用户名: 密码: 验证码:
Th(Ⅳ)在白云母和钠长石上的吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Th(Ⅳ)在放射性废物处置库围岩上的吸附行为是深入研究钍在处置库介质中迁移规律不可缺少的内容,也是研究四价锕系元素在处置库围岩介质上吸附的主要方法之一,研究Th(IV)在处置库围岩组分上的吸附对放射性废物处置库的选址建造和安全影响评价具有重要意义。本文对花岗岩质处置库围岩成分白云母和钠长石的化学组成和结构组成进行了表征,采用实验室静态批式法研究了环境中Th(Ⅳ)在花岗岩的重要组分白云母和钠长石上的吸附规律。探讨了接触时间、吸附剂粒径、固液比、体系酸碱度、初始浓度、温度、不同价态阴离子、离子强度以及腐殖酸类物质对Th(Ⅳ)吸附行为的影响,探讨了白云母和钠长石吸附Th(Ⅳ)的机制。结果表明:
     接触时间、固液比、吸附剂粒径大小、初始Th(Ⅳ)浓度、温度和HA对Th(Ⅳ)在白云母上的吸附有强烈的影响,离子强度对吸附没有明显影响。
     Th(Ⅳ)在白云母上的吸附随固液比、体系pH的增大,温度的升高以及HA的存在而增大,NaCl04对Th(Ⅳ)在白云母上的吸附不产生影响,Th(Ⅳ)在白云母上的吸附受pH强烈影响以及不受离子强度的影响表明:在低pH范围内Th(Ⅳ)在白云母上的吸附机理为表面络合和化学吸附,而在高pH时以表面沉淀和络合为主。
     升高温度促进Th(Ⅳ)在白云母上的吸附量,温度有利于白云母对Th(Ⅳ)的吸附,Th(Ⅳ)的吸附是自发吸热过程。
     与白云母对Th(Ⅳ)的吸附规律类似,钠长石对Th(Ⅳ)的吸附受吸附剂浓度、吸附质初始浓度、共存阴离子、溶液pH、腐殖酸物质Hu-s的影响显著,吸附剂浓度的增大、pH升高、初始吸附质浓度的降低、腐殖酸物质的存在均增加Th(I V)在钠长石上的吸附百分数。
     二价阴离子影响Th(IV)在钠长石上的吸附,研究发现:二价8O42-对吸附起抑制作用,相比之下三价阴离子P043-对Th(Ⅳ)吸附的促进作用显著。
     在高离子强度溶液中,Th(I V)在钠长石上的吸附量随离子强度的增大而增大,高离子强度对Th(Ⅳ)吸附量的促进作用以及Th(IV)吸附对pH的强烈依赖性表明,在Th(Ⅳ)未发生沉淀前,Th(I V)在钠长石上吸附机理为内层络合,在有沉淀的情况下兼有沉淀和表面络合双重作用。
Sorption of Th(Ⅳ) on Muscovite and Albite,which are two important components of Granite existing extensively in earth crust, is of great significance for study of Th(Ⅳ) transportation in either host rock or near field environment, particularly for similar chemical behavior and steady valence state Th(Ⅳ) is generally regarded as analogy of actinides and therefore normally employed to research such tetra valence actinide as Pu.
     In this paper, Muscovite and Albite were characterized respectively by XRD、SEM and FTIR for their structure、appearance and configuration with/without presence of Th(IV) due to its sorption, The sorption of Th(Ⅳ) on Muscovite and Albite were investigated by batch technique as a function of contact time, solid-liquid ratio、pH、initial total concentration、coexist anions、 temperature and Hu-s under atmosphere condition. The results were demonstrated as follows:
     Sorption of Th(Ⅳ) on Muscovite was strongly dependent on contact time, solid content, pH, particle size, and temperature, an increase in solid content, pH, particle size mesh as well as HA gave rise to distinct change in sorption curves and was responded by corresponding increase in sorption percentage. Moreover the sorption was free from ion strength while temperature acted an positive role in sorption capacity, suggesting temperature was favorable to Th(Ⅳ) sorption on Muscovite and sorption reaction was an spontaneous endothermic process.
