioning of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey.Chemosphere.2008,71(6): 1067-1078
    [21]Sanchez-Prado L, Llompart M, Lores M, et al. Investigation of photodegradation products generated after UV-irradiation of five polybrominated diphenyl ethers using photo solid-phase microextraction.Journal of Chromatography A.2005,1071(1):85-92
    [22]Stapleton H M,Dodder N G. Photodegradation of decabromodiphenyl ether in house dust by natural sunlight.Environmental Toxicology and Chemistry.2008,27(2):306-312
    [23]Mas S, de Juan A, Lacorte S, et al. Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard-and soft-modelling approach.Analytica chimica acta.2008,618(1):18-28
    [24]Deng D, Guo J, Sun G, et al. Aerobic debromination of deca-BDE:Isolation and characterization of an indigenous isolate from a PBDE contaminated sediment.International Biodeterioration & Biodegradation.2011,65(3):465-469
    [25]Gerecke A C, Giger W, Hartmann P C, et al. Anaerobic degradation of brominated flame retardants in sewage sludge.Chemosphere.2006,64(2):311-317
    [26]La Guardia M J, Hale R C,Harvey E. Evidence of debromination of decabromodiphenyl ether (BDE-209) in biota from a wastewater receiving stream.Environmental Science & Technology.2007,41(19):6663-6670
    [27]Lee J, Bae H, Jeong J, et al. Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals.Plant Physiology. 2003,133(2):589-596
    [28]Benvenuti M, Mascaro I, Corsini F, et al. Mine waste dumps and heavy metal pollution in abandoned mining district of Boccheggiano (Southern Tuscany, Italy).Environmental Geology.1997,30(3-4):238-243
    [29]廖国礼,周音达,吴超.尾矿区重金属污染浓度预测模型及其应用.中南大学学报:自然科学版.2005,35(6):1009-1013
    [30]孙健,铁柏清,秦普丰,et al.铅锌矿区土壤和植物重金属污染调查分析.植物资源与环境学报.2006,15(2):63-67
    [31]Kwong Y, Roots C, Roach P, et al. Post-mine metal transport and attenuation in the Keno Hill mining district, central Yukon, Canada. Environmental Geology.1997,30(1-2):98-107
    [32]
    [33]李永华,姬艳芳,杨林生,et al.采选矿活动对铅锌矿区水体中重金属污染研究.农业环境科学学报.2007,26(1):103-107
    [34]邬建中,黄爱珠.浈水水体的重金属迁移与吸附特性.人民珠江.1996,1):45-48
    [35]宋春霞,彭元成,苏金铃.火焰原子吸收分光光度法测大沂河水体的重金属含量.广东微量元素科学.2006,13(3):46-49
    [36]何江,王新伟,李朝生,et al.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报.2003,23(1):53-57
    [37]贾振邦,梁涛,林健枝,et al.香港河流重金属污染及潜在生态危害研究.1997,
    [38]陆继龙,郝立波,赵玉岩,et al.第二松花江中下游水体重金属特征及潜在生态风险.环境科学与技术.2009,32(5):168-172
    [39]程杰,李学德,花日茂,et al.巢湖水体沉积物重金属的分布及生态风险评价.农业环境科学学报.2008,27(4):1403-1408
    [40]王建军,范成新,张路,et al.太湖底泥间隙水中金属离子分布特征及相关性.中国环境科学.2004,24(1):120-124
    [41]梁莉莉,王中良,宋柳霆.贵阳市红枫湖水体悬浮物中重金属污染及潜在生态风险评价.矿物岩石地球化学通报.2008,27(2):119-125
    [42]吴雨华,王晓丽,董德明,et al.南湖水体多相介质中重金属元素的分布特征.吉林大学学报:理学版.2006,44(1):130-136
    [43]张翠,陈振楼,毕春娟,et al.黄浦江上游饮用水源地水及沉积物中汞,砷的分布特征[J].环境科学学报.2008,28(7):1455-1462
    [44]韦蔓新,何本茂.钦州湾近20a来水环境指标的变化趋势.海洋瑕境科学.2009,28(4):403-409
    [45]杨东方,曹海荣,高振会,et al.胶州湾水体重金属Hg I.分布和迁移.海洋环境科学.2008,1):
    [46]傅瑞标,何青.长江口南槽重金属的分布特征.中国环境科学.2000,20(4):357-360
    [47]贺志鹏,宋金明,张乃星,et al.南黄海表层海水重金属的变化特征及影响因素.环境科学.2008,29(5):1153-1162
    [48]Li J,Lu H,Guo J,et al.Recycle technology for recovering resources and products from waste printed circuit boards.Environmental Science & Technology.2007,41(6):1995-2000
    [49]Birnbaum L S, Staskal D F. Brominated flame retardants:cause for concerm?Environmental Health Perspectives.2004,112(1):9
    [50]Zhou X,Guo J,zhang W, et al.Tetrabromobisphenol A contamination and emission in printed circuit board production and implications for human exposure.J Hazard Mater.2014,
    [51]Veit H M,Bemardes A M,Ferreira J Z,et al.Recovery of copper from printed circuit boards scraps by mechanical processing and electrometallurgy.J Hazard Mater.2006,137(3): 1704-1709
    [52]Lam C W, Lim S-R,Schoenung J M. Environmental and risk screening for prioritizing pollution prevention opportunities in the US printed wiring board manufacturing industry.J Hazard Mater.2011,189(1):315-322
    [53]Churg A,Brauer M. Human lung parenchyma retains PM2.5.American journal of respiratory and critical care medicine.1997,155(6):2109-2111
    [54]Gullett B K, Linak W P, Touati A, et al. Characterization of air emissions and residual ash from open burning of electronic wastes during simulated rudimentary recycling operations.Journal of Material Cycles and Waste Management.2007,9(1):69-79
    [55]Bi X, Simoneit B R, Wang Z, et al. The major components of particles emitted during recycling of waste printed circuit boards in a typical e-waste workshop of South China.Atmospheric Environment.2010,44(35):4440-4445
    [56]Huang K, Guo J,Xu Z. Recycling of waste printed circuit boards:A review of current technologies and treatment status in China.J Hazard Mater.2009,164(2):399-408
    [57]Tukker A, Buist H, van Oers L, et al. Risks to health and environment of the use of lead in products in the EU.Resources, Conservation and Recycling.2006,49(2):89-109
    [58]Xue M, Yang Y, Ruan J, et al. Assessment of noise and heavy metals (Cr, Cu, Cd, Pb) in the ambience of the production line for recycling waste printed circuit boards.Environmental Science & Technology.2011,46(1):494-499
    [59]Sjodin A, Carlsson H a, Thuresson K, et al. Flame retardants in indoor air at an electronics recycling plant and at other work environments.Environmental Science & Technology.2001,35(3):448-454
    [60]Rosenberg C, Hameila M, Toraaeus J, et al. Exposure to flame retardants in electronics recycling sites. Annals of occupational hygiene.2011,55(6):658-665
    [61]Ni H-G,Zeng H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China.Science of the total environment.2013,458(15-19
    [62]Salapasidou M, Samara C,Voutsa D. Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece.Atmospheric Environment.2011,45(22): 3720-3729
    [63]Van Esch G 著. Tetrabromobisphenol A and derivatives. World health organization,1995
    [64]Geens T, Roosens L, Neels H, et al. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium.Chemosphere. 2009,76(6):755-760
    [65]Abdallah M A-E, Harrad S,Covaci A. Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, UK:implications for human exposure.Environmental Science & Technology.2008,42(18):6855-6861
    [66]Takigami H, Suzuki G, Hirai Y, et al. Flame retardants in indoor dust and air of a hotel in Japan.Environment International.2009,35(4):688-693
    [67]Covaci A, Voorspoels S, Abdallah M A-E, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives.Journal of Chromatography A. 2009,1216(3):346-363
    [68]
    [69]Leung A O, Duzgoren-Aydin N S, Cheung K, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China.Environmental Science & Technology.2008,42(7):2674-2680
    [70]Ferreira-Baptista L,De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola:a tropical urban environment.Atmospheric Environment.2005,39(25): 4501-4512
    [71]Chang J, Liu M, Li X, et al. Primary research on health risk assessment of heavy metals in road dust of Shanghai.China Environ. Sci.2009,29(5):548-554
    [72]
    [73]Wang Z, Liu S-q, Chen X-m, et al. Estimates of the exposed dermal surface area of Chinese in view of human health risk assessment.Journal of Safety and Environment.2008, 4(038
    [74]Leung A O, Duzgoren-Aydin N S, Cheung K, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China.Environ. Sci. Technol.2008,42(7):2674-2680
    [75]
    [76]Ferreira-Baptista L,De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola:A tropical urban environment.Atmos. Environ.2005,39(25):4501-4512