     Based on the sorption effect that Th(Ⅳ) sorption on Muscovite was not affected by ion strength while extremely sensitive to pH, it was found the sorption mechanism was inner-complex under low pH whereas an combination of inner-complex with surface precipitation worked at high pH.
     Like sorption of Th(Ⅳ) on Muscovite, sorption of Th(Ⅳ) on Albite beared similar phenomena with Muscovite, Sorption was significantly influenced and enhanced by such factors as higher adsorbent concentration, lower adsorbate concentration, high pH and HA/FA.
     Furthermore, Sorption of Th(Ⅳ) on Albite was related to foreign anions, it was found PO43+contributed to positive sorption effect of Th(Ⅳ) percentage in contrast with negative sorption effect of SO42-.
     Finally, instead of failure in obvious effect of Th(Ⅳ) sorption on Muscovite, there was an increase in sorption percentage of Th(Ⅳ) on Albite with increasing ion strength, from~0to1.2M NaClO4range Th(Ⅳ) sorption percentage rised rapidly by a margin about30%. This showed inner-complex was the main sorption mechanism at low pH values along with intense pH reliance.
引文
1. 杨通在 彭先觉,刘亦农等,回填材料膨润土阻滞性能优化研究.核技术,2003.26(7):p.527-529.
    2. 王琳,蒋永一,尾矿处置库附近土壤和大气中的放射性.世界核地质科学,2003.20(4).
    3. 王冬林 钱丽娟,张茂林,许君政,吴王锁,Eu(Ⅲ)和Am(Ⅲ)在Th4(PO4)4P2O7上的吸附行为.核化学与放射化学,2008.30(3):p.156-161.
    4. 陈伟明 王驹,若杉圭一郎,中国高放废物处置库选址中灵敏地质特征的初步确认.铀矿地质.17(2):p.65-69.
    5. 阅茂中吴俊奇,刘兰忠,朱俊杰,孟昭武,陈璋如,某花岗岩型铀矿床中铀系核素和类比元素迁移特征:高放废物处置库安全评价的天然类比研究.地球化学,1997.26(4):p.62-69.
    6. 李愿军,我国高放废物处置库的选址与能动断层研究震灾防御技术,2007.2(4):p.401-408.
    7. 王兰新,当前我国放射性核素迁移的实验研究.化学研究与应用,1998.10(6):p.573-576.
    8. O. Menard T. Advocat, J. P. Ambrosi and A. Michard, Behaviour of actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Applied Geochemistr),1998.13:p.105-126.
    9. 张英杰 于承泽,放射性锶和铯在花岗岩上的吸附与阻滞.核科学与工程,1990.10(3):p.265-272.
    10. 张茂林 杨子谦,吴王锁,Eu(Ⅲ)和Am(Ⅲ)在凹凸棒石上的吸附行为.核化学与放射化学,2008.30(2):p.120-124.
    11. Szanto Zs, Svingor, Futo I., et al., A hydrochemical and isotopic case study around a near surface radioactive waste disposal. Radiochimica Acta,2007.95(1):p.55-65.
    12. Saslow Gomez S. A., Jordan D. S., Troiano J. M., et al., Uranyl adsorption at the muscovite (mica)/water interface studied by second harmonic generation. Environ Sci Technol,2012.46(20):p.11154-61.
    13. Lee S. S., Nagy K. L., Park C., et al., Heavy metal sorption at the muscovite (001)-fulvic acid interface. Environ Sci Technol,2011.45(22):p.9574-81.
    14. Chakraborty S., Wolthers M., Chatterjee D., et al., Adsorption of arsenite and arsenate onto muscovite and biotite mica J Colloid Interface Sci,2007.309(2):p.392-401.
    15. Walter M., Arnold T., Geipel G., et al., An EXAFS and TRLFS investigation on uranium(Ⅵ) sorption to pristine and leached albite surfaces. J Colloid Interface Sci,2005. 282(2):p.293-305.