    [77]
    [78]Schecter A, Paepke O, Tung K C, et al. Polybrominated diphenyl ether flame retardants in the US population:current levels, temporal trends, and comparison with dioxins, dibenzofurans, and polychlorinated biphenyls.Journal of occupational and environmental medicine.2005,47(3):199-211
    [79]Hale R C, La Guardia M J, Harvey E, et al. Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment.Chemosphere.2002,46(5):729-735
    [80]Wu J-P, Luo X-J, Zhang Y, et al. Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China.Environment International.2008,34(8): 1109-1113
    [81]Wang Y, Jiang G, Lam P K, et al. Polybrominated diphenyl ether in the East Asian environment:a critical review.Environment International.2007,33(7):963-973
    [82]Song W, Ford J C, Li A, et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes.1. Lake Superior.Environmental Science & Technology.2004,38(12): 3286-3293
    [83]Allchin C, Law R,Morris S. Polybrominated diphenylethers in sediments and biota downstream of potential sources in the UK.Environmental Pollution.1999,105(2):197-207
    [84]de Boer J, Wester P G, van der Horst A, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands.Environmental Pollution.2003,122(1):63-74
    [85]Martin M, Lam P K,Richardson B J. An Asian quandary:where have all of the PBDEs gone?Mar Pollut Bull.2004,49(5):375-382
    [86]Eljarrat E, de la Cal A, Raldua D, et al. Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain).Environmental Science & Technology.2004, 38(9):2603-2608
    [87]Lacorte S, Guillamon M, Martinez E, et al. Occurrence and specific congener profile of 40 polybrominated diphenyl ethers in river and coastal sediments from Portugal.Environmental Science & Technology.2003,37(5):892-898
    [88]Chen S-J, Gao X-J, Mai B-X, et al. Polybrominated diphenyl ethers in surface sediments of the Yangtze River Delta:levels, distribution and potential hydrodynamic influence.Environmental Pollution.2006,144(3):951-957
    [89]Mai B, Chen S, Luo X, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea.Environmental Science & Technology.2005,39(10):3521-3527
    [90]LIN Z-s, Ma D, ZHANG Q-h, et al. Study on polybrominated diphenyl ethers (PBDEs) in sediment surround Bohai Sea.Marine Environmental Science.2008,27(2):24-27
    [91]CHEN S, MAI B, ZENG E Y, et al. FU JiamoState key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640; Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea [J].Acta Scientiae Circumstantiae.2005,9(
    [92]Jin J, Liu W, Wang Y, et al. Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China.Chemosphere.2008,71(6): 1043-1050
    [93]Zhou P, Lin K, Zhou X, et al. Distribution of polybrominated diphenyl ethers in the surface sediments of the Taihu Lake, China.Chemosphere.2012,88(11):1375-1382
    [94]North K D. Tracking polybrominated diphenyl ether releases in a wastewater treatment plant effluent, Palo Alto, California.Environ. Sci. Technol.2004,38(17):4484-4488
    [95]Alaee M, Arias P, Sjodin A, et al. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ, Int.2003,29(6):683
    [96]Zhou X, Guo J, Lin K, et al. Leaching characteristics of heavy metals and brominated flame retardants from waste printed circuit boards.J. Hazard. Mater.2013,246-247(96-102
    [97]Huang K, Guo J, Lin K F, et al. Distribution and temporal trend of polybrominated diphenyl ethers in one Shanghai municipal landfill, China.Environ. Sci. Pollut. Res. Int.2013,
    [98]Hale R C, La Guardia M J, Harvey E P, et al. Flame retardants:persistent pollutants in land-applied sludges.Nature.2001,412(6843):140-141
    [99]Hites R A. Polybrominated diphenyl ethers in the environment and in people:a meta-analysis of concentrations.Environ. Sci. Technol.2004,38(4):945-956
    [100]Wang Y, Zhang Q, Lv J, et al. Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China.Chemosphere.2007, 68(9):1683-1691
    [101]Peng X, Tang C, Yu Y, et al. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China.Environ. Int.2009,35(2):303-309
    [102]Yang C, Meng X-Z, Chen L, et al. Polybrominated diphenyl ethers in sewage sludge from Shanghai, China:Possible ecological risk applied to agricultural land.Chemosphere. 2011,85(3):418-423
    [103]Moche W,Stephan K. Levels of PBDE in various environmental matrices in Austria Organohalogen Compounds.2003,61(147-150
    [104]Napravnikova M, Pulkrabova J, Hradkova P, et al. Levels of PBDEs and PCBs in sediments and sewage sludges collected in several regions of the Czech Republic.Organohalogen Compounds.2008,70(1829-1832
    [105]Hagenmaier H, She J, Benz T, et al. Analysis of sewage sludge for polyhalogenated dibenzo-p-dioxins, dibenzofurans, and diphenylethers.Chemosphere.1992,25(1457-1462
    [106]Knoth W, Mann W, Meyer R, et al. Polybrominated diphenyl ether in sewage sludge in Germany.Chemosphere.2007,67(9):1831-1837
    [107]Hamm S. Polybrominated diphenyl ethers in sewage sludge and effluents of sewage plants from a central region of Germany.Organohalogen Compounds.2004,66(1629-1634
    [108]de Boer J, Wester P G, van der Horst A, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands.Environmental Pollution.2003,122(1):63-74
    [109]Fabrellas B, Larrazabal D, Martinez M A, et al. Presence of polybrominated diphenyl ethers in Spanish sewage sludges:important contribution of DECA-BDE.Organohalogen Compounds.2004,66(3755-3760
    [110]Eljarrat E, Marsh G, Labandeira A, et al. Effect of sewage sludges contaminated with polybrominated diphenyl ethers on agricultural soils.Chemosphere.2008,71(6):1079-1086
    [111]Nylund K, Asplund L, Jansson B, et al. Analysis of some polyhalogenated organic pollutants in sediment and sewage sludge.Chemosphere.1992,24(12):1721-1730
    [112]Sellstrom U, Kierkegaard A, Alsberg T, et al. Brominated flame retardants in sediments from European estuaries, the Baltic Sea, and in sewage sludge. Organohalogen Compounds 1999,40(383-386
    [113]Oberg K, Warman K,Oberg T. Distribution and levels of brominated flame retardants in sewage sludge.Chemosphere.2002,48(8):805-809
    [114]Law R J, Allchin C R, De Boer J, et al. Levels and trends of brominated flame retardants in the European environment.Chemosphere.2006,64(2):187-208
    [115]Kohler M, Zennegg M, Gerecke A C, et al. Increasing concentrations of decabromodiphenyl ether (DecaBDE) in Swiss sewage sludge since 1993.Organohalogen Compounds.2003,61(123-126
    [116]Kupper T, de Alencastro L F, Gatsigazi R, et al. Concentrations and specific loads of brominated flame retardants in sewage sludge.Chemosphere.2008,71(6):1173-1180
    [117]Song M, Chu S G, Letcher R J, et al. Fate, partitioning, and mass loading of polybrominated diphenyl ethers (PBDEs) during the treatment processing of municipal sewage.Environmental Science & Technology.2006,40(20):6241-6246
    [118]Gorgy T, Li L Y, Grace J R, et al. Polybrominated diphenyl ether leachability from biosolids and their partitioning characteristics in the leachate.Water Air and Soil Pollution. 2010,209(1-4):109-121
    [119]Hale R C, La Guardia M J, Harvey E P, et al. Flame retardants-persistent pollutants in land-applied sludges.Nature.2001,412(6843):140-141
    [120]Hale R C, Alaee M, Manchester-Neesvig J B, et al. Polybrominated diphenyl ether flame retardants in the North American environment.Environment International.2003,29(6): 771-779