    16. Ohnuki T., Kozai N., Isobe H., et al., Sorption behavior of europium during alteration of albite. Radiochimica Acta,1999.86(3-4):p.161-165.
    1. 范桥辉,郭治军,吴王锁,放射性核素在固-液界而上的吸附:模型及其应用.化学进展,2011.23(7):p.1430-1445.
    2. Zuo Liming, Yu Shaoming, Zhou Hai, et al., Th(Ⅳ) adsorption on mesoporous molecular sieves:effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. Journal of Radioanalytical and Nuclear Chemistry,2011.288(2):p.379-387.
    3. Zhao Donglin, Sheng Guodong, Hu Jun, et al., The adsorption of Pb(Ⅱ) on Mg2Al layered double hydroxide. Chemical Engineering Journal,2011.171(1):p.167-174.
    4. Zheng H., Liu D., Zheng Y, et al., Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater,2009.167(1-3):p.141-7.
    5. Romanchuk Anna Yu, Kalmykov Stepan N., and Aliev Ramiz A., Plutonium sorption onto hematite colloids at femto- and nanomolar concentrations. Radiochimica Acta,2011. 99(3):p.137-144.
    6. Suzuki Yoshinori, Nankawa T., Francis Arokiasamy J., et al., Redox behavior of Ce(Ⅳ)/Ce(Ⅲ) in the presence of nitrilotriacetic acid:A surrogate study for An(Ⅳ)/An(Ⅲ) redox behavior. Radiochimica Acta,2010.98(7):p.397-402.
    7. Steudtner Robin, Sachs S., Schmeide K., et al., Ternary uranium(Ⅵ) carbonato humate complex studied by cryo-TRLFS. Radiochimica Acta,2011.99(11):p.687-692.
    8. Schmeide K. and Bernhard Gert, Redox stability of neptunium(Ⅴ) and neptunium(Ⅳ) in the presence of humic substances of varying functionality. Radiochimica Acta,2009. 97(11):p.603-611.
    1. Talip Z., Eral M., and Hicsonmez U., Adsorption of thorium from aqueous solutions by perlite. J Environ Radioact,2009.100(2):p.139-43.
    2. Thakur U. K., Shah Dipti, Sharma R. S., et al., Studies on protonation and Th(Ⅳ) complexation behaviour of dihydroxybenzenes in aqueous 1 M NaC104medium. Radiochimica Acta,2006.94(12):p.859-864.
    3. Tan Xiaoli, Wang Xiangke, Fang Ming, et al., Sorption and desorption of Th(Ⅳ) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007.296(1-3):p.109-116.
    4. Zuo Liming, Yu Shaoming, Zhou Hai, et al., Th(Ⅳ) adsorption on mesoporous molecular sieves:effects of contact time, solid content, pH, ionic strength, foreign ions and temperature. Journal of Radioanalytical and Nuclear Chemistry,2011.288(2):p.379-387.
    5. Melson Nathan H., Haliena Brian P., Kaplan Daniel I., et al., Adsorption of tetravalent thorium by geomedia. Radiochimica Acta,2012.100(11):p.827-832.
    6. Zhang Hongxia, Yang Chao, and Tao Zuyi, Effects of phosphate and fulvic acid on the sorption and transport of uranium(Ⅵ) on silica column. Journal of Radioanalytical and Nuclear Chemistry,2008.279(1):p.317-323.
    7. Tan X., Fang M., and Wang X., Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies:a review. Molecules,2010.15(11):p.8431-68.
    8. Zhang Yuying, Zhao Haogui, Fan Qiaohui, et al., Sorption of U(Ⅵ) onto a decarbonated calcareous soil. Journal of Radioanalytical and Nuclear Chemistry,2011.288(2):p. 395-404.
    9. Topin Sylvain, Aupiais Jean, and Baglan Nicolas, Determination of the stability constants of nitrate complexes of Np(Ⅴ) and Pu(Ⅴ) using CE-ICP-MS. Radiochimica Acta,2010. 98(2):p.71-75.