    [121]North K D. Tracking polybrominated diphenyl ether releases in a wastewater treatment plant effluent, Palo Alto, California.Environmental Science & Technology.2004,38(17): 4484-4488
    [122]Andrade N A, McConnell L L, Torrents A, et al. Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications.Journal of Agricultural and Food Chemistry.2010,58(5):3077-3084
    [123]La Guardia M J, Hale R C,Harvey E. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures.Environ. Sci. Technol.2006,40(20):6247-6254
    [124]Hale R C, Kim S L, Harvey E, et al. Antarctic research bases:local sources of polybrominated diphenlyl ether (PBDE) flame retardants.Environmental Science & Technology.2008,42(5):1452-1457
    [125]Wang Y W, Zhang Q H, Lv J X, et al. Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China.Chemosphere.2007,68(9):1683-1691
    [126]Peng X, Tang C, Yu Y, et al. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China.Environment International.2009,35(2):303-309
    [127]Gevao B, Muzaini S,Helaleh M. Occurrence and concentrations of polybrominated diphenyl ethers in sewage sludge from three wastewater treatment plants in Kuwait.Chemosphere.2008,71(2):242-247
    [128]Wang Y, Jiang G, Lam P K, et al. Polybrominated diphenyl ether in the East Asian environment:a critical review.Environ. Int.2007,33(7):963-973
    [129]Mai B, Chen S, Luo X, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea.Environ. Sci. Technol.2005, 39(10):3521-3527
    [130]Duan Y-P, Meng X-Z, Yang C, et al. Polybrominated diphenyl ethers in background surface soils from the Yangtze River Delta (YRD), China:occurrence, sources, and inventory.Environ. Sci. Pollut. Res.2010,17(4):948-956
    [131]He J, Robrock K R,Alvarez-Cohen L. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs).Environ. Sci. Technol.2006,40(14):4429-4434
    [132]Rayne S,Ikonomou M G. Polybrominated diphenyl ethers in an advanced wastewater treatment plant. Part 1:Concentrations, patterns, and influence of treatment processes.J. Environ. Eng. Sci.2005,4(5):353-367
    [133]Rayne S, Ikonomou M G, Whale M D. Anaerobic microbial and photochemical degradation of 4,4'-dibromodiphenyl ether.Water Res.2003,37(3):551-560
    [134]Seth R, Mackay D,Muncke J. Estimating the organic carbon partition coefficient and its variability for hydrophobic chemicals.Environ. Sci. Technol.1999,33(14):2390-2394
    [135]Vrkoslavova J, Demnerova K, Mackova M, et al. Absorption and translocation of polybrominated diphenyl ethers (PBDEs) by plants from contaminated sewage sludge.Chemosphere.2010,81(3):381-386
    [136]Cincinelli A, Martellini T, Misuri L, et al. PBDEs in Italian sewage sludge and environmental risk of using sewage sludge for land application.Environ. Pollut.2012, 161(229-234
    [137]顺才,漪平著.太湖.海洋出版社,1993
    [138]Alaee M,Wenning R J. The significance of brominated flame retardants in the environment:current understanding, issues and challenges.Chemosphere.2002,46(5): 579-582
    [139]Kannan K, Johnson-Restrepo B, Yohn S S, et al. Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes.Environmental Science & Technology.2005,39(13):4700-4706
    [140]Darnerud P O, Eriksen G S, Johannesson T, et al. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology.Environmental Health Perspectives.2001, 109(Suppl 1):49
    [141]McDonald T A. A perspective on the potential health risks of PBDEs.Chemosphere. 2002,46(5):745-755
    [142]Chen S, Mai B, Zeng Y, et al. Polybrominated diphenyl ethers (PBDEs) in surficial sediments of the Pearl River Delta and adjacent South China Sea.Acta Scientiae Circumstantiae.2005,25(9):1265-1271
    [143]Song W, Ford J C, Li A, et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes.1. Lake Superior.Environ Sci Technol.2004,38(12):3286-3293
    [144]Allchin C R, Law R J,Morris S. Polybrominated diphenylethers in sediments and biota downstream of potential sources in the UK.Environ Pollut.1999,105(197-207
    [145]de Boer J, Wester P G, van der Horst A, et al. Polybrominated diphenyl ethers in influents, suspended particulate matter, sediments, sewage treatment plant and effluents and biota from the Netherlands.Environ Pollut.2003,122(1):63-74
    [146]Minh N H, Isobe T, Ueno D, et al. Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan.Environ Pollut.2007,148(2):409-417
    [147]Eljarrat E, de la Cal A, Raldua D, et al. Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain).Environ Sci Technol.2004,38(9): 2603-2608
    [148]Lacorte S, Guillamon M, Martinez E, et al. Occurrence and specific congener profile of 40 polybrominated diphenyl ethers in river and coastal sediments from Portugal.Environ Sci Technol.2003,37(5):892-898
    [149]Zheng G J, Martin M, Richardson B J, et al. Concentrations of polybrominated diphenyl ethers (PBDEs) in Pearl River Delta sediments.Mar Pollut Bull.2004,49(5-6):520-524
    [150]Mai B, Chen S, Luo X, et al. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea.Environ Sci Technol.2005, 39(10):3521-3527
    [151]Lin Z S, Ma D X, Zhang Q H, et al. Study on polybrominated diphenyl ethers(PBDEs) in sediment surround Bohai Sea.Marine Environmental Science.2008,29(24-27
    [152]Chen S J, Mai B X, Zeng E, et al. Polybrominated diphenyl ethers(PBDEs)in surticial sediments of the Pearl River Delta and adjagent South China Sea.Acta Scientiae Circumstantia.2005,25(1265-1271
    [153]Chen L, Huang Y, Peng X, et al. PBDEs in sediments of the Beijiang River, China: levels, distribution, and influence of total organic carbon.Chemosphere.2009,76(2):226-231
    [154]Jin J, Liu W, Wang Y, et al. Levels and distribution of polybrominated diphenyl ethers in plant, shellfish and sediment samples from Laizhou Bay in China.Chemosphere.2008, 71(6):1043-1050
    [155]Lee K-T, Tanabe S,Koh C-H. Contamination of polychlorinated biphenyls (PCBs) in sediments from Kyeonggi Bay and nearby areas, Korea.Mar Pollut Bull.2001,42(4):273-279
    [156]Hung C-C, Gong G-C, Jiann K-T, et al. Relationship between carbonaceous materials and polychlorinated biphenyls (PCBs) in the sediments of the Danshui River and adjacent coastal areas, Taiwan.Chemosphere.2006,65(9):1452-1461
    [157]Li K, Fu S, Yang Z, et al. Polybrominated diphenyl ethers in the soil of typical industrial city.Bull Environ Contam Toxicol.2009,83(6):926-930
    [158]Hites R A. Polybrominated diphenyl ethers in the environment and in people:a meta-analysis of concentrations.Environmental Science & Technology.2004,38(4):945-956
    [159]Zou M-Y, Ran Y, Gong J, et al. Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:occurrence, inventory, and fate.Environmental Science & Technology.2007,41(24):8262-8267
    [160]Dodder N G, Strandberg B,Hites R A. Concentrations and spatial variations of polybrominated diphenyl ethers and several organochlorine compounds in fishes from the northeastern United States.Environmental Science & Technology.2002,36(2):146-151
    [161]Chen L, Huang Y, Peng X, et al. PBDEs in sediments of the Beijiang River, China: levels, distribution, and influence of total organic carbon.Chemosphere.2009,76(2):226-231
    [162]Hassanin A, Breivik K, Meijer S N, et al. PBDEs in European background soils:levels and factors controlling their distribution.Environmental Science & Technology.2004,38(3): 738-745
    [163]Zhu L Y,Hites R A. Brominated flame retardants in sediment cores from Lakes Michigan and Erie.Environmental Science & Technology.2005,39(10):3488-3494