    10. Zhao D., Adsorption of thorium(Ⅳ) on MX-80 bentonite:Effect of pH, ionic strength and temperature. Applied Clay Science,2008.41(1-2):p.17-23.
    11. Yun J. I., Cho H. R., Neck Volker, et al., Investigation of the hydrolysis of plutonium(Ⅳ) by a combination of spectroscopy and redox potential measurements. Radiochimica Acta, 2007.95(2):p.89-95.
    12. Cromieres L., Moulin V, Fourest B., et al., Sorption of thorium onto hematite colloids. Radiochimica Acta,1998.82:p.249-255.
    13. Chen C. L. and Wang X. K., Influence of pH, soil humic/fulvic acid, ionic strength and foreign ions on sorption of thorium(Ⅳ) onto γ-Al2O3. Applied Geochemistry,2007. 22(2):p.436-445.
    14. Sasaki Takayuki, Takaoka Y, Kobayashi T., et al., Hydrolysis constants and complexation of Th(Ⅳ)with carboxylates. Radiochimica Acta,2008.96(12):p.799-803.
    15. Tits J., Wieland E., and Bradbury M. H., The effect of isosaccharinic acid and gluconic acid on the retention of Eu(Ⅲ), Am(Ⅲ) and Th(Ⅳ) by calcite. Applied Geochemistry, 2005.20(11):p.2082-2096.
    16. Schwantes J. M. and Santschi Peter H., Mechanisms of plutonium sorption to mineral oxide surfaces:new insights with implications for colloid-enhanced migration. Radiochimica Acta,2010.98(9-11):p.737-742.
    17..
    18. Osthols E., Bruno J., and Grenthe I., ON THE INFLUENCE OF CARBONATE ON MINERAL DISSOLUTION.3. THE SOLUBILITY OF MICROCRYSTALLINE THO2 IN CO2-H2O MEDIA Geochimica et Cosmochimica Acta,1994.58(2):p.613-623.
    19. Zhao Donglin, Sheng Guodong, Hu Jun, et al., The adsorption of Pb(Ⅱ) on Mg2Al layered double hydroxide. Chemical Engineering Journal,2011.171(1):p.167-174.
    20. Zhu Shujing, Hou Haobo, and Xue Yongjie, RETRACTED:Kinetic and isothermal studies of lead ion adsorption onto bentonite. Applied Clay Science,2008.40(1-4):p. 171-178.
    21. Zheng H., Liu D., Zheng Y, et al., Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater,2009.167(1-3):p.141-7.
    22. Rojo I., Seco F., Rovira M., et al., Thorium sorption onto magnetite and ferrihydrite in acidic conditions. Journal of Nuclear Materials,2009.385(2):p.474-478.
    23. Chen L. and Gao X., Thermodynamic study of Th(Ⅳ) sorption on attapulgite. Appl Radiat Isot,2009.67(1):p.1-6.
    24. Schott J., Acker M., Barkleit A., et al., The influence of temperature and small organic ligands on the sorption of Eu(Ⅲ) on Opalinus Clay. Radiochimica Acta,2012.100(5):p. 315-324.
    25. Tan X., Fang M., Li J., et al., Adsorption of Eu(Ⅲ) onto TiO2:effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater,2009.168(1):p.458-65.
    1. Stumpf Silvia, Stumpf Th, Walther C., et al., Sorption of Cm(Ⅲ) onto different Feldspar surfaces:a TRLFS study. RadiochimicaActa,2006.94(5_2006):p.243-248.
    2. Zhang Yuying, Zhao Haogui, Fan Qiaohui, et al., Sorption of U(Ⅵ) onto a decarbonated calcareous soil Journal of Radioanalytical and Nuclear Chemistry,2011.288(2):p. 395-404.
    3. Shi Keliang, Wang Xuefeng, Guo Zhijun, et al., Se(Ⅳ) sorption on TiO2:Sorption kinetics and surface complexation modeling. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009.349(1-3):p.90-95.
    4. Roussel-Debet S., Experimental values for 241Am and 239+240Pu Kd's in French agricultural soils. J Environ Radioact,2005.79(2):p.171-85.
    5. Tits J., Wieland E., and Bradbury M. H., The effect of isosaccharinic acid and gluconic acid on the retention of Eu(Ⅲ), Am(Ⅲ) and Th(Ⅳ) by calcite. Applied Geochemistry, 2005.20(11):p.2082-2096.
    6. Pan Duo-Qiang, Fan Qiao-Hui, Li Ping, et al., Sorption of Th(Ⅳ) on Na-bentonite: Effects of pH, ionic strength, humic substances and temperature. Chemical Engineering Journal,2011.172(2-3):p.898-905.
    7. Tan Xiaoli, Wang Xiangke, Fang Ming, et al., Sorption and desorption of Th(Ⅳ) on nanoparticles of anatase studied by batch and spectroscopy methods. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007.296(1-3):p.109-116.
    8. Talip Z., Eral M., and Hicsonmez U., Adsorption of thorium from aqueous solutions by perlite. J Environ Radioact,2009.100(2):p.139-43.
    9. Tan X., Fang M., Li J., et al., Adsorption of Eu(Ⅲ) onto TiO2:effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater,2009.168(1):p.458-65.
    10. Ren Z., Zhang G., and Chen J. P., Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J Colloid Interface Sci,2011.358(1):p.230-7.
    11. Pathak P. N. and Choppin Gregory R., Sorption of uranyl(Ⅵ) cations on suspended silicate:effects ofN-donor ligands, carboxylic acids, organic cosolvents, and metal ions. Radiochimica Acta,2007.95(5):p.245-250.
    12. Pathak P. N. and Choppin Gregory R., Sorption of europium(Ⅲ) on polymeric silica in perchlorate media. RadiochimicaActa,2007.95(1):p.49-53.
    13. Pathak P. N. and Choppin Gregory R., Effect of complexing anions on europium sorption on suspended silica:a TRLFS study for ternary complex formation. Radiochimica Acta, 2007.95(5):p.267-273.
    14. Romero-Gonzalez Maria R., Cheng Tao, Barnett Mark O., et al., Surface complexation modeling of the effects of phosphate on uranium(Ⅵ) adsorption. Radiochimica Acta, 2007.95(5):p.251-259.
    15. Pathak P. N. and Choppin Gregory R., Sorption behavior of curium(Ⅲ) on hydrous silica: a kinetic and thermodynamic study. Radiochimica Acta,2007.95(3):p.137-142.
    16. Seida Y, Terashima M., Tachi Y. et al., Sorption and diffusion of Eu in sedimentary rock in the presence of humic substance. Radiochimica Acta,2010.98(9-11):p.703-709.
    17. Sasaki Takayuki, Aoyama S., Yoshida H., et al., Apparent formation constants of Pu(Ⅳ) and Th(Ⅳ) with humic acids determined by solvent extraction method. Radiochimica Acta,2012.100(10):p.737-746.
    18. Tan X., Wang X., Chen C., et al., Effect of soil humic and fulvic acids, pH and ionic strength on Th(Ⅳ) sorption to TiO2 nanoparticles. Appl Radiat Isot,2007.65(4):p. 375-81.
    19. Schott J., Acker M., Barkleit A., et al., The influence of temperature and small organic ligands on the sorption of Eu(Ⅲ) on Opalinus Clay. Radiochimica Acta,2012.100(5):p. 315-324.
    20. Sachs S., Brendler V, and Geipel Gerhard, Uranium(Ⅵ) complexation by humic acid under neutral pH conditions studied by laser-induced fluorescence spectroscopy. Radiochimica Acta,2007.95(2):p.103-110.
    21. Schmeide K. and Bernhard Gert, Redox stability of neptunium(Ⅴ) and neptunium(Ⅳ) in the presence of humic substances of varying functionality. Radiochimica Acta,2009. 97(11):p.603-611.
    22. Sasaki Takayuki, Takaoka Y, Kobayashi T., et al., Hydrolysis constants and complexation ofTh(Ⅳ) with carboxylates. Radiochimica Acta,2008.96(12):p.799-803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700