    [164]Song W, Li A, Ford J C, et al. Polybrominated diphenyl ethers in the sediments of the Great Lakes.2. Lakes Michigan and Huron.Environmental Science & Technology.2005, 39(10):3474-3479
    [165]Liu G, Zhang G, Jin Z, et al. Sedimentary record of hydrophobic organic compounds in relation to regional economic development:a study of Taihu Lake, East China.Environ Pollut. 2009,157(11):2994-3000
    [166]刘焕香.概率论与数理统计.安阳师范学院学报.2010,005):132-135
    [167]Cai M, Zhao Z, Yang H, et al. Spatial distribution of per-and polyfluoroalkyl compounds in coastal waters from the East to South China Sea.Environmental Pollution.2012, 161(162-169
    [168]Wang X-C, Sun M-Y,Li A-C. Contrasting chemical and isotopic compositions of organic matter in Changjiang (Yangtze River) estuarine and East China Sea shelf sediments Journal of oceanography.2008,64(2):311-321
    [169]Guo Z, Lin T, Zhang G, et al. High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea.Environmental Science & Technology.2006,40(17):5304-5311
    [170]Hu L, Lin T, Shi X, et al. The role of shelf mud depositional process and large river inputs on the fate of organochlorine pesticides in sediments of the Yellow and East China seas.Geophysical Research Letters.2011,38(3):
    [171]Bettina H, Hermann F, Wolfgang V 1, et al. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes.Environmental Science & Technology.2011,45(7):2842-2849
    [172]Kao S, Lin F,Liu K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough.Deep Sea Research Part II:Topical Studies in Oceanography.2003,50(6):1203-1217
    [173]Aller R C,Blair N E. Sulfur diagenesis and burial on the Amazon shelf:Major control by physical sedimentation processes.Geo-Marine Letters.1996,16(1):3-10
    [174]Lin S,Morse J W. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments. American Journal of Science.1991,291(1):55-89
    [175]Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean:its geochemical and environmental significance.Am. J. Sci.1982,282(4):451-473
    [176]de Wit C A, Herzke D,Vorkamp K. Brominated flame retardants in the Arctic environment—trends and new candidates.Science of the total environment.2010,408(15): 2885-2918
    [177]Han W, Feng J, Gu Z, et al. Polybrominated diphenyl ethers in the atmosphere of Taizhou, a major e-waste dismantling area in China.Bull Environ Contam Toxicol.2009, 83(6):783-788
    [178]Zeng L, Zhao Z, Li H, et al. Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea:Influencing factors, transport and implications.Environmental Science & Technology.2012,46(18):9898-9906
    [179]Qiu X, Zhu T,Hu J. Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China.Chemosphere.2010,80(10): 1207-1212
    [180]Carlsson P, Herzke D, Wedborg M, et al. Environmental pollutants in the Swedish marine ecosystem, with special emphasis on polybrominated diphenyl ethers (PBDE).Chemosphere.2011,82(9):1286-1292
    [181]Deng W J, Zheng J S, Bi X H, et al. Distribution of PBDEs in air particles from an electronic waste recycling site compared with Guangzhou and Hong Kong, South China.Environ Int.2007,33(8):1063-1069
    [182]Huang K, Guo J,Xu Z. Recycling of waste printed circuit boards:a review of current technologies and treatment status in China.J Hazard Mater.2009,164(2-3):399-408
    [183]陈沈良,周菊珍.长江河口主要重金属元素的分布和迁移.广州环境科学.2001,16(1):9-13
    [184]黄清辉,沈焕庭.长江河口溶解态重金属的分布和行为.上海环境科学.2001,20(8):372-374
    [185]张晓东,翟世奎,许淑梅.长江口外近海表层沉积物粒度的级配特性及其意义.中国海洋大学学报:自然科学版.2007,37(2):328-334
    [186]杨光复,吴景阳,高明德.三峡工程对长江口区沉积结构及地球化学特征的影响[J].海洋科学集刊.1992,39(69-108
    [187]存来,节著.经济应用数学:概率论与数理统计.重庆大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700